
Hoogλe
Fast Type Searching

Neil Mitchell
www.cs.york.ac.uk/~ndm/

Hoogle Synopsis

Hoogle is a Haskell API search
engine, which allows you to
search many standard Haskell
libraries by either function name,
or by approximate type signature.

Or, Google for Haskell

Hoogle Background

• Over 4 years old
• 4 major versions (each a complete rewrite)

– Version 1 in Javascript, 2-4 in Haskell
• Over half a million queries with Hoogle 3

• I am current working full-time on Hoogle
thanks to Google Summer of Code and
haskell.org (2 weeks left!)

Exact Searching

• You ask, Hoogle responds:
– map Prelude.map
– Map module Data.Map
– (a → b) → [a] → [b] Prelude.map
– Ord a ⇒ [a] → [a] Data.List.sort

• Exact searching is easy!

Inexact Text Searching

• Exact text matching is really easy (Trie)
• Substring matching is really easy (Trie

with different entries)
• Can use Levenshtein/edit distance (harder

to implement)

• Hoogle (1-4) all use substring matching
– Hoogle 4 uses a Trie, 1-3 use linear search

Inexact Type Searching

• Most study has been on type
isomorphisms (useless for searching)

• Want to “read the users mind”

• The game: I put up some type signatures,
you guess the best answer

Human Search Engine
• a → [(a,b)] → b
• Int → Int → Int
• [a] → [b]
• [Int] → String
• [a] → (a → b) → [b]
• a → Maybe
• a → Just a
• float → float

Ranking

• Hoogle ranks results using a multiset of
costs (about 14 in Hoogle 4)
– You missed an argument (badarg)
– You missed an instance (badinst)

• match :: Query → Result → Maybe [Cost]
– Do not need to worry about ordering marks

Brainstorm

• match :: Query → Result → Maybe [Cost]

What is Cost?
How are they calculated?

Ideas

• Alpha equality (Hoogle 1)
• Isomorphism (Rittri, Runciman – 1980’s)
• Textual type searching (Hayoo!)
• Unification (Hoogle 2)
• Edit distance (Hoogle 3)
• Full edit distance (Hoogle 3.5)
• Structural edit distance (Hoogle 4)

Alpha equality

• Take a type signature, and “normalise” it
• Rename variables to be sequential
• The do an exact text match

• k → v → Map k v
• a → b → Map a b

Isomorphism

• Only match types which are isomorphic
– Long before instances/type aliases

• Ismorphism is about equal structure
– a → b → c ≡ (a, b) → c

• uncurry :: (a → b → c) → (a, b) → c
• :: (a → b → c) → a → b → c

Textual Type Searching

• Alpha normalise + strength reduced alpha
normalisation

• k → v → Map k v
• a → b → Map a b & a → b → c a b

• Plus substring searching

Unification

• Unify against each result, like a compiler
• The lookup problem:

– a → [(a,b)] → b ≠ a → [(a,b)] → Maybe b

• Works OK, but not great, in practice
– Gives more general answers, but not less

general
• People are too fuzzy in their requests

Edit Distance

• What changes do I need to make to
equalise these types

• Each change has a cost
– a → [(a,b)] → b
– a → [(a,b)] → Maybe b
– Eq a ⇒ a → [(a,b)] → Maybe b

• The same idea in Hoogle 3.5 and 4, but
different implementations

Hoogle 3 Edit Distance

• database :: [Type], length database ≡ n
• match :: Type → Maybe [Cost]

• [t | t ← database, Just c ← [match t],
order by c]

– O(n) to search all items
– O(n) to find the first result

Hoogle 3.5/4 Costs

• Alias following (String ↔ [Char])
• Instances (Ord a ⇒ a ↔ a)
• Boxing (a ↔ m a , a ↔ [a])
• Free variable duplication ((a,b) ↔ (a,a))
• Restriction ([a] ↔ m a , Bool ↔ a)
• Argument deletion (a → b ↔ b)

Per Argument Searching

• The idea: Search for each argument
separately, combine the results
– Some costs are applied in combination

• i.e. Search a → b → c
• combine $ search arguments a `merge`

search arguments b `merge`
search results c

Combine/Search

• search returns results for a particular type
within a set of types in order of rank

• combine takes a list of results for
arguments, and combines them into
results matching an entire signature,
removes duplicates, checks each
argument is present etc.

