Termination checking for a lazy functional language

Neil Mitchell
Overview

- Background
 - Properties of functional languages
 - Bottom \perp, Lazy, Higher order…

- Total programming
- Sized Types
- Termination Checkers
- Open questions
Bottom \perp

head \ [1,2,3] = 1
head \ [\] = \perp

Not case complete – unspecified in some situations

sum \ [1..10] = 55
sum \ [1..] = \perp

Never terminates, no error returned
Laziness

What is the result of `head [1..]`?

Strict: ⊥

Eager languages, C, ML, Scheme

Lazy: 1

Haskell, Clean

take 10 primes
Higher Order

- Can pass a function as a value
- Possible to define a function `apply` such that:

  ```
  sum     = apply add
  product = apply multiply
  ```

  ```
  apply f [x] = x
  apply f (x:xs) = f x (apply f xs)
  ```
Total Functional Programming

Turner 1995, 2004 - of SASL, KRC, Miranda

- Functional programming without ⊥
 - Can't crash (case complete)
 - Can't loop forever (…unproductively)

- Requires *syntactic descent*

\[
\text{fact } 0 = 1 \\
\text{fact } (x+1) = (x+1) \times \text{fact } x
\]
Infinite and Total?

Telford and Turner 1997, 2000

- Useful for
 - Infinite lists – the list of primes
 - Reactive systems – embedded systems
 - Stream processing
- Use **codata** instead of data
- Keep codata and data separate
- Must be **productive**
 - Must generate next element in finite time
 - But can continually generate next elem
The Downside

- But total functional programming is not all good…
- **Not** Turing Complete
- Requires substantial rewrites to code
- Natural definitions are not correct
 - Need `map` and `comap`
 - Can't have `head`

```haskell
first_even = head evens
```
Head v2.0

head [] = error "No head!"
head (x:xs) = x

head [] = Nothing
head (x:xs) = Just x

head a [] = a
head a (x:xs) = x

head no yes [] = no
head no yes (x:xs) = yes x
Sized Types

Hughes et al. 1996; Pareto 1998; Abel 2003

- Annotate type signatures with **size**
- Numbers become lists
 - Use `succ(x)` and `zero` – Peano numbers
 - \(4 = succ(succ(succ(succ(zero)))) \)

```haskell
append :: [x] -> [x] -> [x]
append :: a -> b -> a + b
```

Used to prove termination and productivity, composes upwards
Sized Types - Sorting

\[
\text{isort} \ [\] = [] \\
isort \ (x:xs) = \text{insert} \ x \ (\text{isort} \ xs)
\]

\[
\text{insert} \ n \ [\] = [n] \\
\text{insert} \ n \ (x:xs) = \begin{cases}
\text{if } n \leq x \\
 & \text{then } n: x: xs \\
\text{else } x: \text{insert} \ n \ xs
\end{cases}
\]

\[
isort :: n \to n \\
\text{insert} :: _ \to n \to n + 1
\]
Sized Types – Sorting (2)

\[
qsort \ [\] \ = \ [\] \\
qsort \ (x:xs) = qsort \ l++[x]++qsort \ h \\
\text{where} \ l = \text{filter} \ (<= x) \ xs \\
\qquad h = \text{filter} \ (> x) \ xs
\]

filter :: _ -> n -> n or \leq n
qsort :: n -> ?
1 / h :: n - 1
qsort :: n -> n^2
qsort :: n -> w
Termination Checkers

Higher Order
- Abel 1998
- Turner 2004
- Telford, Turner 2000
- Panitz 1996
- Panitz 1998
- Glenstrup 1999
- Pientka 2004
- Pientka 2004
- Thiemann, Giesl 2003
- Giesl, Arts 2001
- Brauburger, Giesl 1998
- Giesl, Arts 2001

Lazy

Case incomplete

Neil Mitchell - Termination Checking
Prolog termination checkers

Genaim, Codish 2001; Apt, Pedreschi 1993; Lindenstrauss, Sagiv 1997; Verbaeten et al 1991; lots more

- Properties of Prolog…
- Definitely case incomplete
- Higher order (using call) Naish 96
- Lazy?
 - Backtracking has similarities
 - Can encode laziness in Prolog
 Antoy, Hanus 2000
Prolog termination checkers (2)

- Lots of different methods
 - Most rely on building up an ordering over some term
 - Some use constraint solvers
 - Tabling, time complexity…
- There is a set of standard problems from various papers
 - Parsing, Ackermann, sort, reverse, greatest common divisor etc.
 - No solver gets them all!
Panitz 1998: TEA

- Translate to a Core language
- Use Tableau proof
 - Like case analysis
 - Variable a is either Nil, or Cons
- Looks for orderings on variables
- Errors as 'successful termination'
- '90%' successful
Normal Form (nf) Termination

- An expression is in normal form if it cannot be reduced any further
 - [1..] does not have a normal form

- \(f \ a \ b \ c \) is nf-terminating if
 - Given \(a, b \) and \(c \) are in normal form
 - \(f \ a \ b \ c \) will reduce to normal form

- Proves nothing about head \([1..]\)
Example: sum

\[
\begin{align*}
\text{sum } \text{Nil} &= 0 \\
\text{sum } (\text{Cons } x \; \text{xs}) &= x + \text{sum } \text{xs}
\end{align*}
\]

\[
\begin{aligned}
\text{sum } T &= \\
T &= \text{Nil} \\
0 \\
T &= \text{Cons } T_1 \; T_2 \\
T_1 + \text{sum } T_2
\end{aligned}
\]

\[
\begin{aligned}
T &> T_2 \\
\text{Cons } T_1 \; T_2 &> T_2 \\
\text{Cons } a \; b &= 1 + b
\end{aligned}
\]
Open Questions

- Would a termination checker be used?
 - Maybe as part of a compiler?
 - Maybe for high quality code?

- How much code rewrite is acceptable?
 - None?
 - Just restricted to library functions?
Summary

- Properties of functional languages
 - Bottom \bot, Lazy, Higher order

- Total programming
 - No \bot, codata

- Sized Types
 - Extension of type system with size

- Termination Checkers
 - Prolog checkers
 - TEA: Haskell checker