Losing Functions Without Gaining Data

Neil Mitchell, Colin Runciman University of York community.haskell.org/~ndm/firstify

(A) The Goal

- Remove functional values
- Only named functions defined at the top level
- No under/over application
- Without introducing data
- Don't want to introduce new data values
- Avoid encoding functions in data

The Purpose

- Analysis!
- Termination checking
- Strictness analysis
- Pattern-match safety (eg. Catch, Haskell08)

(4) Example 1

sum :: [Int] \rightarrow Int sum $x s=$ foldl $(\lambda x y \rightarrow x+y) 0 x s$
foldl $::(\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow[\mathrm{b}] \rightarrow \mathrm{a}$
fold $\mathrm{f} z[]=\mathrm{z}$
fold $\mathrm{f} z(\mathrm{x}: \mathrm{xs})=$ foldl $\mathrm{f}(\mathrm{f} \mathrm{zx}) \mathrm{xs}$

(A) Example 1: Result

sum :: [Int] \rightarrow Int
sum $x s=$ foldl $+0 x s$
foldl $_{+}:: \mathrm{a} \rightarrow[\mathrm{b}] \rightarrow \mathrm{a}$
foldl ${ }_{+}$z [] = z
foldl $_{+} z(x: x s)=$ foldl $_{+}(z+x) x s$

Ingredient: specialisation

(ג) Example 2

apply $::$ String \rightarrow Int \rightarrow Int
apply str $x=$ case meaning str of
Just $f \rightarrow \underline{f} x$
Nothing $\rightarrow x$
meaning $::$ String \rightarrow Maybe (Int \rightarrow Int)
meaning "abs" = Just abs
meaning _ = Nothing

(ג) Example 2: Result

apply $::$ String \rightarrow Int \rightarrow Int apply str $x=$ case str of
"abs" \rightarrow abs x
$-\rightarrow \mathrm{X}$

(A) The Central Idea

- Introduce explicit lambdas
- Makes higher-order bits easier to see
- Move the lambdas around
- The bulk of the work
- Eliminate lambdas
- Applied lambdas
- Unused lambdas

(ג) Moving Lambdas Around

First-order reduction

(ג) Purpose of Each Stage

- Simplification
- Eliminate applied lambdas
- Inlining
- Eliminate functions returning lambdas inside constructors
- Specialisation
- Eliminate lambdas passed as arguments

(A) Simplification

- Lots of basic simplifications
- eg. case/case, case of known constructor, application of a lambda
- Also need these let rules
- let $v=x$ in $\lambda w \rightarrow y \Rightarrow \lambda w \rightarrow$ let $v=x$ in y
- let $v=x$ in $y \Rightarrow y[x / v]$,
if x is a lambda or a boxed lambda

(A) Boxed Lambda

- Syntactic condition, under-approximates...
- ...expressions whose results are constructions with a lambda component

Boxed Lambda's
[$\lambda \mathrm{x} \rightarrow \mathrm{x}$]
Just $[\lambda x \rightarrow x]$
let $y=1$ in $[\lambda x \rightarrow x]$
[Nothing, Just $(\lambda x \rightarrow x)$]

Not Boxed Lambda's

$$
\lambda x \rightarrow[x]
$$

$$
[f o o(\lambda x \rightarrow x)]
$$

$$
\text { foo }[\lambda x \rightarrow x]
$$

$$
\text { let } v=[\lambda x \rightarrow x] \text { in } v
$$

(8) Inlining

- Purpose: eliminate functions returning boxed lambdas
- case f xs of $\ldots \Rightarrow$ case $\{$ body $f\}$ xs of ...
- where \{body f\} is boxed lambda

Specialisation

- Purpose: eliminate lambdas passed to functions
- Given $f e_{1} \ldots e_{n}$, where some e_{i} is a lambda or boxed lambda
- Produce specialised f'
- eliminate the $\mathrm{i}^{\text {th }}$ argument
- introduce argument for each free variable in e_{i}
- Reformulate the application to use f'

(A) Specialisation Example

1. sum $x s=$ foldl $(\lambda x y \rightarrow x+y) 0 x s$
2. foldl ${ }_{+} z x s=$ foldl $(\lambda x y \rightarrow x+y) z x s$
3. sum $x s=$ foldl $_{+} 0 x s$

(A) Where the Lambdas Go

- Functions returning lambdas are eta expanded
- Functions returning boxed lambdas are inlined
- Functions with lambda arguments are specialised
- All other lambdas are targets for simplification rules

No lambda can hide!

Termination

- Specialisation may not terminate
- Limited by homeomorphic embedding
- Inlining may not terminate
- Limited by local numeric bounds
- Limits force termination when lambdas used to store an unbounded amount of information (eg. difference lists)

(ג) Disclaimers

- Not complete: may be residual lambdas if
- Termination criteria kick in
- Lambdas are passed to primitive functions
- Root function takes/returns lambdas
- Loss of sharing

$$
\mathrm{f} x=\text { let } \mathrm{i}=\text { expensive } \mathrm{x} \text { in } \lambda \mathrm{j} \rightarrow \mathrm{i}+\mathrm{j}
$$

$\mathrm{f} x=\lambda \mathrm{j} \rightarrow$ let $\mathrm{i}=$ expensive x in $\mathrm{i}+\mathrm{j}$

Results

- Successful on 62 of 66 nofib programs
- Not cacheprof, grep, lift, prolog
- ~0.5 seconds to transform a program
- Best = 0.1, Worst = 1.2
- Average code-size reduction of 30\%
- Best $=78 \%$ reduction, Worst $=27 \%$ increase
- Catch (Haskell08) relies on this method
- 3 real bugs in HsColour

(ג) Results: Strictness

- Ask GHC - is add's second arg strict?
add $::$ Int \rightarrow Int \rightarrow Int
add x y $=$ apply $10(+x) y$
apply $::$ Int $\rightarrow(\mathrm{a} \rightarrow \mathrm{a}) \rightarrow \mathrm{a} \rightarrow \mathrm{a}$
apply 0 f $x=x$
apply $n f x=\operatorname{apply}(n-1) f(f x)$

Results: Termination

- Ask Agda - does this terminate?
cons : $(\mathrm{N} \rightarrow$ List N$) \rightarrow \mathrm{N} \rightarrow$ List N
cons $f x=x:: f x$
downFrom : $\mathrm{N} \rightarrow$ List N
downFrom = cons f
where $\mathrm{f}: \mathrm{N} \rightarrow$ List N
f zero = []
f (suc x) = downFrom x

(A) Conclusions

- Let's analyse higher-order programs!
- Write first-order analysis pass
- Old way: extend to higher-order
- ~5 years for strictness analysis
- New way: use defunctionalisation
- ~0.5 seconds

