
Haskell With Go Faster Stripes

Neil Mitchell

λ



Catch: Project Overview

Catch checks that a Haskell program 
won’t raise a pattern match error

head [] = error “no elements in list”
Infer preconditions, postconditions

Lots of progress
Mainly in the details
Nothing both new and exciting



The Catch Pipeline

1. Haskell source code
2. Core Haskell language – using Yhc
3. Haskell Intermediate Little Language
4. Transform to First Order HILL
5. Analysis



Higher Order Code

A function is passed around as a value
head (x:xs) = x

map f [] = []

map f (x:xs) = f x : map f xs

main x = map head x



Higher Order, Point Free

Point free/pointless code
Does not mention the data values

even = not . odd

(f . g) x = f (g x)

even x = not (odd x)



Step 1: Arity Raise

If a function can take more arguments, 
give it more!
(.) takes 3 arguments, even gives 
(.) 2, therefore even takes 1

even x = (.) not odd x



Step 2: Specialise

If a function is passed higher order, 
generate a version with that argument 
frozen in:

even x = (.) not odd x

even x = (.)<not odd> x

(.)<not odd> = not (odd x)



Fall back plan…

Reynolds Style Defunctionalisation
Generate a data value for each function

data Func = Not | Odd | …

ap Not x = not x

ap Odd x = odd x

…



First Order HILL

We now have First Order HILL
The analysis is now happy

But have we got faster code?
Reynold’s style defunc is slow, but rare
Longer code, not necessarily slower



Reordering the operations

1. Arity raising
2. Reynold’s Style Defunc
3. Specialisation

Now both functions and data are 
specialised!



The Competition

GHC – Glasgow Haskell Compiler
Optimising compiler for Haskell
A lot of work has been done with GHC
Speed competes with C!
Based on inlining



Inlining vs Specialisation
ex1 = cond True 0 1

cond x t f =

case x of

True  -> t

False -> f



Inlining
ex1 = case True of

True  -> 0

False -> 1

ex1 = 0



Specialisation
ex1 = cond<True> 0 1

cond<True> t f = t

Cond<True> is now just a “forwarder”, 
so is inlined

ex1 = 0



Inlining vs Specialisation

caller callee

… (f x) … f x = …

Specialisation

Inlining



Termination condition

Inlining
Do not inline recursive groups

Specialisation
Based on types
(1,’a’:’b’:[]):(3,[]):(4,[])



Another few examples
map f [] = []

map f (x:xs) = f x : map f xs

ex2 f = map f []

ex3 x = map head x

Inlining fails both of these*!
* Do not try this at home…



Specialisation
map<[]> f = []

ex2 f = map<[]> f

ex2 f = []

map<head> [] = []

map<head> (x:xs) = head x : map<head> xs

ex3 x = map<head> x



Specialisation Disadvantages

Works best with whole program
Computers are now much faster
Does this really matter?

Not as well studied
Code blow up (in practice, small)

Can use with inlining!



Pick a random benchmark…

Calculate the nth prime number
In the standard nofib benchmark suite
Lots of list traversals
Quite a few higher order functions
About 15 lines long

Let’s compare!



Executing HILL

HILL is still very Haskell like
Take the fastest Haskell compiler (GHC)
Convert HILL to Haskell
Compile Haskell using GHC

Take note: benchmarking GHC against 
HILL + GHC (GHC wins regardless?) 



Attempt 1: Draw

Both are the same speed using –O2
Using –O0, HILL beats GHC by 60%
–O2 vs –O0 speeds HILL by 10%

Suggests HILL is doing most of the 
work?



List fusion

GHC has special foldr/build rules
Specialise certain call sequences
Built in, gives an advantage to GHC, but 
not to HILL

Applies 4 places in the Primes 
benchmark



Add General Fusion to HILL

Implemented, about an afternoon’s 
work (taking liberties)
Works on all data types, even non-
recursive ones
Can deforest (!!), foldr/build can’t

Applies 6 times



Results

30%



Beware

One benchmark
Using GHC as the backend
But consistent improvement

One other benchmark (Exp3_8), 5% 
improvement, written close to optimal



Future Work

Speed up transformations
Be more selective about specialisation
More benchmarks

Whole nofib suite

Native C back end



C backend

Catch: Haskell -> Yhc Core -> HILL -> 
First Order HILL -> Haskell
GHC: Haskell -> GHC Core -> STG -> C

Haskell can’t express some features of 
HILL (unnecessary case statements)
STG copes with higher order functions



Conclusion

All programs can be made first order
Some Haskell programs can go faster
Specialisation is an interesting 
technique

More benchmarks will lead to more 
conclusions!


	Haskell With Go Faster Stripes
	Catch: Project Overview
	The Catch Pipeline
	Higher Order Code
	Higher Order, Point Free
	Step 1: Arity Raise
	Step 2: Specialise
	Fall back plan…
	First Order HILL
	Reordering the operations
	The Competition
	Inlining vs Specialisation
	Inlining
	Specialisation
	Inlining vs Specialisation
	Termination condition
	Another few examples
	Specialisation
	Specialisation Disadvantages
	Pick a random benchmark…
	Executing HILL
	Attempt 1: Draw
	List fusion
	Add General Fusion to HILL
	Results
	Beware
	Future Work
	C backend
	Conclusion

