) Haskell With Go Faster Stripes

Neil Mitchell

) Catch: Project Overview

= Catch checks that a Haskell program
won't raise a pattern match error

= head [] = error “no elements in list”

= Infer preconditions, postconditions
= Lots of progress

= Mainly in the details

= Nothing both new and exciting

) The Catch Pipeline

1. Haskell source code

2. Core Haskell language — using Yhc

3. Haskell Intermediate Little Language
4. Transform to First Order HILL

5. Analysis

) Higher Order Code

= A function is passed around as a value
head (X:XS) = X

map T [1 = L]

map F (X:xs) = ¥ x - map T Xs

main X = map head X

) Higher Order, Point Free

= Point free/pointless code
s Does not mention the data values
even = not . odd

(f . 9) x=1 (g x)

even X = not (odd Xx)

)\ Step 1: Arity Raise

= If a function can take more arguments,
give it more!

= (.) takes 3 arguments, even gives
(.) 2, therefore even takes 1

even X = (.) not odd x

)\ Step 2: Specialise

= If a function Is passed higher order,
generate a version with that argument
frozen In:

even X = (.) not odd x
even X = (.)<not odd> Xx
(.)<not odd> = not (odd X)

) Fall back plan...

= Reynolds Style Defunctionalisation
= Generate a data value for each function

data Func = Not | Odd | ..

ap Not X = not X
ap 0dd x = odd X

) First Order HILL

= We now have First Order HILL
= The analysis is now happy

= But have we got faster code?
= Reynold’s style defunc is slow, but rare
» Longer code, not necessarily slower

) Reordering the operations

- Arity raising
2. Reynold’s Style Defunc
3. Specialisation

= Now both functions and data are
specialised!

) The Competition

= GHC — Glasgow Haskell Compiler

= Optimising compiler for Haskell

= A /ot of work has been done with GHC
= Speed competes with C!

= Based on inlining

) Inlining vs Specialisation

exl = cond True 0 1

cond X t T =
case X of
True ->t
False -> T

) Inlining

exl = case True of
True ->0
False -> 1

[
o

ex]1l

) Specialisation

exl = cond<True> 0 1
cond<True> t F = t

Cond<True> is now just a “forwarder”,
so iIs inlined

exl =0

) Inlining vs Specialisation

Specialisation

Inlining

. (F xX) . T X

) Termination condition

= Inlining
= Do not inline recursive groups

= Specialisation
= Based on types

= (1.7a7 27" [DG, LD -, LD

) Another few examples

map T [1 = L]

map F (Xx:xs) = ¥ x - map T Xs

ex2 f =map T []
ex3 X = map head Xx

= Inlining fails both of these™!

* Do not try this at home...

) Specialisation

map<[]> T = []
ex2 f = map<[]> T
ex2 T =[]

map<head> [] = []
map<head> (x:xs) = head x : map<head> Xxs

ex3 X = map<head> X

) Specialisation Disadvantages

= Works best with whole program
= Computers are now much faster
» Does this really matter?

= Not as well studied
= Code blow up (in practice, small)

= Can use with inlining!

) Pick a random benchmark...

= Calculate the nt" prime number

= In the standard nofib benchmark suite
= Lots of list traversals

= Quite a few higher order functions

= About 15 lines long

s Let's compare!

) Executing HILL

= HILL is still very Haskell like

= Take the fastest Haskell compiler (GHC)
= Convert HILL to Haskel
= Compile Haskell using GHC

= Take note: benchmarking GHC against
HILL + GHC (GHC wins regardless?)

) Attempt 1: Draw

= Both are the same speed using —02
= Using —0O0, HILL beats GHC by 60%
= —02 vs —00 speeds HILL by 10%

= Suggests HILL is doing most of the
work?

) List fusion

= GHC has special foldr/build rules
= Specialise certain call sequences

= Bullt in, gives an advantage to GHC, but
not to HILL

= Applies 4 places in the Primes
benchmark

) Add General Fusion to HILL

= Implemented, about an afternoon’s
work (taking liberties)

= Works on all data types, even non-
recursive ones

= Can deforest (11), foldr/build can’t

= Applies 6 times

Time in seconds

Results

Finding the nth prime number

—— GHC /
—— HC

i

0 2000 4000 S0010 2000

10000

30%

) Beware

= One benchmark
= Using GHC as the backend
= But consistent improvement

= One other benchmark (Exp3 8), 5%
Improvement, written close to optimal

) Future Work

= Speed up transformations
= Be more selective about specialisation

= More benchmarks
= Whole nofib suite

= Native C back end

) C backend

s Catch: Haskell -= Yhc Core -> HILL ->
First Order HILL -> Haskell

s GHC: Haskell -> GHC Core -> STG -> C

= Haskell can’t express some features of
HILL (unnecessary case statements)

= STG copes with higher order functions

) Conclusion

= All programs can be made first order
= Some Haskell programs can go faster

= Specialisation iIs an Interesting
technique

x More benchmarks will lead to more
conclusions!

	Haskell With Go Faster Stripes
	Catch: Project Overview
	The Catch Pipeline
	Higher Order Code
	Higher Order, Point Free
	Step 1: Arity Raise
	Step 2: Specialise
	Fall back plan…
	First Order HILL
	Reordering the operations
	The Competition
	Inlining vs Specialisation
	Inlining
	Specialisation
	Inlining vs Specialisation
	Termination condition
	Another few examples
	Specialisation
	Specialisation Disadvantages
	Pick a random benchmark…
	Executing HILL
	Attempt 1: Draw
	List fusion
	Add General Fusion to HILL
	Results
	Beware
	Future Work
	C backend
	Conclusion

