R A 4

Pyrefly
A Python typechecker and language server

Neil Mitchell, Meta

Python has types!

def test(x: int) -> str:

return f"test{x}"

e Since version 3.5 (2015) in PEP 484
e Not checked by default - the interpreter skips* them
o Runtime checking - typeguard, pydantic, enforce - runtime cost
o Static checking - mypy, pyright, pyre, pytype, pyrefly, ty, zuban
e More complex than you might think!
o (Generics, literals, higher-order, dataclass transforms, narrowing
o A standards document, conformance tests - constantly evolving

What is Pyrefly?

A static checker and language server (IDE/LSP provider)
An open-source standards-compliant Python type checker
Fast and parallel (written in Rust)

From the team behind Pyre (no code in common)
Lots of type inference

yrefly.org

https://pyrefly.org/

Sandbox (pyrefly.org/sandbox)

from typing import *

def test(x: int) —> str:
return f"{x}"

ERROR 8:6-1@0: Argument “str’ is not assignable to parameter

0O N O U1 B WIN B

Y. list [St r] = [] *x' with type “int’ in function “test’ [bad-argument-typel
y.append(test(42))
test(y[0]),

%3 capitalize BoundMethod [str, Overload[(self: Lit..
%2 casefold
%2 center
%2 count

42 encode

https://pyrefly.org/sandbox

History of Pyrefly l"

e Meta develops Instagram which is a massive codebase of Python
o Over 20 million lines of Python
o 3B monthly active users
o Over 3.3K daily Python developers across Meta

e In 2017 we started work on Pyre
o MyPy was considered, but found to be too slow
o Descendent of Hack (PHP) and Flow (Javascript)
o Written in OCaml
o Essential to our development flow

The problems with Pyre

OCaml wasn’t a great choice at Meta
e Didn’t work on Windows
e Parallelism was hard (multiprocess)
e Barrier to open source contributors
e Some problems were solved later, outside Meta

But Pyre had issues too
e Started as abstract interpretation (fixed points, desugaring)
e Started as a command line, hard to pivot to IDE
e Started closed source, never focused on open source users

The birth of Pyrefly ’:(

e August 2024 two of us started prototyping MiniPyre
o [prototypes written, constraints, subset based, abstract interpretation...
o Using Rust (cross platform and fast)
o Hard bits first: generics, recursion, overloads, import *
e October 2024 it was working well, so we started Pyre2 Pyrefly
o Implement features, following the typing spec
o Implement LSP
e May 2025 we released an alpha at PyConUS
e October 2025 we are still improving, but give it a go (pyrefly.org)

https://pyrefly.org

R A

The Python type system

Why types? ,At

e Python developers are buying in more
o “2025 is the year of type-checking for Python. I'm so excited.”
Faster inner loop - run the code less
Spot typos
Make corner cases safer
Understand the code better, documentation, goto-def
LLM grader
Write code faster - auto-completion
Machine checked documentation
Refactor with peace of mind

R A 4

The aim

e Give a way to annotate existing code and detect bugs
e The trend has been increasingly complex type system features to model the
code people actually write
e Typing conformance test (Pyrefly gets 67.3%, similar to mypy)
e Detailed specification (https://typing.python.org/)
o But still lots of choices to make as to precise semantics
o Inference left unspecified

https://typing.python.org/

Basic types

e A few places you can write types class MyType:
e The basic primitives, plus class types field: bool

pass

def test(x: int) -> str:

value: MyType = ...

return f"test{x}"

MNEEIR

e Forint, str, bool, bytes, you can write literals that restrict the type

def open_file(mode: Literall['r', 'w']):

def calc() -> Literall[42]:

return 42

X: Literal[' 'test'] = '"te' + 'st'

Aliases and forward refs

e You can define type aliases as values

e Types in strings are OK, to deal with execution order
e Isz = "hello" atype?

def f(v: "X") -> "Y":
return v + 1

int

print(X("42"))
type Y = "int"

Union and gradual types

Union[A, B] == A | B def test(x: Any | bool):
Any ~= int | bool | MyType |

Any represents an unknown static type

Every type is assignable to Any, and Any is assignable to every type.
A function parameter without an annotation is assumed to be Any.
Also Never/NoReturn for the empty union.