Combine Notes

• Combine is fiddly
• Needs to apply costs such as instances,

variable renaming, argument deletion
• As soon as it knows no result will rank

lower, it returns a result

• Fast to search for the best matches

Hoogle 3.5 Search

• Have type graphs, annotated with costs
– Dijkstra’s graph search algorithm

String

a

Char

[Char]

The Problem

• Finds the first result very quick
• Graphs may be really big
• But a particular search may match many

results in many ways
– Finding all results can take some time
– ~5 secs with 5000 functions

• Need to be more restrictive with matching!

Hoogle 4 structure matching

• We can decompose any type into a
structure and a list of terms

• Either (Maybe a) (b,c)
• ? (? ?) (? ? ?) + Either Maybe a (,) b c

• Searching for a type involves finding an
exact structure match and then a binding
to the list of terms

Hoogle 4 additional costs

• Structure matching ignores a number of
costs
– Aliases – fully expand all aliases initially,

combine has a heuristic to pay for them
– Box/Unbox – allow one box/unbox at the top

level, just perform 3 structure searches

• The base libraries have at most 22
different term sequences for a structure

Hoogle 4 results

• Fast to find the first result, fast to find all
results, ~0.5sec on the base libraries

• Fast enough to develop and debug using
Hugs on all the base libraries
– Very helpful to me!

• Hoogle 4 demo, network connection
permitting…

Ranking Costs

• Given a multiset of costs, need to order
the results

• Solution: Assign each cost an integer, sum
the costs, compare these numbers

• Initial attempt: Make up numbers manually
– Did not scale at all, hard to get right, like

solving a large constraint problem in your
head

Hoogle 3/4 Ranking

• Hoogle has a ranking file, a list of
searches with the desired order of results

• When someone complains, I add their
complaint to this list

• Generates a set of constraints, then solves
– Hoogle 3 used ECLiPSe constraint solver
– Hoogle 4 uses a custom finite domain search

Hoogle Statistics

• 560,000 searches with Hoogle 3
• About 1 in 6 searches are type searches

– I never do type search with Hoogle!
– Type searches decreasing with time

• Becoming an essential part of Haskell
hacking for me

Future Work

• Hoogle 4 final release
• Integration with Cabal/Hackage (search

your packages and all packages)
• AJAX style interface
• Ranking/search tweaks

• Hoogle 4 is substantially faster and gives
pretty good search results

Conclusions

• Type and Name search are useful for
learning and developing
– Type search is a lot harder to do

• Having a practical online search engine is
a real bonus

Funny Searches
• eastenders
• california public schools portable classes
• Bondage
• diem chuan truong dai hoc su pham ha noi 2008
• Messenger freak
• ebay consistency version
• Simon Peyton Jones Genius
• free erotic storeis
• videos pornos gratis
• gia savores de BARILOCHE
• name of Peanuts carton bird
• Colin Runciman

	Hoogλe�Fast Type Searching
	Hoogle Synopsis
	Hoogle Background
	Exact Searching
	Inexact Text Searching
	Inexact Type Searching
	Human Search Engine
	Ranking
	Brainstorm
	Ideas
	Alpha equality
	Isomorphism
	Textual Type Searching
	Unification
	Edit Distance
	Hoogle 3 Edit Distance
	Hoogle 3.5/4 Costs
	Per Argument Searching
	Combine/Search
	Combine Notes
	Hoogle 3.5 Search
	The Problem
	Hoogle 4 structure matching
	Hoogle 4 additional costs
	Hoogle 4 results
	Ranking Costs
	Hoogle 3/4 Ranking
	Hoogle Statistics
	Future Work
	Conclusions
	Funny Searches

