Somewhat Dynamic
Build Systems

Neil Mitchell, Meta
https://ndmitchell.com/

https://ndmitchell.com/

Abuild system... (main.exe)

e Think Make, Gradle, Shake, CMake,

Scons, Bazel, Buck?2. : :
e Turn source code into binaries. util.o Main.o

e A developer’s inner loop.

util.c util.h main.c

(a) Task dependency graph

Build systems a la carte: Theory and practice
Mokhov, Mitchell, Peyton Jones

Dynamic (monadic) vs static (applicative)

Unlike Make, Excel (the build system) does not need to know all task
dependencies upfront. Indeed, some dependencies may change dynamically

during computation.

A B C
1 10 =INDIRECT("A"&C1) 1

e \N JFP30, €11, 55 pages, 2020, © The Authors) 2020, Publshed by Cambridge Uriversiy Press. This s an Open
a , R
e orginal work i properly cited.

doiz10.1017/S0956796820000088

¢ \d gr aphs Build systems a la carte: Theory and practice
U\ ANDREY MOKHOV

School of Engincering, Newcastle University, Newcastle upon Tyne, UK
Jane Street, London, UK
(e-mail: andrey .mokhovéncl .ac.uk)

NEIL MITCHELL
Facebook, London, UK
(e-mail: ndni tchel10gmail. con)
SIMON PEYTON JONES

Microsoft Research, Cambridge, UK
(e-mail: s imonpGmi crosoft . com)

Abstract

Build systems are awesome, terrifying and unloved. They are used by every developer around the
world, but are rarely the object of study. In this paper, we offer a systematic, and executable, frame-
work for developing and comparing build systems, viewing them as related points in a landscape
rather than as isolated phenomena. By teasing apart existing build systems, we can recombine their
components, allowing us to prototype new build systems with desired properties.

1 Introduction

Build systems (such as MAKE) are big, complicated, and used by every software developer
on the planet. But they are a sadly unloved part of the software ecosystem, very much a
means to an end, and seldom the focus of attention. For years MAKE dominated, but more
recently the challenges of scale have driven large software firms like Microsoft, Facebook,
and Google to develop their own build systems, exploring new points in the design space.
These complex build systems use subtle algorithms, but they are ofien hidden away, and
not the object of study.

In this paper, we give a general framework in which to understand and compare
build systems, in a way that is both abstract (omitting incidental detail) and yet precise
(implemented as Haskell code). Specifically, we make these contributions:

+ Build systems vary on many axes, including: static versus dynamic dependencies;
Tocal versus cloud; deterministic versus non-deterministic build tasks; early cutoff;
self-tracking build systems; and the type of persistently stored build information.
In Section 2, we identify some of these key propertics, illustrated by four carefully
chosen build systems.

Downloaded from htps:/wnw.camibridge.org/core, IP address: 81141
2w cambridge.org/core/termes, https:/doi.org/10.1017/503

143.19, 0n 26 Apr 2020 at 11:59:57, subject o the Cambridge Core terms of use, avilable at

682000008

A Buck2 example

c_library(
name
srcs

c_binary(
name
srcs
deps

“my_lib“ ,
["1ib1.c", "1lib2.c"],

“my_bin“ ,
["main.c"],
[":my_lib"],

Bazel and Buck1 look very similar.
These are all large scale build systems.

Target graph Action graph

[‘my_bin] [my_bin.exe]
_ mainc | ~ mano | [diblo | [lib2o
manc | [libte | [lib2c

Target graph
e Exactly what the user writes
e Interms of targets
e Entirely static
e Used for computing the action

graph (analysis)
Used for static analysis

o SBOM
o Cl test selection

Action graph

e Computed from the target graph

e Files joined by actions
(command lines)

e Operational concerns

e Cannot invalidate static analysis
done on the target graph

Operational concerns

[

input1.o

) |

input2.0

]

[input1.o

) |

input2.o]

1

T

[

input1.c

J |

input2.c

)

Parallelism | Incrementality

Sharing

[

input1.o]

input2.o

)