Is an unannotated variable implicitly annotated with Any? Systems vary.

Generics

Two forms, using TypeVar and X = TypeVar("X")
' t

JENEHE SYHER def box1(x: X) -> list[X]:

TypeVar can specify variance, return [x]

generic syntax infers it

def box2[Y](y: Y) -> list[Y]:

Can specify constraints on both,
e.g. must be iterable. return [y]

Protocols

Structural subtyping

Standard types for iteration,
collections, mutable collections,
context managers etc

class SupportsClose(Protocol):

def close(self) -> None: ..

Overloads

A set of “fake signatures”, where only one matches.

@overload
def not(x: Literal[True]) -> Literal[False]:

@overload

def not(x: Literal[False]) -> Literal[True]:
def not(x: Any) -> bool:

return False if x else True

Callable

Specify functions as types. Versatile with generics and concat.
But awkward, since doesn'’t let you specify argument names.

type Simple = Callable[[int, str], bool]
def f[**P, T](
call: Callable[Concatenate[int, P], T],

*args: P.args, **kwargs: P.kwargs) -> T:

return call(42, *args, **kwargs)

Narrowing

Flow control refines the types in branches

def f(x: str | None):

if x:

return x.capitalise()

else:

return "none"

Data class transforms

PEP-681, Dec 2021 - SQL/ORM style solution

(\9

?,n

-

Typeshed library ’:(

e Attempts to give types to everything in the standard library.
e Alittle awkward - the standard library was written without types.

e Often there is what the library does precisely, and what you would have
made it do if you knew about types.

o E.g. protocols are close, rather than precise.

R A 4

The Pyrefly design

R A 4

Design goals

Efficient in time and memory. Incremental. Must cope with Instagram.
Flexible. Command line. IDE/LSP. Buck. MCP. Dune?

Hackable. Solid principles. Simple code.

Good user experience.

Deal with circular import graphs.

Conclusion®: Build system, operate at the file level, evict old data.
Implication: Each file must be super quick (a few ms)

* Caveat: | describe everything in my life as a build system

Architecture

Bindings (stmt)

Answers (expr)

Interface (types)

1. Code

e Read the code off disk (or if LSP, from LSP messages).

2. AST

e Parse the code into an AST.

e Uses the Ruff parser from Astral (which is amazing)
o Always succeeds, error correcting parser
o Which is like the ultimate fuzzer...

3. Exports
e \What symbols does each module export
e Modules always export all their imports, apart from builtins
e Not trivial because of import * - can require a fixed point
e Required to know which module provides a given value

from modulel import *

from module2 import *

from module3 import y

4. Bindings (statements)

e How do statements relate to each other, where to variables flow
e Key -> Value mapping, where Value’s contain other Key’s

: x = ()
: if isinstance(x, int):
y =X

: else:

Use(f@linel) =>
Def(x@linel) =>
Use(x@line2) =>

Forward(...)

Expr(x, f())
Forward(Def(x@linel))

Use(int@line2) => Forward(...)
N(x@line2, line3) => N(Use(x@line2), IsInstance(int))
N(x@line2, line4) => N(Use(x@line2), NotInstance(int))

Use(x@line3) =>
Def(y@line3) =>
Def(y@line5) =>
Phi(y@line6) =>
Use(y@line7) =>

Forward(N(x@line2, line3))
Expr(x)

Expr(“y”)

Phi(Def(y@line3), Def(y@line5))
Forward(Phi(y@line6))

5. Answers (expressions) ,‘E
e Solve the bindings that were created to produce types.
e Key -> Thunk<Type> mapping
o Allows cycles
o Use Var as a placeholder for unknown types, and unification.
e Lots and lots of code for each special type object in Python.

6. Interface (types)

e Types of exported symbols only.
e Subset of the Answers (less memory)

What are the types of x?

