
Pyrefly
A Python typechecker and language server

Neil Mitchell, Meta

Python has types!

● Since version 3.5 (2015) in PEP 484
● Not checked by default - the interpreter skips* them

○ Runtime checking - typeguard, pydantic, enforce - runtime cost
○ Static checking - mypy, pyright, pyre, pytype, pyrefly, ty, zuban

● More complex than you might think!
○ Generics, literals, higher-order, dataclass transforms, narrowing
○ A standards document, conformance tests - constantly evolving

def test(x: int) -> str:

 return f"test{x}"

What is Pyrefly?

● A static checker and language server (IDE/LSP provider)
● An open-source standards-compliant Python type checker
● Fast and parallel (written in Rust)
● From the team behind Pyre (no code in common)
● Lots of type inference

pyrefly.org

https://pyrefly.org/

Sandbox (pyrefly.org/sandbox)

.

https://pyrefly.org/sandbox

History of Pyrefly

● Meta develops Instagram which is a massive codebase of Python
○ Over 20 million lines of Python
○ 3B monthly active users
○ Over 3.3K daily Python developers across Meta

● In 2017 we started work on Pyre
○ MyPy was considered, but found to be too slow
○ Descendent of Hack (PHP) and Flow (Javascript)
○ Written in OCaml
○ Essential to our development flow

The problems with Pyre

OCaml wasn’t a great choice at Meta
● Didn’t work on Windows
● Parallelism was hard (multiprocess)
● Barrier to open source contributors
● Some problems were solved later, outside Meta

But Pyre had issues too
● Started as abstract interpretation (fixed points, desugaring)
● Started as a command line, hard to pivot to IDE
● Started closed source, never focused on open source users

The birth of Pyrefly

● August 2024 two of us started prototyping MiniPyre
○ 7 prototypes written, constraints, subset based, abstract interpretation…
○ Using Rust (cross platform and fast)
○ Hard bits first: generics, recursion, overloads, import *

● October 2024 it was working well, so we started Pyre2 Pyrefly
○ Implement features, following the typing spec
○ Implement LSP

● May 2025 we released an alpha at PyConUS
● October 2025 we are still improving, but give it a go (pyrefly.org)

https://pyrefly.org

The Python type system

Why types?

● Python developers are buying in more
○ “2025 is the year of type-checking for Python. I’m so excited.”

● Faster inner loop - run the code less
● Spot typos
● Make corner cases safer
● Understand the code better, documentation, goto-def
● LLM grader
● Write code faster - auto-completion
● Machine checked documentation
● Refactor with peace of mind

The aim

● Give a way to annotate existing code and detect bugs
● The trend has been increasingly complex type system features to model the

code people actually write
● Typing conformance test (Pyrefly gets 67.3%, similar to mypy)
● Detailed specification (https://typing.python.org/)

○ But still lots of choices to make as to precise semantics
○ Inference left unspecified

https://typing.python.org/

Basic types

● A few places you can write types
● The basic primitives, plus class types

class MyType:

 field: bool

 pass

def test(x: int) -> str:

 value: MyType = ...

 return f"test{x}"

Literals

● For int, str, bool, bytes, you can write literals that restrict the type

def open_file(mode: Literal['r','w']): ...

def calc() -> Literal[42]:

 return 42

x: Literal['test'] = 'te' + 'st'

Aliases and forward refs

● You can define type aliases as values
● Types in strings are OK, to deal with execution order
● Is z = "hello" a type?

def f(v: "X") -> "Y":

 return v + 1

X = int

print(X("42"))

type Y = "int"

Union and gradual types

Union[A, B] == A | B
Any ~= int | bool | MyType | …

● Any represents an unknown static type
● Every type is assignable to Any, and Any is assignable to every type.
● A function parameter without an annotation is assumed to be Any.
● Also Never/NoReturn for the empty union.

