
Shake Before Building
Replacing Make with Haskell

community.haskell.org/~ndm/shake

Neil Mitchell

General Purpose Build Systems

+ Rules

 Visual Studio
 ghc –make
 Cabal

 make
 Cmake
 Scons
 Waf
 Ant

Shake

Generated files

Foo.xml

Foo.c

MyGenerator

Foo.o

…headers…

• What headers does Foo.c import?

(Many bad answers, exactly one good answer)

Dependencies in Shake

• Fairly direct

– What about in make?

"Foo.o" *> _ -> do
 need ["Foo.c"]
 (stdout,_) <-
 systemOutput "gcc" ["-MM","Foo.c"]
 need $ drop 2 $ words stdout
 system' "gcc" ["-c","Foo.c"]

Make requires phases

Foo.mk : Foo.c
 gcc –MM Foo.c > Foo.mk
#include Foo.mk

Foo.o : $(shell sed … Foo.xml)

Foo.o : Foo.c
 gcc –c Foo.o

Disclaimer: make has hundreds of extensions,
none of which form a consistent whole, but some
can paper over a few cracks listed here

Dependency differences

• Make

– Specify all dependencies in advance

– Generate static dependency graph

• Shake

– Specify additional dependencies after using the
results of previous dependencies

 Dshake > Dmake

A build system with a
static dependency graph

is insufficient

Build system
Better dependencies
Modern engineering
+ Haskell

Shake

Syntax

Types

Abstraction

Libraries

Monads

Profiling

Lint

Analysis

Parallelism
Robustness

Efficient

Identical performance to make

 Profiling

0

1

2

3

4

Shake at Standard Chartered

• In use for 3 years

– 1M+ build runs, 30K+ build objects,
1M+ lines source, 1M+ lines generated

• Replaced 10,000 lines of Makefile
with 1,000 lines of Shake scripts

– Twice as fast to compile from scratch

– Massively more robust
Disclaimer: I am employed by Standard Chartered Bank. This paper
has been created in a personal capacity and Standard Chartered Bank
does not accept liability for its content. Views expressed in this paper
do not necessarily represent the views of Standard Chartered Bank.

*for one real example

Shake vs make:
10x shorter, 2x faster*

Faster 1 of 4: Less work

• gcc -MM finding headers has bad complexity

– At large enough scale, it really matters

A.h B.h

Headers.h

Foo.c Bar.c Baz.c

C.h

Scan each header
once, instead of
once per inclusion

Faster 2 of 4: Less rebuilds

Foo.xml

Foo.c

MyGenerator

Foo.o

…headers…

commit decea285a863ff147f53d3748aac8b13
Author: Neil Mitchell <neil@bigproject.com>
Comment: MyGenerator, whitespace only

Faster 3 of 4: More parallelism

• Big project ≈ perfect parallelism

– No unnecessary dependencies

– Depend on only part of a file

– No phases (overly coarse dependencies)

Faster 4 of 4: Better parallelism

• Random thread pool = 20% faster

– Avoid all compiles then all links

Compiling Linking

Shake outside a bank

• At least 10 Haskell build libraries

– 3 are Shake inspired implementations

• 2 Shake addon libraries

There’s a bit of scaffolding to get going,
but the flexibility is really worth it to be

able to handle auto-generated files easily.

A
b

b
a C

o
ad

ju
te

 C
ake

 H
m

k O
p

e
n

Sh
ake

 B
lu

e
p

ri
n

t
 C

ak
e

H

ak
e

N

e
m

e
si

s
 Z

o
o

m

More information

ICFP paper Hackage (shake)

