

Transformation and Analysis
of Haskell Source Code

Neil Mitchell
www.cs.york.ac.uk/~ndm

λ
⊥

Why Haskell?

• Functional programming language
 Short, beautiful programs

• Referential transparency
 Easier to reason about and manipulate

• Lazy
 Beta-reduction holds
 Can inline easily

Goals

• Transform
 Make transformations concise

• Optimise
 Make programs execute faster

• Analyse
 Generate proofs of safety
 Pinpoint unsafe aspects

⊥

Haskell Source

data Core = Core [Data] [Func]
data Func = Func Name [Args] Expr
data Expr = Let [(Name,Expr)] Expr
 | App Expr [Expr]
 | Case Expr [(Expr,Expr)]
 | Var Name
 | Fun Name
 | Con Name
 | -- lots more

Find all functions

f :: Expr → [String]
f (Let x y) = concatMap (f.snd) x ++ f y

f (App x y) = f x ++ concatMap f y

f (Case x y) = f x ++

 concatMap f [[a,b] | (a,b) <- y]

f (Fun x) = [x]

-- lots more cases

Removing Boilerplate

uniplate x = [x | Fun x <- universe x]

syb x = everything (++) ([] `mkQ` getFun)

 where getFun (Fun x) = [x]

 getFun _ = []

compos :: Tree c -> [Name]

compos (Fun x) = [x]

compos x = composOpFold [] (++) compos x

Generic Traversals

• Reduce the quantity of code

• Make programs more readable
• Make code more robust

My extra goal:

• Use Haskell 98 (no scary types)

Fewer Extensions

• Uniplate (GHC, Yhc, nhc, Hugs – H98)
 Advanced features require Hugs/GHC – H’

• SYB (GHC 6.4+ only)
 Requires rank-2 types
 Data instances in the compiler

• Compos (GHC 6.6+ only)
 Rank-2 types
 GADT’s (very unportable)

Central Idea

class Uniplate a where

 uniplate :: a → ([a], [a] → a)
 uniplate x = (get,set)

• Children
 maximal contained items of the same type
 Get the children
 Set a new set of children

Traversals

• Queries
 Extract information out
 Already seen an example

• Transformations
 Create a modified value
 Some change

Removing Let’s

• The operation
removeLet (Let bind x) = Just $

 substitute bind x

removeLet _ = Nothing

• The transformation
removeAllLet = rewrite removeLet

Concise and Fast

0

50

100

150

200

250

300

350

400

Conciseness
0

1

2

3

4

5

6

7

8

Performance

Compos Uniplate SYB

Uniplate in the World

• My uses
 Optimiser, Analyser
 Hoogle (Haskell search engine)
 Dr Haskell (Haskell tutorial tool)

• Matt Naylor’s uses (see next)
 Reach, Reduceron

• Several other projects
 Configurations, QHC, Javascript generator…

Optimisation

• Goal
 Haskell code should be as fast a C
 Code should remain high-level

• Central idea
 Remove overhead
 Remove intermediate steps

Intermediate Steps

• Eliminate values (data/functions)
 length [1..n]
 not (not x)

INPUT OUTPUT

The Method

• Remove higher order functions
1. Either: using specialise/inline rule
2. Or: using over/under staturation rules

• Convert data to functions
 Church encoding

• Remove higher order functions

• Leaves little data or functions

First Order Haskell

• Remove lambda abstractions (lambda lift)

• Leaving only partial application/currying

odd = (.) not even

(.) f g x = f (g x)

• Generate templates (specialised bits)

Oversaturation

f x y z, where arity(f) < 3

main = odd 12

<odd _> x = (.) not even x

main = <odd _> 12

Undersaturation

f x (g y) z, where arity(g) > 1

<odd _> x = (.) not even x

<(.) not even _> x = not (even x)

<odd _> x = <(.) not even _> x

Special Rules

let z = f x y, where arity(f) > 2
 (let-under) rule
 inline z, after sharing x and y

d = Ctor (f x) y, where arity(f) > 1
 (ctor-under) rule
 inline d
 The “dictionary” rule

