
Hoogλe
Fast Type Searching

Neil Mitchell
www.cs.york.ac.uk/~ndm/



Hoogle Synopsis

Hoogle is a Haskell API search 
engine, which allows you to 
search many standard Haskell 
libraries by either function name, 
or by approximate type signature.

Or, Google for Haskell



Hoogle Background

• Over 4 years old
• 4 major versions (each a complete rewrite)

– Version 1 in Javascript, 2-4 in Haskell
• Over half a million queries with Hoogle 3

• I am current working full-time on Hoogle
thanks to Google Summer of Code and 
haskell.org (2 weeks left!)



Exact Searching

• You ask, Hoogle responds:
– map Prelude.map
– Map module Data.Map
– (a → b) → [a] → [b] Prelude.map
– Ord a ⇒ [a] → [a] Data.List.sort

• Exact searching is easy!



Inexact Text Searching

• Exact text matching is really easy (Trie)
• Substring matching is really easy (Trie

with different entries)
• Can use Levenshtein/edit distance (harder 

to implement)

• Hoogle (1-4) all use substring matching
– Hoogle 4 uses a Trie, 1-3 use linear search



Inexact Type Searching

• Most study has been on type 
isomorphisms (useless for searching)

• Want to “read the users mind”

• The game: I put up some type signatures, 
you guess the best answer



Human Search Engine
• a → [(a,b)] → b
• Int → Int → Int
• [a] → [b]
• [Int] → String
• [a] → (a → b) → [b]
• a → Maybe
• a → Just a
• float → float



Ranking

• Hoogle ranks results using a multiset of 
costs (about 14 in Hoogle 4)
– You missed an argument (badarg)
– You missed an instance (badinst)

• match :: Query → Result → Maybe [Cost]
– Do not need to worry about ordering marks



Brainstorm

• match :: Query → Result → Maybe [Cost]

What is Cost?
How are they calculated?



Ideas

• Alpha equality (Hoogle 1)
• Isomorphism (Rittri, Runciman – 1980’s)
• Textual type searching (Hayoo!)
• Unification (Hoogle 2)
• Edit distance (Hoogle 3)
• Full edit distance (Hoogle 3.5)
• Structural edit distance (Hoogle 4)



Alpha equality

• Take a type signature, and “normalise” it
• Rename variables to be sequential
• The do an exact text match

• k → v → Map k v
• a → b → Map a b



Isomorphism

• Only match types which are isomorphic
– Long before instances/type aliases

• Ismorphism is about equal structure
– a → b → c ≡ (a, b) → c

• uncurry :: (a → b → c) → (a, b) → c
• :: (a → b → c) → a → b → c



Textual Type Searching

• Alpha normalise + strength reduced alpha 
normalisation

• k → v → Map k v
• a → b → Map a b  &  a → b → c a b

• Plus substring searching



Unification

• Unify against each result, like a compiler
• The lookup problem:

– a → [(a,b)] → b  ≠ a → [(a,b)] → Maybe b

• Works OK, but not great, in practice
– Gives more general answers, but not less 

general
• People are too fuzzy in their requests



Edit Distance

• What changes do I need to make to 
equalise these types

• Each change has a cost
– a → [(a,b)] → b
– a → [(a,b)] → Maybe b
– Eq a ⇒ a → [(a,b)] → Maybe b

• The same idea in Hoogle 3.5 and 4, but 
different implementations



Hoogle 3 Edit Distance

• database :: [Type], length database ≡ n
• match :: Type → Maybe [Cost]

• [t | t  ← database, Just c ← [match t],
order by c]

– O(n) to search all items
– O(n) to find the first result 



Hoogle 3.5/4 Costs

• Alias following (String  ↔ [Char])
• Instances (Ord a ⇒ a  ↔ a)
• Boxing (a  ↔ m a  ,  a  ↔ [a])
• Free variable duplication ((a,b)  ↔ (a,a))
• Restriction ([a]  ↔ m a  ,  Bool ↔ a)
• Argument deletion (a → b  ↔ b)



Per Argument Searching

• The idea: Search for each argument 
separately, combine the results
– Some costs are applied in combination

• i.e. Search a → b → c
• combine $ search arguments a `merge`

search arguments b `merge`
search results c



Combine/Search

• search returns results for a particular type 
within a set of types in order of rank

• combine takes a list of results for 
arguments, and combines them into 
results matching an entire signature, 
removes duplicates, checks each 
argument is present etc.



Combine Notes

• Combine is fiddly
• Needs to apply costs such as instances, 

variable renaming, argument deletion
• As soon as it knows no result will rank 

lower, it returns a result

• Fast to search for the best matches



Hoogle 3.5 Search

• Have type graphs, annotated with costs
– Dijkstra’s graph search algorithm

String

a

Char

[Char]



The Problem

• Finds the first result very quick
• Graphs may be really big
• But a particular search may match many 

results in many ways
– Finding all results can take some time
– ~5 secs with 5000 functions

• Need to be more restrictive with matching!



Hoogle 4 structure matching

• We can decompose any type into a 
structure and a list of terms

• Either (Maybe a) (b,c)
• ? (? ?) (? ? ?) + Either Maybe a (,) b c

• Searching for a type involves finding an 
exact structure match and then a binding 
to the list of terms



Hoogle 4 additional costs

• Structure matching ignores a number of 
costs
– Aliases – fully expand all aliases initially, 

combine has a heuristic to pay for them
– Box/Unbox – allow one box/unbox at the top 

level, just perform 3 structure searches

• The base libraries have at most 22 
different term sequences for a structure



Hoogle 4 results

• Fast to find the first result, fast to find all 
results, ~0.5sec on the base libraries

• Fast enough to develop and debug using 
Hugs on all the base libraries
– Very helpful to me!

• Hoogle 4 demo, network connection 
permitting…



Ranking Costs

• Given a multiset of costs, need to order 
the results

• Solution: Assign each cost an integer, sum 
the costs, compare these numbers

• Initial attempt: Make up numbers manually
– Did not scale at all, hard to get right, like 

solving a large constraint problem in your 
head



Hoogle 3/4 Ranking

• Hoogle has a ranking file, a list of 
searches with the desired order of results

• When someone complains, I add their 
complaint to this list

• Generates a set of constraints, then solves
– Hoogle 3 used ECLiPSe constraint solver
– Hoogle 4 uses a custom finite domain search



Hoogle Statistics

• 560,000 searches with Hoogle 3
• About 1 in 6 searches are type searches

– I never do type search with Hoogle!
– Type searches decreasing with time

• Becoming an essential part of Haskell 
hacking for me



Future Work

• Hoogle 4 final release
• Integration with Cabal/Hackage (search 

your packages and all packages)
• AJAX style interface
• Ranking/search tweaks

• Hoogle 4 is substantially faster and gives 
pretty good search results



Conclusions

• Type and Name search are useful for 
learning and developing
– Type search is a lot harder to do

• Having a practical online search engine is 
a real bonus



Funny Searches
• eastenders
• california public schools portable classes
• Bondage
• diem chuan truong dai hoc su pham ha noi 2008
• Messenger freak
• ebay consistency version
• Simon Peyton Jones Genius
• free erotic storeis
• videos pornos gratis
• gia savores de BARILOCHE
• name of Peanuts carton bird
• Colin Runciman
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