
Transformation and 
Analysis of Functional 

Programs

Neil Mitchell



The Thesis

Uniplate
Generic, shorter

Firstify
Defunctionalisation

Catch
Checking, safer

Supero
Optimisation, faster



Uniplate

• Generics library (similar to SYB1)
• Write concise traversals over structures
• Collect all variables in an expression:

[v | Var v <- universe x]
• Make all variables title-case:

transform f
where f (Var (x:xs)) = Var (toUpper x : xs)

f x = x



Uniplate advantages

• No/few extensions
• Simple types
• Concise (~40% shorter than SYB)
• Fast (at least 50% faster than SYB)
• Makes use of compiler support

• Does common stuff well



Supero

• A supercompiler
– Evaluate the program at compile time
– Resituate so you terminate

• Old ideas, but rarely implemented
– Supercompilation from Turchin
– Homeomorphic embedding from Glück

• First attempt for Haskell



Supero improvements

• New contributions
– A strategy for let bindings
– A better generalisation

• Competitive with C (microbenchmarks)
• Faster than GHC (small benchmarks)
• Still a prototype, lots of choices to make



Firstify

• Partial defunctionalisation +
First-order analysis method =
Higher-order analysis method

• Take several ingredients
– Arity raising, inlining, specialisation
– Add termination bounds



Firstify results

• Very practically motivated
– Works well on the nofib suite

• Stress test: print (0 :: Double)
– Makes use of Arrays, IO Monad, IO 

Function, Show Continuation, list 
comprehensions..



Catch

• Automatic safety proof
– If Catch says “Safe”, your program will not

crash by calling error
• First-order language (needs Firstify)
• Division into two parts

– An algorithm (deals with Core)
– A constraint language (the lossy bit)



Catch constraints

• Constraints must:
– Be finite (for a given type)
– Provide three operations
– The operations must be consistent

• MP-constraints represent data type 
patterns in a finite way



Catch results

• Tried on HsColour
– Real program, real users
– Even a web service (hpaste.org)
– Found 3 real bugs, now fixed
– 1 false positive, but a nice refactoring

• Very automatic, but still powerful



Current status

• Uniplate: already widely used
• Supero: proof of concept
• Firstify: works well enough for Catch
• Catch: useful in some situations


	Transformation and Analysis of Functional Programs
	The Thesis
	Uniplate
	Uniplate advantages
	Supero
	Supero improvements
	Firstify
	Firstify results
	Catch
	Catch constraints
	Catch results
	Current status

