
Neil Mitchell - Termination Checking 1

Termination checking for a lazy 
functional language

Neil Mitchell



Neil Mitchell - Termination Checking 2

Overview

Background
Properties of functional languages
Bottom ⊥, Lazy, Higher order…

Total programming
Sized Types
Termination Checkers
Open questions



Neil Mitchell - Termination Checking 3

Bottom ⊥

head [1,2,3] = 1

head [] = ⊥
Not case complete – unspecified in some 

situations

sum [1..10] = 55

sum [1..] = ⊥
Never terminates, no error returned



Neil Mitchell - Termination Checking 4

Laziness

What is the result of head [1..]?

Strict: ⊥
Eager languages, C, ML, Scheme

Lazy: 1
Haskell, Clean
take 10 primes



Neil Mitchell - Termination Checking 5

Higher Order

Can pass a function as a value
Possible to define a function apply such 
that:

sum     = apply add

product = apply multiply

apply f [x] = x

apply f (x:xs) = f x (apply f xs)



Neil Mitchell - Termination Checking 6

Total Functional Programming

Turner 1995, 2004 - of  SASL, KRC, Miranda

Functional programming without ⊥
Can't crash (case complete)
Can't loop forever (…unproductively)

Requires syntactic descent
fact 0     = 1

fact (x+1) = (x+1) * fact x



Neil Mitchell - Termination Checking 7

Infinite and Total?

Telford and Turner 1997, 2000

Useful for
Infinite lists – the list of primes
Reactive systems – embedded systems
Stream processing

Use codata instead of data
Keep codata and data separate
Must be productive

Must generate next element in finite time
But can continually generate next elem



Neil Mitchell - Termination Checking 8

The Downside

But total functional programming is not all 
good…
Not Turing Complete
Requires substantial rewrites to code
Natural definitions are not correct

Need map and comap

Can't have head

first_even = head evens



Neil Mitchell - Termination Checking 9

Head v2.0

head []     = error "No head!"

head (x:xs) = x

head []     = Nothing

head (x:xs) = Just x

head a []     = a

head a (x:xs) = x

head no yes []     = no

head no yes (x:xs) = yes x



Neil Mitchell - Termination Checking 10

Sized Types
Hughes et al. 1996; Pareto 1998; Abel 2003

Annotate type signatures with size
Numbers become lists

Use succ(x) and zero – Peano numbers
4 = succ(succ(succ(succ(zero))))

append :: [x] -> [x] ->  [x]

append ::  a  ->  b  -> a + b

Used to prove termination and productivity, 
composes upwards



Neil Mitchell - Termination Checking 11

Sized Types - Sorting

isort [] = []

isort (x:xs) = insert x (isort xs)

insert n [] = [n]

insert n (x:xs) = if n<=x

then n: x: xs

else x: insert n xs

isort  :: n -> n

insert :: _ -> n -> n + 1



Neil Mitchell - Termination Checking 12

Sized Types – Sorting (2)

qsort []     = []

qsort (x:xs) = qsort l++[x]++qsort h

where l = filter (<= x) xs

h = filter (> x) xs

filter :: _ -> n -> n       or ≤ n

qsort :: n -> ?

l / h :: n – 1

qsort :: n -> n2

qsort :: n -> w



Neil Mitchell - Termination Checking 13

Termination Checkers

Higher Order

Lazy Case incom plete

Abel 1998

Panitz 1996

Brauburger,
 G iesl 1998

Panitz 1998

Turner 2004

G lenstrup
1999

Telford, Turner 2000

G iesl, Arts 2001

Thiem ann,
G iesl 2003

Pientka 2004



Neil Mitchell - Termination Checking 14

Prolog termination checkers

Genaim, Codish 2001; Apt, Pedreschi 1993; Lindenstrauss,
Sagiv 1997; Verbaeten et al 1991; lots more

Properties of Prolog…
Definitely case incomplete
Higher order (using call) Naish 96

Lazy?
Backtracking has similarities
Can encode laziness in Prolog
Antoy, Hanus 2000



Neil Mitchell - Termination Checking 15

Prolog termination checkers (2)

Lots of different methods
Most rely on building up an ordering over 
some term
Some use constraint solvers
Tabling, time complexity…

There is a set of standard problems from 
various papers

Parsing, Ackermann, sort, reverse, greatest 
common divisor etc.
No solver gets them all!



Neil Mitchell - Termination Checking 16

Panitz 1998: TEA

Translate to a Core language
Use Tableau proof

Like case analysis
Variable a is either Nil, or Cons

Looks for orderings on variables
Errors as 'successful termination'
'90%' successful



Neil Mitchell - Termination Checking 17

Normal Form (nf) Termination

An expression is in normal form if it 
cannot be reduced any further
[1..] does not have a normal form

f a b c is nf-terminating if
Given a, b and c are in normal form
f a b c will reduce to normal form

Proves nothing about head [1..]



Neil Mitchell - Termination Checking 18

Example: sum

sum Nil = 0

sum (Cons x xs) = x + sum xs

T > T2

Cons T1 T2 > T2

Cons a b = 1 + b

sum T

T = Nil T = Cons T1 T2

0 T1 + sum T2



Neil Mitchell - Termination Checking 19

Open Questions

Would a termination checker be used?
Maybe as part of a compiler?
Maybe for high quality code?

How much code rewrite is acceptable?
None?
Just restricted to library functions?



Neil Mitchell - Termination Checking 20

Summary

Properties of functional languages
Bottom ⊥, Lazy, Higher order

Total programming
No ⊥, codata

Sized Types
Extension of type system with size

Termination Checkers
Prolog checkers
TEA: Haskell checker


	Termination checking for a lazy functional language
	Overview
	Bottom 
	Laziness
	Higher Order
	Total Functional Programming
	Infinite and Total?
	The Downside
	Head v2.0
	Sized Types
	Sized Types - Sorting
	Sized Types – Sorting (2)
	Termination Checkers
	Prolog termination checkers
	Prolog termination checkers (2)
	Panitz 1998: TEA
	Normal Form (nf) Termination
	Example: sum
	Open Questions
	Summary