Standard Rules

let x = (let y=z in q) in … let/let

case (let x=y in z) of … case/let

case (case x of …) of …
case/case

(case x of …) y z app/case

case C x of … case/ctor

Church Encoding

data List a =

 Nil

 | Cons a (List a)

len x = case x of

 Nil → 0
 Cons y ys →
 1 + len ys

nil = \n c → n
cons x y = \n c → c x y

len x = x

 0

 (\y ys →
 1 + len ys)

The Preliminary Results

0

2

4

6

8

10

12

14

16

Char
Count

Line
Count

Word
Count

C

Supero

GHC

Future Work

• Refactoring
 Requires extensible transformations
 Needs to integrate with GHC’s IO Monad

• More Benchmarks

• Proofs
 Correctness
 Laziness/strictness preserving
 Termination

Analysis: Pattern matching

• Haskell programs may crash at runtime
 Pattern-match errors are quite common

head “neil” = ‘n’

head [] = ⊥

• Can get very complex

⊥

The Goal

• Statically prove the absence of pattern-
match errors
 Be conservative
 Generate a “proof” of safety

• Entirely automatic
 No annotations

• Practical
 Catch tool has been released

⊥

A Pattern-Match Error

• In Haskell you match a value with a set of
patterns
 Patterns do not have to be exhaustive

• A “default” pattern is inserted, calling
error

• Analysis:
 Can the error case be reached?
 What are the preconditions on functions?

⊥

Preconditions

• Calculate a precondition on the input
 Sufficient to ensure the output is never ⊥

⊥

INPUT OUTPUT

⊥

Properties

• Calculate a precondition on the input
 Sufficient to ensure a particular output

INPUT OUTPUT

⊥

Automatic inference

• Can automatically infer the properties
and preconditions
 Precondition of error is False
 Precondition of an expression can be

expressed as preconditions of its parts
 Properties are used for calculating

preconditions on function results

⊥

Constraints

• All based on the partitioning of a function
 Constraints on values are used

• BP constraints – list of patterns

• RE constraints – use regular expressions

• MP constraints – clever list of patterns
 Used in Catch

⊥

MP Constraints

• Haskell has recursive data structures
data List α = Nil | Cons α (List α)

• MP is: non-recursive ♦ recursive
 Non-recursive represents top-level values
 Recursive represents all other values

(Cons _ *) ♦ (Cons _ * | Nil)

⊥

MP Examples

(Cons _ *) ♦ (Cons _ * | Nil)
 Non-empty list

(Cons True *) ♦ (Cons True *)
 Infinite list of True

True ♦ _
 The value True

(Zero | One | Pos) ♦ _
 A natural number

⊥

Key MP Property

• Any proposition on MP constraints of one
variable is equivalent to one MP
constraint

(True ♦ _) ∨ (False ♦ _) = (_ ♦ _)
 Works in all cases

• Results in simplification, and fast analysis

⊥

A real-world program

• XMonad: An window manager for X
 Lots of low-level details
 A single pure core module “StackSet”
 No special annotations

• Running Catch:

⊥

$ catch StackSet.hs --quiet
Checking StackSet
14 error calls found
All proven safe

One XMonad sample

views n

 | n < 1 = …

 | otherwise = h : g t

 where (h:t) = [f i | i ← [1..n]]

• This is safe for Int, Integer

• Not safe for all numeric types

⊥

Analysis Times

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000

Lines of Code

Secs

⊥

Catch in the Real World

• XMonad was proven safe
 Developers have started using it as standard

• FilePath library checked

• FiniteMap library checked

• HsColour program checked
 Found 3 previously unknown, genuine bugs

⊥

Conclusions

• Transform: Uniplate
 Concise and fast code
 Without scary types (beginner friendly)

• Optimise: Supero
 Fast code, with reasonable compile times

• Analyse: Catch
 Can automatically check real world programs
 Can find genuine bugs

⊥

