Losing Functions Without
Gaining Data
Neil Mitchell, Colin Runciman

University of York
community.haskell.org/~ndm/firstify

® The Goal

« Remove functional values
— Only named functions defined at the top level
— No under/over application

 Without introducing data
— Don’t want to introduce new data values
— Avoid encoding functions In data

® The Purpose

« Analysis!
— Termination checking
— Strictness analysis
— Pattern-match safety (eg. Catch, Haskell08)

[Higher-orderw This paper { First-order }

program J program

Apply Analyse
Analysis
results

® Example 1

sum :: [Int] - Int
sum Xs = foldl (Axy - x+vy) 0 Xs

foldl.:(a - b - a) > a- [b] - a
foldlfz[] =2z
foldl f z (x:xs) = foldl f (f z xX) xs

® Example 1: Result

sum :: [Int] - Int
sum xs = foldl, O xs

foldl, ::a - [b] - a
foldl, z[] =z
foldl, z (x:xs) = foldl, (z + x) xs

Ingredient: specialisation

® Example 2

apply :: String - Int - Int

apply str x = case meaning str of
Justf - fXx
Nothing — X

meaning .. String - Maybe (Int - Int)
meaning “abs” = Just abs
meaning = Nothing

® Example 2: Result

apply :: String - Int - Int
apply str x = case str of
“abs” - abs x
- X

Ingredients: inlining, simplification

® The Central Idea

 Introduce explicit lambdas
— Makes higher-order bits easier to see

e Move the lambdas around
— The bulk of the work

e Eliminate lambdas
— Applied lambdas
— Unused lambdas

® Moving Lambdas Around

o

{ Simplification } { Specialisation }

\+ Restrictions /

First-order
reduction

® Purpose of Each Stage

o Simplification
— Eliminate applied lambdas
* Inlining

— Eliminate functions returning lambdas inside
constructors

e Specialisation
— Eliminate lambdas passed as arguments

Q) Simplification

 Lots of basic simplifications

— eg. case/case, case of known constructor,
application of a lambda

 Also need these let rules
—letv=xinAw -y = Aw - letv=xiny

—letv=xiny = y|[x/vV],
If X IS a lambda or a boxed lambda

® Boxed Lambda

e Syntactic condition, under-approximates...

e ...expressions whose results are
constructions with a lambda component

Boxed Lambda’s

[AX = X]

Just [AX - X]

lety =1in[AX - X]
[Nothing, Just (Ax - X)]

Not Boxed Lambda’s

AX - [X]

[foo (AX - X)]

foo [AX - X]
letv=[AX - X]InV

® Inlining

 Purpose: eliminate functions returning
boxed lambdas

e casefxsof... = case {body f} xs of ...
— where {body f} Is boxed lambda

® Specialisation

* Purpose: eliminate lambdas passed to
functions

* Givenfe,...e,, where some g, is a lambda
or boxed lambda

* Produce specialised f’
— eliminate the it argument
— Introduce argument for each free variable in e,

 Reformulate the application to use f’

® Specilalisation Example

1. sumxs =foldl (AxXy - x+Vy) 0 Xxs
2. foldl, zxs =foldl (AXy - X +Yy) zXs

3. sum xs = foldl, O xs

® Where the Lambdas Go

Functions returning lambdas are eta
expanded

Functions returning boxed lambdas are
Inlined

Functions with lambda arguments are
specialised

All other lambdas are targets for

simplification rules
No lambda can hide! J

®Termination

e Specialisation may not terminate
— Limited by homeomorphic embedding

 Inlining may not terminate
— Limited by local numeric bounds

e Limits force termination when lambdas
used to store an unbounded amount of
Information (eg. difference lists)

® Disclaimers

 Not complete: may be residual lambdas if
— Termination criteria kick in
— Lambdas are passed to primitive functions
— Root function takes/returns lambdas

* Loss of sharing
fx =leti=expensive XinA - i+]j
—
fx=A - leti=expensive xini+j

® Results

e Successful on 62 of 66 nofib programs
— Not cacheprof, grep, lift, prolog

 ~0.5 seconds to transform a program
—Best = 0.1, Worst = 1.2

* Average code-size reduction of 30%
— Best = 78% reduction, Worst = 27% Increase

o Catch (HaskellO8) relies on this method
— 3 real bugs in HsColour

® Results: Strictness

 Ask GHC - Is add’s second arg strict?

add :: Int - Int - Int
add x y = apply 10 (+x) y

apply ::Int - (a - a) - a - a
apply O f x = x
apply nfx =apply (n-1) f (f xX)

® Results: Termination

 Ask Agda — does this terminate?

cons: (N - ListN) - N - List N
consfx=x:1Xx
downFrom : N — List N
downFrom = cons f
where f: N - List N

fzero=1]

f (suc x) = downFrom x

® Conclusions

e Let’s analyse higher-order programs!

o Write first-order analysis pass

« Old way: extend to higher-order
— ~5 years for strictness analysis

 New way: use defunctionalisation
— ~0.5 seconds