Is an unannotated variable implicitly annotated with Any? Systems vary.

def test(x: Any | bool):

 ...

Generics

Two forms, using TypeVar and
generic syntax

TypeVar can specify variance,
generic syntax infers it

Can specify constraints on both,
e.g. must be iterable.

X = TypeVar("X")

def box1(x: X) -> list[X]:

 return [x]

def box2[Y](y: Y) -> list[Y]:

 return [y]

Protocols

Structural subtyping

Standard types for iteration,
collections, mutable collections,
context managers etc

class SupportsClose(Protocol):

 def close(self) -> None: …

Overloads

A set of “fake signatures”, where only one matches.

@overload

def not(x: Literal[True]) -> Literal[False]: ...

@overload

def not(x: Literal[False]) -> Literal[True]: ...

def not(x: Any) -> bool:

 return False if x else True

Callable

Specify functions as types. Versatile with generics and concat.
But awkward, since doesn’t let you specify argument names.

type Simple = Callable[[int, str], bool]

def f[**P, T](

 call: Callable[Concatenate[int, P], T],

 *args: P.args, **kwargs: P.kwargs) -> T:

 return call(42, *args, **kwargs)

Narrowing

Flow control refines the types in branches

def f(x: str | None):

 if x:

 return x.capitalise()

 else:

 return "none"

Data class transforms

🐉
PEP-681, Dec 2021 - SQL/ORM style solution

Typeshed library

● Attempts to give types to everything in the standard library.
● A little awkward - the standard library was written without types.
● Often there is what the library does precisely, and what you would have

made it do if you knew about types.
○ E.g. protocols are close, rather than precise.

The Pyrefly design

Design goals

● Efficient in time and memory. Incremental. Must cope with Instagram.
● Flexible. Command line. IDE/LSP. Buck. MCP. Dune?
● Hackable. Solid principles. Simple code.
● Good user experience.
● Deal with circular import graphs.

Conclusion*: Build system, operate at the file level, evict old data.
Implication: Each file must be super quick (a few ms)

* Caveat: I describe everything in my life as a build system

Architecture

Build
SystemBindings (stmt)

Answers (expr)

Interface (types)

Code

AST

Exports

1. Code

● Read the code off disk (or if LSP, from LSP messages).

2. AST

● Parse the code into an AST.
● Uses the Ruff parser from Astral (which is amazing)

○ Always succeeds, error correcting parser
○ Which is like the ultimate fuzzer…

3. Exports

● What symbols does each module export
● Modules always export all their imports, apart from builtins
● Not trivial because of import * - can require a fixed point
● Required to know which module provides a given value

from module1 import *

from module2 import *

from module3 import y

x = z

4. Bindings (statements)

● How do statements relate to each other, where to variables flow
● Key -> Value mapping, where Value’s contain other Key’s

Use(f@line1) => Forward(...)

Def(x@line1) => Expr(x, f())

Use(x@line2) => Forward(Def(x@line1))

Use(int@line2) => Forward(...)

N(x@line2, line3) => N(Use(x@line2), IsInstance(int))

N(x@line2, line4) => N(Use(x@line2), NotInstance(int))

Use(x@line3) => Forward(N(x@line2, line3))

Def(y@line3) => Expr(x)

Def(y@line5) => Expr(“y”)

Phi(y@line6) => Phi(Def(y@line3), Def(y@line5))

Use(y@line7) => Forward(Phi(y@line6))

1: x = f()
2: if isinstance(x, int):
3: y = x
4: else:
5: y = "y"
6: #
7: y

5. Answers (expressions)

● Solve the bindings that were created to produce types.
● Key -> Thunk<Type> mapping

○ Allows cycles
○ Use Var as a placeholder for unknown types, and unification.

● Lots and lots of code for each special type object in Python.

