
Somewhat Dynamic
Build Systems

Neil Mitchell, Meta
https://ndmitchell.com/

https://ndmitchell.com/

A build system…

● Think Make, Gradle, Shake, CMake,
Scons, Bazel, Buck2.

● Turn source code into binaries.
● A developer’s inner loop.

Build systems à la carte: Theory and practice
Mokhov, Mitchell, Peyton Jones

Dynamic (monadic) vs static (applicative)

Unlike Make, Excel (the build system) does not need to know all task
dependencies upfront. Indeed, some dependencies may change dynamically
during computation.

#REF!

There are TWO

build graphs

Static and dynamicare a continuum

A Buck2 example

c_library(
 name = "my_lib",
 srcs = ["lib1.c", "lib2.c"],
)

c_binary(
 name = "my_bin",
 srcs = ["main.c"],
 deps = [":my_lib"],
)

Bazel and Buck1 look very similar.
These are all large scale build systems.

:my_bin

lib1.c
:my_lib

lib2.cmain.c

main.o lib2.olib1.o

my_bin.exe

Target graph Action graph

main.c

lib1.c lib2.c

Target graph

● Exactly what the user writes
● In terms of targets
● Entirely static
● Used for computing the action

graph (analysis)
● Used for static analysis

○ SBOM
○ CI test selection

Action graph

● Computed from the target graph
● Files joined by actions

(command lines)
● Operational concerns
● Cannot invalidate static analysis

done on the target graph

Operational concerns

Parallelism

Sharing

Incrementality

input1.o input2.o

header.pch

input1.o input2.o

input1.o input2.o

input1.c input2.c

CI - Target Determination

https://github.com/facebookincubator/buck2-change-detector

+ millions more unchanged

Requires: Zero impact from
targets you don’t transitively
depend on

https://github.com/facebookincubator/buck2-change-detector

Analysis

Analysis is a function that translates a target graph node to some action graph

● Output:
○ Artifacts (with actions), plus pure data (metadata)

● Input:
○ Pure data for this target node
○ Artifacts for all source inputs of this target node
○ Outputs of analysis from all target dependencies

● Can only access artifacts bubbled up by your dependencies
○ Assuming analysis is a pure function (which Buck2 and Bazel both enforce with Starlark)

Building the graph: run

run(command_line_arguments, [input, files], [output, files])

This gives us static dependency graphs

input2.oinput1.o

main.lib main.dll

Does more “dynamic” give us more power?

Dynamic: Look at your computed results then grab arbitrary nodes and make parts
of the graph.

● Arbitrary node lookup violates target graph static analysis.
● Expressive power? No. A 1:1 mapping to the target graph would be maximally

expressive.
● Operationally? Yes! If we have more fine grained nodes, we can do better

parallelism, incrementality, sharing, laziness.

Problem 1: OCaml/Haskell

An OCaml library is a bunch of .ml files, that have internal imports.

Must compile each module in dependency order. Three options:

1. Compile every file in the library in one action
(coarse, low parallelism, incrementality) - how Haskell/Bazel works.

2. Write every file and its internal dependencies in the target graph
(duplicated information) - how OCaml/Bazel works.

3. Add more powerful features. input2.ml

input1.ml
ocamldep $inputs -o output.m
for x in linearise(output.m)
 ocamlc $x

Solution 1: Dynamic outputs

run("ocamldep …", srcs, ["output.m"])

def f(ctx, artifacts, outputs):
 makefile = artifacts["output.m"].read_string()
 follow_makefile(makefile, lambda x: run(...))
 run("combine", …, outputs["output.cmx"])

dynamic_output(dynamic = ["output.m"], output = ["output.cmx"], f = f)

Action graph now has a dynamic fragment, with static boundaries.

output.m

input2.mlinput1.ml

output.cmx

🔍

Problem 2: Python Omnibus

Python can depend on C/C++ libraries. Much faster if these libraries are linked
together in one lump. The full set of transitively dependent C++ libraries is only
visible to the binary. What to do?

1. Link them together separately each time. Lots of duplicated work.
2. Make the user specify sets of libraries to pre-link. Hard to keep correct,

requires detailed knowledge of hidden data (what has C++ dependencies).
3. Add more powerful features.

input1.c

:py_bin

:py_lib1 :py_lib2 :py_lib3

input2.py input3.c

Solution 2: Anon targets

omnibus = anon_rule(impl = …,
 attrs = {"deps": attrs.list(attrs.dep())})

out = anon_target(omnibus, {"deps": cpp_deps})
run("python_link …", out.artifact("so"), "output.par")

Target graph gains new nodes for additional sharing.
But these nodes don’t expose any additional data.

:my_lib1

:my_bin

#[:my_lib1,:my_lib2]

:my_bin2

:my_lib2

What we added to the action graph

Dynamic outputs Anon targets

Parallelism ✅✅
Incrementality ✅✅ ✅
Sharing ✅ ✅✅
Information New from command results Hiding target information

Uses in prelude 15 results / 8 files 8 results / 8 files

Problem 3: Is there a third problem?

We haven’t found one.

How would we prove there is not a third problem?

Introducing Buck2 - https://buck2.build

● A build system
● Developed and used by Meta
● Supports many languages (C++, Rust,

Python, Go, OCaml, Erlang…)
● Designed for large mono repos
● Open source
● Remote execution
● 2x as fast as Buck1 😎
● Has powerful action graph features

https://buck2.build

Conclusion

● Large scale build systems (Buck1, Bazel, Buck2) have two graphs - target
and action graph

● Target graph is static and user written (constant-static?)
○ Important for CI concerns

● Action graph must refine the target graph with operational concerns
○ Can be dynamic (based on command results) but not reach out beyond the target graph

● Can use Build systems à la carte to help design a build system

Perhaps try Buck2: https://buck2.build/

https://buck2.build/

