
Losing Functions Without
Gaining Data

Neil Mitchell, Colin Runciman

University of York
community.haskell.org/~ndm/firstify λ

λ The Goal

• Remove functional values
– Only named functions defined at the top level

– No under/over application

• Without introducing data
– Don’t want to introduce new data values

– Avoid encoding functions in data

λ The Purpose

• Analysis!
– Termination checking

– Strictness analysis
– Pattern-match safety (eg. Catch, Haskell08)

Higher-order
program

First-order
program

Analysis
results

This paper

AnalyseApply

λ Example 1

sum :: [Int] → Int
sum xs = foldl (λx y → x + y) 0 xs

foldl :: (a → b → a) → a → [b] → a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

λ Example 1: Result

sum :: [Int] → Int
sum xs = foldl+ 0 xs

foldl+ :: a → [b] → a
foldl+ z [] = z
foldl+ z (x:xs) = foldl+ (z + x) xs

Ingredient: specialisation

λ Example 2

apply :: String → Int → Int
apply str x = case meaning str of

Just f → f x
Nothing → x

meaning :: String → Maybe (Int → Int)
meaning “abs” = Just abs
meaning _ = Nothing

λ Example 2: Result

apply :: String → Int → Int
apply str x = case str of

“abs” → abs x
_ → x

Ingredients: inlining, simplification

λ The Central Idea

• Introduce explicit lambdas
– Makes higher-order bits easier to see

• Move the lambdas around
– The bulk of the work

• Eliminate lambdas
– Applied lambdas

– Unused lambdas

λ Moving Lambdas Around

+ Restrictions

First-order
reduction

Inlining

Simplification Specialisation

λ Purpose of Each Stage

• Simplification
– Eliminate applied lambdas

• Inlining
– Eliminate functions returning lambdas inside

constructors

• Specialisation
– Eliminate lambdas passed as arguments

λ Simplification

• Lots of basic simplifications
– eg. case/case, case of known constructor,

application of a lambda

• Also need these let rules
– let v = x in λw → y ⇒ λw → let v = x in y

– let v = x in y ⇒ y [x / v] ,
if x is a lambda or a boxed lambda

λ Boxed Lambda

• Syntactic condition, under-approximates…
• …expressions whose results are

constructions with a lambda component

Boxed Lambda’s

[λx → x]
Just [λx → x]
let y = 1 in [λx → x]
[Nothing, Just (λx → x)]

Not Boxed Lambda’s

λx → [x]
[foo (λx → x)]
foo [λx → x]
let v = [λx → x] in v

λ Inlining

• Purpose: eliminate functions returning
boxed lambdas

• case f xs of … ⇒ case {body f} xs of …
– where {body f} is boxed lambda

λ Specialisation

• Purpose: eliminate lambdas passed to
functions

• Given f e1…en, where some ei is a lambda
or boxed lambda

• Produce specialised f’
– eliminate the ith argument
– introduce argument for each free variable in ei

• Reformulate the application to use f’

λ Specialisation Example

1. sum xs = foldl (λx y → x + y) 0 xs

2. foldl+ z xs = foldl (λx y → x + y) z xs

3. sum xs = foldl+ 0 xs

λ Where the Lambdas Go

• Functions returning lambdas are eta
expanded

• Functions returning boxed lambdas are
inlined

• Functions with lambda arguments are
specialised

• All other lambdas are targets for
simplification rules

No lambda can hide!

λ Termination

• Specialisation may not terminate
– Limited by homeomorphic embedding

• Inlining may not terminate
– Limited by local numeric bounds

• Limits force termination when lambdas
used to store an unbounded amount of
information (eg. difference lists)

λ Disclaimers

• Not complete: may be residual lambdas if
– Termination criteria kick in

– Lambdas are passed to primitive functions
– Root function takes/returns lambdas

• Loss of sharing
f x = let i = expensive x in λj → i + j

⇒

f x = λj → let i = expensive x in i + j

λ Results

• Successful on 62 of 66 nofib programs
– Not cacheprof, grep, lift, prolog

• ~0.5 seconds to transform a program
– Best = 0.1, Worst = 1.2

• Average code-size reduction of 30%
– Best = 78% reduction, Worst = 27% increase

• Catch (Haskell08) relies on this method
– 3 real bugs in HsColour

λ Results: Strictness

• Ask GHC – is add’s second arg strict?

add :: Int → Int → Int
add x y = apply 10 (+x) y

apply :: Int → (a → a) → a → a
apply 0 f x = x
apply n f x = apply (n - 1) f (f x)

λ Results: Termination

• Ask Agda – does this terminate?

cons : (N → List N) → N → List N
cons f x = x :: f x
downFrom : N → List N
downFrom = cons f
where f : N → List N

f zero = []
f (suc x) = downFrom x

λ Conclusions

• Let’s analyse higher-order programs!

• Write first-order analysis pass
• Old way: extend to higher-order

– ~5 years for strictness analysis

• New way: use defunctionalisation
– ~0.5 seconds