6. Interface (types)

● Types of exported symbols only.
● Subset of the Answers (less memory)

What are the types of x?

x = [1]

x = [1, "test"]

x: Literal[1] = [1]

x = []

The magic Var (unification, inference, loops)

x = list[?1]
add = Callable[[list[?2], ?2], None]
list[?2] = list[?1] ⇒ ?2 = ?1
?2 = Literal[1] ⇒ ?2 = int (generalise), ?1 = int

x = []

add(x, 1)

def add[T](a: list[T], b: T) -> None: ...

Eviction

● For most modules, we throw away AST, Bindings, Answers when done
● For files open in the IDE, we keep everything to support goto-def etc
● We always keep code around because the disk might change
● If you ask for the type of an export, we try the interface first, if not, the

answers
○ Answers is required to deal with cycles

● Prioritise modules that are “nearly finished” to reduce memory

Eviction rules are simple because each module goes through sequential steps.

Incrementality (with cycles)

● A changes, what should we invalidate?
● Pyrefly says

○ Optimistically invalidate only A
○ Compute A using stale values of B/C
○ If the interface of A changes, invalidate B/C
○ Compute B/C using the last iteration of A
○ If A changes (since it changed before) invalidate the cycle

● Pros: Usually only one file invalidates
● Cons: Might compute a module more than once, and less parallelism

A

B C

Performance

We want to check on every keystroke. We can check 1.85M lines/second.

Approximately Answers is 10x the cost of Bindings, which is 10x Exports.

We freely clone Type all the time. Should really have a heap…

Lots of profiling. Super easy to go quadratic.

With lots of threads, and Rust, the expensive things are:

● Thread communication
● Locks

Both are in the build system, which has been optimised a fair amount.

Transactions

An IDE does lots of things at once:

● Indexing (for find references)
● Checking a file that changed
● Answering queries

We have a transactional build system, with explicit commit. Never have to wait.

Can only have at most one mutable transaction at a time (so commit always
succeeds)

Extensibility

● Model of features built in to the core
● Build systems like Buck/Bazel/Dune?

○ Buck integrated into the core, using queries and Bxl
○ Very open to further integrations

● Mypy plugins?
○ Supports Pydantic rules natively
○ Aiming to add some more special cases
○ Shape types one day?

Recursion

struct Thunk<T>;

● If this thread is already calculating this Thunk, create a Var.
● If not, solve the binding.
● When the calculation completes, bind the Var.

Open source

● We have gained much from open source!
○ Python itself
○ Python typing specification, plus existing checkers (Pyright, Mypy etc)
○ Ruff parser
○ Open source Python projects, e.g. PyTorch (now has Pyrefly in shadow)

● MIT license, https://github.com/facebook/pyrefly
● Delighted to accept pull requests, all issues are on issue tracker

https://github.com/facebook/pyrefly

● Find the type of display(3.142).fraction
● First, find display

○ Might come from typing or numbers
○ Figure out the export table from each
○ Which might require a fixed-point of recursive * imports…

from typing import *

from numbers import *

The journey of autocomplete

display(3.142).fraction

@dataclass
class Number[T]:
 whole: T
 fraction: Final[T]

def display(x: float) -> Number[float]:
 whole = float(math.floor(x))
 fractional = x - whole
 return Number(whole, fractional)

● Interpret @dataclass
● Infer types for each variable
● Infer the return type
● Instantiate some generics
● Understand Final

The journey of autocomplete (2)

display(3.142).fraction.

● Now we know we have float
● Figure out what methods it has

class float:
 def __new__(cls, x = ...) -> Self
 @classmethod
 def fromhex(cls, x: str) -> Self
 @property
 def real(self) -> float
 def conjugate(self) -> float
 def __add__(self, x: float) -> float

The journey of autocomplete (3)

Why not Pyrefly?

● It is an alpha - lots of known bugs
● You will probably find bugs, most of which we will fix
● But you will get a sticker (if you are here)

The team (+ over 100 contributors)

Questions?

pyrefly.org

https://pyrefly.org/

