

Playing with Haskell Data

Neil Mitchell

Overview

 The “boilerplate” problem
 Haskell’s weakness (really!)
 Traversals and queries
 Generic traversals and queries
 Competitors (SYB and Compos)
 Benchmarks

Data structures

 A tree of typed nodes
 Parent/child relationship is important

A concrete data structure

data Expr = Val Int

 | Neg Expr

 | Add Expr Expr

 | Sub Expr Expr

 Simple arithmetic expressions

Task: Add one to every Val

inc :: Expr -> Expr

inc (Val i) = Val (i+1)

inc (Neg x) = Neg (inc x)

inc (Add x y) = Add (inc x) (inc y)

inc (Sub x y) = Sub (inc x) (inc y)

 What is the worst thing about this code?

Many things!

1. If we add Mul, we need to change

2. The action is one line, obscured

3. Tedious, repetitive, dull

4. May contain subtle bugs, easy to
overlook

5. Way too long

The boilerplate problem

 A lot of tasks:
1. Navigate a data structure (boilerplate)

2. Do something (action)
 Typically boilerplate is:

 Repetitive
 Tied to the data structure
 Much bigger than the action

Compared to Pseudo-OO1

class Expr

class Val : Expr {int i}

class Neg : Expr {Expr a}

class Add : Expr {Expr a, b}

class Sub : Expr {Expr a, b}

1) Java/C++ are way to verbose to fit on slides!

Inc, in Pseudo-OO

void inc(x){

if (x is Val) x.i += 1;

if (x is Neg) inc(x.a)

if (x is Add) inc(x.a); inc(x.b)

if (x is Mul) inc(x.a); inc(x.b)

}

Casts, type evaluation etc omitted

Haskell’s weakness

 OO actually has a lower complexity
 Hidden very effectively by horrible syntax

 In OO objects are deconstructed
 In Haskell data is deconstructed and

reconstructed
 OO destroys original, Haskell keeps

original

Comparing inc for Add

 Haskell
inc (Add x y) = Add (inc x) (inc y)
 OO
if (x is Add) inc(x.a); inc(x.b)

 Both deconstruct Add (follow its fields)
 Only Haskell rebuilds a new Add

Traversals and Queries

 What are the common forms of
“boilerplate”?
 Traversals
 Queries

 Other forms do exist, but are far less
common

Traversals

 Move over the entire data structure
 Do “action” to each node
 Return a new data structure

 The previous example (inc) was a
traversal

Queries

 Extract some information out of the data
 Example, what values are in an

expression?

A query

vals :: Expr -> [Int]

vals (Val i) = [i]

vals (Neg x) = vals x

vals (Add x y) = vals x ++ vals y

vals (Mul x y) = vals x ++ vals y

 Same issues as traversals

Generic operations

 Identify primitives
 Support lots of operations
 Neatly
 Minimal number of primitives

 These goals are in opposition!

 Here follow my basic operations…

Generic Queries

allOver :: a -> [a]

 [, , , , ,]

The vals query

vals x = [i | Val i <- allOver x]

 Uses Haskell list comprehensions – very
handy for queries

 Can anyone see a way to improve on the
above?

 Short, sweet, beautiful

More complex query

 Find all negative literals that the user
negates:

[i | Neg (Val i) <- allOver x

 , i < 0]

 Rarely gets more complex than that

Generic Traversals

 Have some “mutator”
 Apply to each item

traversal :: (a -> a) -> a -> a

5. Bottom up

6. Top down – automatic

7. Top down – manual

Bottom-up traversal

mapUnder :: (a -> a) -> a -> a

The inc traversal

inc x = mapUnder f x

 where

 f (Val x) = Val (x+1)

 f x = x

 Say the action (first line)
 Boilerplate is all do nothing

Top-down queries

 Bottom up is almost always best
 Sometimes information is pushed down
 Example: Remove negation of add
f (Neg (Add x y)) = Add (Neg x) (Neg y)

 Does not work, x may be Add
f (Neg (Add x y)) =

 Add (f (Neg x)) (f (Neg y))

Top-down traversal

mapOver :: (a -> a) -> a -> a

Produces one element per call

One element per call?

 Sometimes a traversal does not
produce one element

 If zero made, need to explicitly continue
 In two made, wasted work

 Can write an explicit traversal

Top-down manual

compos :: (a -> a) -> a -> a

Compos
noneg (Neg (Add x y)) =

 Add (noneg (Neg x)) (noneg (Neg y))

noneg x = compos noneg x

 Compos does no recursion, leaves this
to the user

 The user explicitly controls the flow

Other types of traversal

 Monadic variants of the above

 allOverContext :: a -> [(a, a -> a)]
 Useful for doing something once

 fold :: ([r] -> a) -> (x -> a -> r) -> x -> r

 mapUnder with a different return

The Challenge

Pick an operation

Will code it up “live”

Traversals for your data

 Haskell has type classes
 allOver :: Play a => a -> [a]

 Each data structure has its own
methods

 allOver Expr /= allOver Program

Minimal interface

 Writing 8+ traversals is annoying
 Can define all traversals in terms of

one:

replaceChildren :: x -> ([x], [x] -> x)

 Get all children
 Change all children

Properties
replaceChildren :: x -> ([x], [x] -> x)

(children, generate) = replaceChildren x

 generate children == x
 @pre generate y

 length y == length children

Some examples
mapOver f x = gen (map (mapOver f) child)

where (child,gen) = replaceChildren (f x)

mapUnder f x = f (gen child2)

where (child,gen) = replaceChildren x

 child2 = map (mapUnder f) child)

allOver x = x : concatMap allOver child

Where (child,gen) = replaceChildren x

Writing replaceChildren

 A little bit of thought
 Reasonably easy

 Using GHC, these instances can be
derived automatically

Competitors: SYB + Compos

 Not Haskell 98, GHC only
 Use scary types…

 Compos
 Provides compos operator and fold

 Scrap Your Boilerplate (SYB)
 Very generic traversals

Compos

 Based on GADT’s
 No support for bottom-up traversals

compos ::

(forall a. a -> m a) ->

(forall a b. m (a -> b) -> m a -> m b) ->

(forall a. t a -> m (t a)) ->

t c -> m (t c)

Scrap Your Boilerplate (SYB)

 Full generic traversals
 Based on similar idea of children

 But is actual children, of different types!
gfoldl ::

(forall a b. Term a => w (a -> b)

 -> a -> w b)

-> (forall g. g -> w g)

-> a -> w a

SYB vs Play, children

SYB
Play

SYB continued

 Traversals are based on types:

0 `mkQ` f

f :: Expr -> Int

 mkQ converts a function on Expr, to a
function on all types

 Then apply mkQ everywhere

Paradise benchmark

salaryBill :: Company -> Float
salaryBill = everything (+) (0 `mkQ` billS)

billS :: Salary -> Float
billS (S f) = f

salaryBill c = case c of
 S s -> s
 _ -> composOpFold 0 (+) salaryBill c

salaryBill x = sum [x | S x <- allOverEx x]

SYB

Compos

Play

Runtime cost - queries

Play SYB Over
Play SYB Fold
SYB
Play Over
Play Fold
Compos
Raw

Runtime cost - traversals

Play SYB Under
Play SYB Over
Play SYB Compos
SYB
Play Under
Play Over
Play Compos
Compos
Raw

In the real world?

 Used in Catch about 100 times
 Used in Yhc.Core library
 Used by other people

 Yhc Javascript converter
 Settings file converter

Conclusions

 Generic operations with simple types
 Only 1 simple primitive

 If you only remember two operations:
 allOver – queries
 mapUnder – traversals

