
Hoogλe
Finding Functions from Types

Neil Mitchell
haskell.org/hoogle
community.haskell.org/~ndm/

[α] →→→→ [α]

Hoogle Synopsis

Hoogle is a Haskell API search
engine, which allows you to
search many standard Haskell
libraries by either function name,
or by approximate type signature.

Or, Google for Haskell libraries

Solving the Jigsaw

static typing is … putting pieces
into a jigsaw puzzle

Real World Haskell

Find a function
to go here

Which function do we want?

[Int] → String

Ord a ⇒ [a] → [a]

Char → Bool

(a → b) → [a] → [b]

a → [(a,b)] → b

Set a → a → Bool

1

2

3

4

5

6

The Problem

Given a type signature, rank a set of
functions with types by appropriateness

Order types by closeness, efficiently

Heuristics/Psychic powers Algorithms

String: Ordering by closeness

• Equality, perhaps case insensitive
• Prefix/Suffix/Substring matching
• Levenshtein/edit distance

• Tries, KMP, FSA, Baeza-Yates…

search :: [(String,φ)] → (String → [φ])

String: Edit Distance

• How many “steps”
– Insertion or deletion

– Substitution (just a cheap insert and delete?)

Hello ≈ Hell
Hell ≈ Sell

• O(nm), result is bounded by max(n,m)

Type: Ordering by closeness

Ignoring performance, we can write:

How “close” are two Type values?

(May not be commutative)

match :: Type → Type → Maybe Closeness

Brainstorm

match :: Type → Type → Maybe Closeness

What is Closeness?
How is it calculated?

Ideas

• Alpha equality (Hoogle 1)
• Isomorphism (Rittri, Runciman - 1980’s)
• Textual type searching (Hayoo!)
• Unification (Hoogle 2)
• Edit distance (Hoogle 3)
• Full edit distance (Hoogle 3.5)
• Structural edit distance (Hoogle 4)
• Result indexed edit distance (Hoogle 5)

Alpha equality

• Take a type signature, and “normalise” it
• Rename variables to be sequential
• Then do an exact text match

• k → v → Map k v
• a → b → Map a b

No psychic powers

Isomorphism

• Only match types which are isomorphic
– Long before type classes

• Ismorphism is about equal structure
– a → b → c ≡ (a, b) → c

uncurry :: (a → b → c) → (a, b) → c
:: (a → b → c) → a → b → c

Less useful for
modern code

Textual Type Searching

• Alpha normalise + strength reduced alpha
normalisation

• k → v → Map k v
• a → b → Map a b & a → b → c a b

• Plus substring searching
A neat hack,

build on text search

Unification

• Unify against each result, like a compiler
• The lookup problem:

– a → [(a,b)] → b ≠ a → [(a,b)] → Maybe b

• Works OK, but not great, in practice
– More general is fine, what about less general?

– a ≡ everything?
– is undefined really the answer? Not what

humans want

Edit Distance

• What changes do I need to make to
equalise these types

• Each change has a cost

a → [(a,b)] → b

a → [(a,b)] → Maybe b

Eq a ⇒ a → [(a,b)] → Maybe b

box

context

A nice start,
lots of details left

Ideas Compared
G

en
er

al
ity

My Type

Alpha equality

Unification

Edit distance

Textual search = superset of alpha equality

Unification (?)

All but Textual search can have argument reordering added

Edit Distance Costs

• Alias following (String ↔ [Char])
• Instances (Ord a ⇒ a ↔ a)
• Subtyping (Num a ⇒ a ↔ Int)
• Boxing (a ↔ m a , a ↔ [a])
• Free variable duplication ((a,b) ↔ (a,a))
• Restriction ([a] ↔ m a , Bool ↔ a)
• Argument deletion (a → b → c ↔ b → c)
• Argument reordering

Edit Distance Examples

[Int] → String

Show a ⇒ a → String

[Int] → [Char]

(a → b) → [a] → [b]

[a] → [Char]

[a] → [b]

Int → String

a → String
alias restrict

context

unbox

restrict

restrict

dead arg

subtype

A note on “subtype”

Num a ⇒ a → a
Double → Double
a → a

Given instance Num Double:

Double ⊂ (Num a ⇒ a) ⊂ a

A note on “boxing”

Eq a ⇒ a → [a] → Int
Eq a ⇒ a → [a] → Maybe Int
Eq a ⇒ a → [a] → [Int]

Most boxes add a little info:
• Maybe - this might fail/optional arg
• List - may be multiple results

• IO - you need to be in the IO monad

Edit Distances

• Which types of edits should be used?
– Lots of scope for experimentation

• Can the edits be implemented efficiently?

