Shake Before Building
Replacing Make with Haskell

Neil Mitchell

community.haskell.org/~ndm/shake

General Purpose Build Systems

%X| Visual Studio
x| ghc —make

x| Cabal

vl make

vl Cmake
V] Scons

vl Waf

V] Ant

VIShake

Generated files

[I\/IyGenerator} [Foo.xml }

l l

Foo.c [...headers... }

l l

Foo.0

 What headers does Foo.c import?

(Many bad answers, exactly one good answer)

Dependencies in Shake

"Foo.o" *> _ -> do
need ["Foo.c"])b
(stdout,) <-
systemOutput "gcc" ["-MM","Foo.c"]
need $ drop 2 $ words stdout

system' "gcc" ["-c","Foo.c"]

* Fairly direct
— What about in make?

Make requires phases

Foo.o0 : Foo.cC
gcc -c Foo.o

Foo.o : $(shell sed .. Foo.xml)

Foo.mk : Foo.cC
gcc -MM Foo.c > Foo.mk
#include Foo.mk

Disclaimer: make has hundreds of extensions,
none of which form a consistent whole, but some
can paper over a few cracks listed here

Dependency differences

* Make

— Specify all dependencies in advance
— Generate static dependency graph

 Shake

— Specify additional dependencies after using the
results of previous dependencies

{ I:)shake > Dmake }

-

.

YV

A build system with a
static dependency graph
is insufficient

o

)

Profiling
Lint

Analysis

Parallelism
Robustness

\ Efficient

Build system

Better dependencies
Modern engineering

+

/‘

Syntax

Types

Haskell <

Shake

Abstraction

Libraries

Monads
\

Shake at Standard Chartered §

* In use for 3 years

— 1M+ build runs, 30K+ build objects,
1M+ lines source, 1M+ lines generated

* Replaced 10,000 lines of Makefile
with 1,000 lines of Shake scripts

— Twice as fast to compile from scratch
— Massively more robust

Disclaimer: | am employed by Standard Chartered Bank. This paper
has been created in a personal capacity and Standard Chartered Bank
does not accept liability for its content. Views expressed in this paper
do not necessarily represent the views of Standard Chartered Bank.

Shake vs make:
10x shorter, 2x faster*®

.

, *for one real example

Faster 1 of 4: Less work

e gcc -MM finding headers has bad complexity
— At large enough scale, it really matters

Ah Bh ch
\ v / Scan each header

[Headers.h once, instead of

/ \ once per inclusion

fove |bae Bazc

Faster 2 of 4: Less rebuilds

[I\/IyGenerator} [Foo.xml }

Foo.c [...headers... }

Foo.o

commit decea285a863ft147153d3748aac8b13
Author: Neil Mitchell <neil@bigproject.com>
Comment: MyGenerator, whitespace only

Faster 3 of 4: More parallelism

* Big project = perfect parallelism
— No unnecessary dependencies
— Depend on only part of a file
— No phases (overly coarse dependencies)

5.0

4.0

3.0

2.0

1.0

0.0

0.00= SmdZs T1mdd= 16m37s 22m09= 27md1 =

Faster 4 of 4: Better parallelism

 Random thread pool = 20% faster
— Avoid all compiles then all links

Compiling Linking

Blueprint Cake Hake Nemesis Zoom

Shake outside a bank

At least 10 Haskell build libraries
— 3 are Shake inspired implementations

2 Shake addon libraries

-

There’s a bit of scaffolding to get going,
but the flexibility is really worth it to be

able to handle auto-generated files easily.

~

A==

Meysuado MwH Ne) anfpeo) eqqy

More information

ICFP paper

Shake Before Bullding
Heplocing Moke with Hske B

g e g e 8 e e b

Hackage (shake)

Development.Shake

This module is used for defining Shake build systems. As a simple example of 2 Shake

build system, let us build the file result.car from the files listed by result. cxt: Contents
Core of Shake

import Development.3hake Utility functions

import Development.ihake.FileFath File rules
Directory rules

main = shake shakeOptions § do AdiTieme mies

want [Mresult.tart] Finite resources

" tar" > Yout -> do
contents <- readFilelines § replaceExtension out "exc'
need contents
system' "tar™ § ["-cf",out] ++ contents

We start by importing the modules defining both Shake and routines for manipulating FilePatch values. We
define main to call shake with the default shakeopt ions. As the second argument to shalke, we provide a
set of rules. There are two commaon forms of rules, want to specify target files, and == to define a rule which
builds a FileFattern We use want to require that after the build completes the file resulc. tar should

be ready.

The *.tar rule describes how to build files with the extension . tar, including resule. car. Ye
readFilelines on result. txt, after changing the . tar extension to . ext. We read each line into the
variable contents - being a list of the files that should go into resulc.car. Mext, we depend (ne=d) all the
files in zontents. If any of these files change, the rule will be repeated. Finally we call the car program. If
either result.cxt changes, or any of the files listed by resule. cxt change, then resule. car will be

rebuilt.