[
oy

[header.pch

Cl - Target Determination

@ @ () () (L) + millions more unchanged @
AN
S ®

' ' i?equtires: ero i[r;pact Irorr|1
argets you don't transitively
‘ ‘ ' ‘ ‘ depend on

https://qithub.com/facebookincubator/buck2-change-detector

https://github.com/facebookincubator/buck2-change-detector

Analysis

Analysis is a function that translates a target graph node to some action graph

e Output:
o Artifacts (with actions), plus pure data (metadata)
e Input:

o Pure data for this target node
o Artifacts for all source inputs of this target node
o Outputs of analysis from all target dependencies

e Can only access artifacts bubbled up by your dependencies
o Assuming analysis is a pure function (which Buck2 and Bazel both enforce with Starlark)

Building the graph: run

run(command_line_arguments, [input, files], [output, files])

This gives us static dependency graphs [main.lib] [main.dll]

P

[input1.o] [input2.0]

Does more “dynamic” give us more power?

Dynamic: Look at your computed results then grab-arbirary-redes-and make parts
of the graph.

e Arbitrary node lookup violates target graph static analysis.

e Expressive power? No. A 1:1 mapping to the target graph would be maximally
expressive.

e Operationally? Yes! If we have more fine grained nodes, we can do better
parallelism, incrementality, sharing, laziness.

Problem 1: OCaml/Haskell

An OCaml library is a bunch of .ml files, that have internal imports.
Must compile each module in dependency order. Three options:

1. Compile every file in the library in one action
(coarse, low parallelism, incrementality) - how Haskell/Bazel works.
2. Write every file and its internal dependencies in the target graph
(duplicated information) - how OCaml/Bazel works.

3. Add more powerful features. [input2.m|]
1&

ocamldep Sinputs -o output.m
for x in linearise(output.m) [input1.ml]
ocamlc Sx :

[output.cmx]

Solution 1: Dynamic outputs } _____________
run("ocamldep ..", srcs, ["output.m"]) [output.m]“"(Z:)
§ ‘~

def f(ctx, artifacts, outputs):

makefile = artifacts|["output.m"].read_string()

follow_makefile(makefile, lambda x: run(...)) 7777777

run("combine”, .., outputs["output.cmx"])

[input1.mi input2.mi

dynamic_output(dynamic = ["output.m"], output = ["output.cmx"], f = f)

Action graph now has a dynamic fragment, with static boundaries.

Problem 2: Python Omnibus

Python can depend on C/C++ libraries. Much faster if these libraries are linked
together in one lump. The full set of transitively dependent C++ libraries is only
visible to the binary. What to do?

1. Link them together separately each time. Lots of duplicated work.
2. Make the user specify sets of libraries to pre-link. Hard to keep correct,
requires detailed knowledge of hidden data (what has C++ dependencies).

3. Add more powerful features. [py_bin

T

Copylibt [pydib2 || py_lib3

[input1.c] [input2.py [input3.c

e

N

1
\

Solution 2: Anon targets

omnibus = anon_rule(impl = ..
attrs = {"deps": attrs.list(attrs.dep())})

#my_lib1,:my_lib2]

my_libt | [my lib2 |

out = anon_target(omnibus, {"deps": cpp_deps})
run("python_link ..", out.artifact("so"), "output.par")

Target graph gains new nodes for additional sharing.
But these nodes don’t expose any additional data.

What we added to the action graph

Parallelism
Incrementality
Sharing
Information

Uses in prelude

Dynamic outputs

viv
viv
4

New from command results

15 results / 8 files

Anon targets

4
viv

Hiding target information

8 results / 8 files

Problem 3: Is there a third problem?

We haven’t found one.

How would we prove there is not a third problem?

Introducing Buck2 - https://buck2.build

e Abuild system

e Developed and used by Meta

e Supports many languages (C++, Rust,
Python, Go, OCaml, Erlang...)

e Designed for large mono repos

e Open source

e Remote execution

e 2x as fast as Buck1 &=

e Has powerful action graph features

https://buck2.build

Conclusion

e Large scale build systems (Buck1, Bazel, Buck2) have two graphs - target

and action graph

e Target graph is static and user written (constant-static?)
o Important for Cl concerns

e Action graph must refine the target graph with operational concerns
o Can be dynamic (based on command results) but not reach out beyond the target graph

e Can use Build systems a la carte to help design a build system

Perhaps try Buck2: https://buck2.build/

https://buck2.build/