• What environment do we need?
– Aliases? Instances?

Ordering Closeness

type Closeness = [Edit]

compare ::

Closeness → Closeness → Ordering

compare = compare `on` score

score :: Closeness → Double

score = sum . map rank

rank :: Edit → Double

T
hr

ow
 a

w
ay

 c
ho

ic
es

Ranking Edits

• Initial attempt: Make up numbers manually
– Did not scale at all, hard to get right, like

solving a large constraint problem in your
head

• Solution: Constraint solver!

Ranking Examples

• Keep a list of example searches, with
ordered results

• When someone complains, add their
complaint to this list

• Generate a set of constraints, then solve
– I use the ECLiPSe constraint solver

Performance Target:

As-you-type searches
against all current versions

of all Haskell libraries

Naive Edit Distance

[x| (t, x) ← database
, Just c ← [match user t]
, order by c]

• let n = length database
– Θ(n) to search all items (ignoring sort)
– Θ(n) to find the best result

n = 27,396 today
(target of 296,871)

Decomposing Edit Distance

Functor f ⇒ (a → b) → f a → f b

subtyping/context different variables

same variablesswap arguments

Interactive Lists

data Barrier o α = Value o α | Barrier o

bsort :: Ord o ⇒ [Barrier o α] → [α]

Given (Barrier o1:xs),

∀Value o2 x ∈ xs, o1 < o2

Per Argument Searching

• The idea: Search for each argument
separately, combine the results

a → b → c
• combine $ search arguments a `merge`

search arguments b `merge`
search results c

Use interactive lists
for search/combine

Implementing Search

• Have type graphs, annotated with costs
– Dijkstra’s graph search algorithm

String

a

Char

[Char]

Implementing Combine

• Combine is fiddly
• Needs to apply costs such as instances,

variable renaming, argument deletion
• Check all arguments are present
• Ensure no duplicate answers

• Fast to search for the best matches

The Problem

• Finds the first result quickly
• Graphs may be really big
• But a particular search may match many

results in many ways
– Finding all results can take some time
– 5000 functions, ~5 seconds

• Need to be more restrictive with matching

Structure Matching

• We can decompose any type into a
structure and a list of terms
Either (Maybe a) (b,c)

≡ ? (? ?) (? ? ?) + Either Maybe a (,) b c

• Can now find types quickly
– 22 distinct argument structures in base library
– Very amenable to hashing/interning

– Not as powerful as edit distance

Structure + Aliases

String ≈ [Char]
? + String ≠ ? ? + [] Char

• Solution: Expand out all aliases
– Penalise for all mismatched aliases used

– i.e. left uses String, but right doesn’t
– Imprecise heuristic

Structure + Boxing

Maybe a ≈ a
? ? + Maybe a ≠ ? + a

• Solution: Only allow top-level boxes
– Maybe [a] ≠ Maybe a
– Now have at most 3 structure lookups

Boxing is
3x expensive

Step 1: Restrict Search

• Use structure for type search
• Many fewer answers

– 5,000 types, ~0.5 seconds

• Target: 300,000 types, ~0.1 seconds

Step 2: Restrict Combine

• Start by looking at the result first

Map Structure
(Map Int

[(Type,[(Structure,Type)],[φ])])

box/unbox

alias

argument count

argument reorder Not yet finished
implementation

The Hoogle Tool

• Over 6 years old
• 4 major versions (each a complete rewrite)

– Version 1 in Javascript, 2-4 in Haskell

• Web version
• Firefox plugin, iPhone version, command

line tool, custom web server

Hoogle Statistics

• 1.7 million searches up until 1st Jan 2011
• Between 1000 to 2500 a day

Academia + Real World

• Academia
– Theory of type searching

• Real World
– Generating databases of type signatures

– Web server, AJAX interface, interactivity
– Lots of user feedback, including logs

– 1/6 of searches are type based

Fixing User Searches

double to integer

Did you mean: Double → Integer

where
keyword where

Conclusions

• I now use Hoogle every day
– Name search lets you look up types/docs

– Type search lets you look up names
– Both let you find new functions

• Edit distance works for type search
• Having an online search engine is handy!

haskell.org/hoogle

Funny Searches

• eastenders
• california public schools portable classes
• Bondage
• diem chuan truong dai hoc su pham ha noi 2008
• Messenger freak
• ebay consistency version
• Simon Peyton Jones Genius
• free erotic storeis
• videos pornos gratis
• gia savores de BARILOCHE
• name of Peanuts carton bird
• Colin Runciman

