
Supero:
Making Haskell Faster

Neil Mitchell,
Colin Runciman

www.cs.york.ac.uk/~ndm/supero

The Goal

Make Haskell ‘faster’
– Reduce the runtime
– But keep high-level declarative style

Without user annotations
– Different from foldr/build, steam/unstream

Word Counting

In Haskell

main = print . length . words =<< getContents

Very high level
A nice ‘specification’ of the problem

And in C

int main() {
int i = 0, c, last_space = 1;
while ((c = getchar()) != EOF) {

int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

}
printf("%i\n", i);
return 0;

}

About 3 times faster
than Haskell
(gcc vs ghc)

Why is Haskell slower?

Intermediate lists! (and other things)
– GHC allocates and garbage collects memory
– C requires a fixed ~13Kb

length . words =<< getContents
– getContents produces a list
– words consumes a list, produces a list of lists
– length consumes the outer list

Removing the lists

GHC already has foldr/build fusion
– e.g. map f (map g x) == map (f . g) x

But getContents is trapped under IO
– Much harder to fuse automatically
– Don’t want to rewrite everything as foldr
– Easy to go wrong (take function in GHC 6.6)

Supero: Optimiser

No annotations or special functions
Uses ideas of supercompilation
Whole program
Evaluate the program at compile time
– Start at main, and execute

Residuate when you reach a primitive
– The primitive is in the optimised program

Optimising an Expression

Ο [case x of alts] = case Ο [x] of alts
Ο [let v = x in y] = let v = Ο [x] in Ο [y]
Ο [x y] = Ο [x] y
Ο [f] = unfold f, if f is a not primitive
Ο* = apply Ο until no further changes

Optimise the head of the expression
Also apply standard simplification rules

The tie back

Once an expression is optimised with Ο*
– The outmost expression is frozen
– The inner expressions are assigned names

Each name and expression is then optimised
further
Identical expressions receive identical names
– Finitely many expressions/names

An Example

sum x = case x of
[] → 0
x:xs → x + sum xs

range i n = case i > n of
True → []
False→ i : range (i+1) n

main n = sum (range 0 n)

Evaluation proceeds

main n
sum (range 0 n)
main n = main2 0 n

where main2 i n = sum (range i n)
case range i n of {[] → 0; x:xs → x + sum xs}
case (case i > n of {True → []; False → …}) of …
case i > n of {True → 0

;False → i + sum (range (i+1) n)}
tie back: main2 (i+1) n

Generalise

The Residual Program

main n = main2 i n

main2 i n = if i > n then 0 else i + main2 (i+1) n

Lists have gone entirely
Everything is now strict
Using sum as foldl or foldl’ would have given
accumulator version

Termination

Ο* does not necessarily terminate
Some expressions may keep getting bigger
Size bound on an expression
– If an expression exceeds a threshold
– Then freeze the outermost expression shell

case map head xs of
[] → True
(y:ys) → and ys

case map head xs of
[] → True
(y:ys) → and ys

Termination Problems

Some programs like different bounds
Ad hoc numeric parameters

A better method may be based on
homeomorphic embedding
– Positive Supercompilation for a higher order call-

by-value language, by Peter A. Jonsson

‘Supero’ Compilation

Haskell

Core

Core

Haskell

Executable

Yhc

GHC

Supero

Yhc.Core

GHC’s Contributions

GHC is a mature optimising compiler

Primitives (Integer etc)
Strictness analysis and unboxing
STG code generation
Machine code generation

Comparative Runtime (40Mb file)

0

5

10

15

20

25

sec.

charcount linecount wordcount

C (gcc)
Supero+GHC
GHC

Runtime as % of GHC time

0
10
20
30
40
50
60
70
80
90

100

%

digits-e1 digits-e2 exp3 primes queens

Conclusions

Still more work to be done
– Complete nofib suite is the target
– Termination is the ‘open issue’

Haskell can perform as fast as C
Haskell programs can go faster

	Supero:�Making Haskell Faster
	The Goal
	Word Counting
	And in C
	Why is Haskell slower?
	Removing the lists
	Supero: Optimiser
	Optimising an Expression
	The tie back
	An Example
	Evaluation proceeds
	The Residual Program
	Termination
	Termination Problems
	‘Supero’ Compilation
	GHC’s Contributions
	Comparative Runtime (40Mb file)
	Runtime as % of GHC time
	Conclusions

