Making a Haskell IDE

P onc-cooverntcomment @ QO0A0 LnLColl Spaces:2 UTF-8 LF Hasked @ #

Neil Mitchell, https://ndmitchell.com

https://ndmitchell.com/
https://ndmitchell.com/

Poll

Which Editor?
— VS Code | Emacs | Vim | ...

What feedback mechanism?

— haskell-ide-engine | ghc-mod | GHCid | GHCi | ...
Code exploration?

— haskell-ide-engine | ghc-mod | Hoogle | grep | ...

Who wants more?

“with the IDE I'm about
25% more productive
than without it”
Me, Sep 2014

. |y

@ @

2004-2014: Basic tools

e Text editor with Syntax coloring (TextPad)
* Hoogle — search, https://hoogle.haskell.org

* Hugs/GHCi for fast reloading

Cycle: Edit. Save. Switch. :r. Find error. Repeat.

https://hoogle.haskell.org/

2014-2019: GHCid

* Wrote GHCid (GHCi + a bit of an IDE)
Cycle: Edit. Save. Switeh—+Find error. Repeat.

e Saved switching to GHCi

e Saved typing :r

* Reformatted errors better to reduce finding
 Huge productivity boost!

2019: hie-core

* Areal IDE (although not best of breed)

Cycle: Edit. Save-Switch—+Find-error. Repeat.

* Full type checking on every single keystroke
* Errors inline and integrated

* Plus some code navigation stuff

* Huge productivity boost!

Demo

Hard Truths

Setting up hie-core isn’t as easy as it should be

— I’ll explain how in this talk

hie-core doesn’t have enough users to be viable
— You could use it! (No project does at the beginning)
— And it does have commercial backing (Digital Asset)

Writing an IDE isn’t easy
— I'll explain how in this talk

Hacking an IDE is easy (if well designed)

Installing hie-core

* https://tinyurl.com/hie-core (1)

— Install hie-core and hie-bios from GitHub
— Install VS Code extension

— Check your project works with hie-bios/hie-core
* The hard bit!

— Use through VS Code

* Works from any LSP editor, e.g. Emacs

(1) https://github.com/digital-asset/daml|/tree/master/compiler/hie-core

https://tinyurl.com/hie-core
https://tinyurl.com/hie-core
https://tinyurl.com/hie-core
https://tinyurl.com/hie-core
https://github.com/digital-asset/daml/tree/master/compiler/hie-core
https://github.com/digital-asset/daml/tree/master/compiler/hie-core
https://github.com/digital-asset/daml/tree/master/compiler/hie-core
https://github.com/digital-asset/daml/tree/master/compiler/hie-core
https://github.com/digital-asset/daml/tree/master/compiler/hie-core

The hard bit
* Get it so your project can be loaded

/shakeS hie-core

... SNIp ...

Files that worked: 152
Files that failed: 4

* \model\Main.hs

* \model\Model.hs
* \model\Test.hs

* \model\Util.hs
Done

Setting up hie-bios (hie.yaml)

cradle:
direct:
arguments:

- -ignore-package=hashmap
- -Wunused-binds
- -Wunused-imports
- -Worphans
- -Isrc
- src/Test.hs
- src/Paths.hs
- -idist/build/autogen

hie-core architecture

GHC haskell-Isp

SN

hie-bios hie-core

N

D

Division of responsibilities

GHC — actually compile Haskell

hie-bios — how to set up a GHC environment
— Use “cradles”, direct, cabal, stack ...

nie-core — how to orchestrate compilations
naskell-Isp — the LSP protocol

DE — 20 lines + 100 lines to help you debug

— Inside hie-core, for now

Other Haskell IDEs

GHCid — always reliable

ntelliJ — good IDE, if you like Intelli)

 eskah — integrated, has its own editor
ntero — tightly integrated into Stack, Emacs

naskell-ide-engine — most closely related

— hie-bios and haskell-Isp are parts of it

— hie-core might one day become the core of it?
— Also has hlint/hoogle etc integration

Many others have come (and mostly gone)

Inside the IDE

IDEs are hard

At one point | was responsible for six things,
one of which was the IDE

| thought the IDE was medium hard
The IDE was the hardest

Three approaches later, we settled on a
working design

Everything else has a paper to read!