[1]
[1, "test"]

: Literal[1] = [1]
X = []

The magic Var (unification, inference, loops)

x = list[?1]

add = Callable[[1list[?2], ?2], None]
list[?2] = l1list[?1] = ?2 = ?1

?2 = Literal[1] = ?2 = int (generalise), ?1

x = []
add(x, 1)

def add[T](a: list[T], b: T) -> None:

int

Eviction

R A 4

For most modules, we throw away AST, Bindings, Answers when done
For files open in the IDE, we keep everything to support goto-def etc
We always keep code around because the disk might change
If you ask for the type of an export, we try the interface first, if not, the
answers

o Answers is required to deal with cycles
e Prioritise modules that are “nearly finished” to reduce memory

Eviction rules are simple because each module goes through sequential steps.

Incrementality (with cycles)

e A changes, what should we invalidate?
e Pyrefly says
o Optimistically invalidate only A
o Compute A using stale values of B/C
o If the interface of A changes, invalidate B/C
o Compute B/C using the last iteration of A
o If Achanges (since it changed before) invalidate the cycle
e Pros: Usually only one file invalidates
e Cons: Might compute a module more than once, and less parallelism

Performance

R A 4

We want to check on every keystroke. We can check 1.85M lines/second.

Approximately Answers is 10x the cost of Bindings, which is 10x Exports.
We freely clone Type all the time. Should really have a heap...

Lots of profiling. Super easy to go quadratic.

With lots of threads, and Rust, the expensive things are:

e Thread communication
e Locks

Both are in the build system, which has been optimised a fair amount.

Transactions

An IDE does lots of things at once:

e Indexing (for find references)
e Checking a file that changed
e Answering queries

We have a transactional build system, with explicit commit. Never have to wait.

Can only have at most one mutable transaction at a time (so commit always
succeeds)

Extensibility

e Model of features built in to the core
e Build systems like Buck/Bazel/Dune?
o Buck integrated into the core, using queries and Bxl
o Very open to further integrations
e Mypy plugins?
o Supports Pydantic rules natively
o Aiming to add some more special cases
o Shape types one day?

o

Recursion

struct Thunk<T>;

e If this thread is already calculating this Thunk, create a Var.
e If not, solve the binding.
e \When the calculation completes, bind the Var.

Open source

e \We have gained much from open source!

o Python itself

o Python typing specification, plus existing checkers (Pyright, Mypy etc)

o Ruff parser

o Open source Python projects, e.g. PyTorch (now has Pyrefly in shadow)
e MIT license, https://github.com/facebook/pyrefly
e Delighted to accept pull requests, all issues are on issue tracker

Dec '24 Jan '25 Feb'25 Mar'25 Apr '25 May '25 Jul '25 Aug '25 25 Oct '25

https://github.com/facebook/pyrefly

The journey of autocomplete

from typing import *

display(3.142).fraction

from numbers import *

e Find the type of display(3.142).fraction
e First, find display
o Might come from typing or numbers
o Figure out the export table from each
o Which might require a fixed-point of recursive * imports...

-

The journey of autocomplete (2)

@dataclass
class Number[T]:
whole: T

fraction: Final[T] Interpret @dataclass

Infer types for each variable
Infer the return type
Instantiate some generics
Understand Final

def display(x: float) -= Number|[float]:
whole = float(math.floor(x))
fractional = x - whole
return Number(whole, fractional)

The journey of autocomplete (3)

class float:
def __new__(cls, x = ...) -> Self
@classmethod
def fromhex(cls, x: str) -> Self

display(3.142) .fraction.

%g as_integer_ratio
%2 conjugate

%2 fromhex

%2 hex

@property

def real(self) -> float

def conjugate(self) -> float

def __add__(self, x: float) -> float

%2 imag

%2 is_integer

% real e Now we know we have float
%2 __abs__ e Figure out what methods it has

T

Why not Pyrefly?

e Itis an alpha - lots of known bugs

e You will probably find bugs, most of which we will fix
e But you will get a sticker (if you are here)

2 Pyrefly Ap

b A 4

The team (+ over 100 contributors)

Questions?

pyrefly.org

https://pyrefly.org/