Basic idea

* Set up dependencies
— FilePath > Contents > Parse > Imports > TypeCheck

* Every time anything changes (e.g. keystroke)
— Abort whatever is ongoing

— Restart from scratch, skipping things that haven’t
changed

* Report errors as you get them

IDE = Build System

* Yes:
— Dependencies
— Incremental minimal recomputation
— Parallelism
* No:
— Errors propagate and persist weirdly
— Sometimes want stale data
— Need to maintain diagnostics in the IDE too
— Incremental in a slightly different way
— Garbage collection

Build on top of Shake

https://shakebuild.com/

A Haskell build system — express dependencies
Builds a K/V map

Allows dynamic dependencies, Haskell values
Proper doesFileExist tracking

We added to Shake:
— Priorities
— In-memory no serialisation version

https://shakebuild.com/

Development.IDE.Core.Shake

* Wrapper over Shake

* Stores values in its own Key/Value map,
instead of in Shake

— Allows garbage collection, accessing stale data
— Errors propagate and persist, diagnostics in IDE
— Removes Shake serialisation constraints

Key and Value types

e Key’s are key name and Haskell filename
— E.g. (TypeCheck, “Foo.hs”)
— Allows garbage collection and error reporting

* Values are optional, and have a list of errors
— E.g. ([FileDiagnostic], Maybe TcModuleResult)
— ([], Just) for warnings
— ([], Nothing) only good for propagated errors
— In practice, use exceptions to imply ([], Nothing)

The GHC API

A scary place

|ORef’s hide everywhere

Huge blobs of state (HscEnv, DynFlags)
The GHC Monad

Lots of odd corners

Lots of stuff that is not fit for IDE (e.g.
downsweep)

<rant />

* Warnings from the type checker

{

data HscEnv = HscEnv
{hsc_dflags :: DynFlags -- 148 fields
,hsc_targets :: [Target]
,hsc_mod_ graph :: ModuleGraph
,hsc_IC :: InteractiveContext
,hsc_HPT :: HomePackageTable
,hsc_EPS :: IORef ExternalPackageState
,hsc_NC :: IORef NameCache
,hsc_FC :: IORef FinderCache
,hsc_type _env_var :: Maybe (Module, IORef TypeEnv)
,hsc_iserv :: MVar (Maybe IServ)

)

Wrap the GHC API Cleanly

 We want “pure” functions (morally)

typecheckModule

: H

SCEnv
TcModuleResult]

-> ParsedModule

O ([FileDiagnostic], Maybe TcModuleResult)

Rules from Wrappers

type instance RuleResult TypeCheck = TcModuleResult

define S \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use GetDependencies file
tms <- uses_ TypeCheck (transitiveModuleDeps deps)
packageState <- useNoFile GhcSession
iftlO S typecheckModule packageState tms pm

Two Extensibility Points

1. Can define new values on the dependency
graph
— E.g. result of some expensive analysis pass

2. Can define new LSP handlers

— setHandlersDefinition <> setHandlersHover <>
setHandlersCodeAction

LSP Handlers

onHover :: IdeState -> PositionParams
-> |0 (Maybe Hover)
onHover ide (Params uri pos) = do

v <- runAction ide S do
use GetSpaninfo uri

Internal Architecture Summary

* Key/Value mappings which depend on each
other

— Wiring GHC functions and types into a graph
 Request comes in from LSP

— Compute some values from keys
— Format that information appropriately

e Lots of plumbing

Where we go off-piste

* GHC dependency graph is not incremental
— Give it all files, get all results

 We want to get the dependencies of a file
ourselves
— If there are cycles, we want to still work elsewhere

— Don’t want to have to do everything up front
— Con: Makes TH, CPP etc harder

* Needs abstracting and sending upstream

Shake was a good idea

IDE is a very natural dependency problem
Robust parallelism
Thoroughly debugged for exception handling

— GHC API has a few issues in corner cases here

Has good profiling (caught a few issues)

Has lots of features — we could replicate the
end state, but not the path there

Shake isn’t perfect

* Imagine two independent modules A, B

* |f you are compiling A, and anything (e.g. B)
changes you give up and restart
— |Ideally would suspend and see if its still useful
— Not a thing GHC offers!
— All hacks a bit like it are hard with Shake

Hacking

Contributing to hie-bios

Hack here to make the start-up experience
petter

deally: all projects work “out the box”

A Cradle defines how to load, e.g. with Cabal
— Calls “cabal repl --with-ghc=myscript”
— Looks for the arguments to load ghci

https://github.com/mpickering /hie-bios

https://github.com/mpickering/hie-bios
https://github.com/mpickering/hie-bios
https://github.com/mpickering/hie-bios

Contributing to hie-core

Support TH, more CPP, source plugins etc

Hack here to add new features — completion,
Hlint, Hoogle, refactoring

Some will want to be hie-core plugins, of
which there are currently zero (but is an API)

Currently requires an (inoffensive) CLA

https://github.com/digital-asset/daml
compiler/hie-core

https://github.com/digital-asset/daml
https://github.com/digital-asset/daml
https://github.com/digital-asset/daml
https://github.com/digital-asset/daml

ot by [

DAML is a programming language close
enough to Haskell to share the same IDE core

Designed for DLT stuff
Everything is open source

They’re currently hiring engineers in Zurich
and New York (| used to work there)

Try it: https://webide.daml.com

https://webide.daml.com/

Contributing Editor Plugins

* The VS Code plugin is pretty much done

* But plugins for other editors are welcome
— Should just be the standard LSP approaches

Credits

* Alan Zimmerman, Matthew Pickering, DA...

