
Neil Mitchell

http://nmitchell.co.uk/

Gluing things together
with Haskell

Code
Elegantly designed

Release
Thoroughly tested

• Build system
• Test harness
• Continuous integration
• Release bundling
• Installer generator
• Release distribution
• …

“A rats nest of Bash”

• Would your team write 10K lines of Bash?

• Lots of people write > 10K of Makefile

– Standard Chartered, GHC developers

What to do?

1. Accept regular failures

2. Invest lots of time and money on an ongoing
basis

3. Do it right
(elegantly designed and thoroughly tested)

Shake

Build system

NSIS

Installer generator
Bake

Continuous integration

All open source Haskell libraries

Shake

Build system

Shake for managers

• Build system - alternative to Make, Scons…

• Reliable and robust

• Powerful dependencies

• Fast to run

http://shakebuild.com/

xkcd.com

Shake for developers

• A Haskell library for writing build systems

– Your code is in Haskell, but calling compilers etc

• Monadic dependencies (generated code)

• Polymorphic dependencies (not just files)

• Optimised and tested (faster than Ninja)

https://github.com/ndmitchell/shake

result.lst

notes.txt
talk.pdf
pic.jpg

result.tar

notes.txt
talk.pdf
pic.jpg

import Development.Shake
import Development.Shake.FilePath

main = shakeArgs shakeOptions $ do
 want ["result.tar"]
 "*.tar" *> \out -> do
 need [out -<.> "lst"]
 contents <- readFileLines $ out -<.> "lst"
 need contents
 cmd "tar -cf" [out] contents

An example

Monadic dependencies

What does Foo.obj depend on
(what does Foo.cpp #include)

• Applicative

– Tell me the dependencies up front

– Phases? Guess from Foo.xml?

• Monadic

– New dependencies later

– Generate Foo.cpp. Look at it.

Foo.xml

Foo.cpp

gen
e

rate

cl

Foo.obj

Polymorphic dependencies

Way more than just files
(but files are still the norm)

• Does a file exist (perfect for $INCLUDE paths)

• Contents of a directory (good for VS projects)

• Compiler/library versions

– Upgrade a library, have the right things rebuild

Using Shake for our build system has
been a very good decision so far, we've
been able to minimise the time spent

with platform-dependent build systems
and IDEs and get to write Haskell

code instead ;)

Stefan Kersten, CTO Samplecount
Cross-platform music stuff in C/Haskell
Using Shake for > 2 years

At Standard Chartered

• > 10,000 lines Makefile became < 1,000 Shake

• Compiled more than 2x faster

• More malleable – no global phases

• A fantastic success

– Our project keeps growing

– Same structure as at the beginning

– Monadic = more compositional

Stealing from Haskell

• Syntax, reasonable DSLs

• Some use of the type system (not heavy)

• Abstraction, functions/modules/packages

• Profiling the Haskell functions

Extra features

• HTML profile reports

• Very multithreaded

• Progress reporting

• Reports of live files

• Lint reports

• …

NSIS

Installer generator

NSIS – NullSoft Install System

• Originally the WinAmp installer (pre 2002)

• Generates small, fast Windows installer

• Lots of plugins

http://nsis.sourceforge.net/

Quirky (understatement)

• Bad language

– Scripted with a programming language

– Twenty registers ($0, $R0), plus a stack, plus mem

– Goto only, plus functions, no block if/for

– Everything is a string (< 1Kb, or it segfaults)

• Bad structure

– Nice user interface requires MUI2

– A set of preprocessor defines over NSIS

Solution: Haskell

• Define a DSL for writing NSIS libraries

• Generates NSIS code underneath

• Expression/Statement orientated

– Very imperative

https://github.com/ndmitchell/nsis

Comparison

StrCmp $WINDIR $INSTDIR bad 0
StrCmp $SYSDIR $INSTDIR bad 0
Goto skip
bad:
MessageBox MBOK|MB_ICON_EXCLAMATION "Bad idea"
skip:

iff_ ("$INSTDIR" %== "$WINDIR" %||
 "$INSTDIR" %== "$SYSDIR") $
 alert "Bad idea"

Vs

Comparison

!Include MUI2.nsh
Name "Example1"
!insertmacro MUI_PAGE_DIRECTORY
!insertmacro MUI_PAGE_INSTFILES
!insertmacro MUI_LANGUAGE "English"
Section "" _sec1
 SetOutPath "$INSTDIR"
 File "Example1.hs"
SectionEnd

name "Example1"
page Directory
page InstFiles
section "" [] $ do
 setOutPath "$INSTDIR"
 file [] "Example1.hs"

Vs

Add types and structure

data S = S Unique [NSIS]

data Action a = Action (State S a)

data Value ty = Value Val

type Exp ty = Action (Value ty)

-- ty is String, Int or Bool

Monad Action Functor Action Applicative Action
Enum (Exp Int) Eq (Exp a) Fractional (Exp Int)
Integral (Exp Int) Num (Exp Int) Ord (Exp Int)
Real (Exp Int) Show (Exp a) Monoid (Exp String)
Bits (Exp Int) Typeable a => IsString (Exp a)

Reduce expressions

iff_ :: Exp Bool -> Action () -> Action ()

iff_ test true = do

 thn <- newLabel

 end <- newLabel

 Value t <- test

 emit $ StrCmpS t (lit "") end thn

 label thn

 true

 label end

Optimise

dullGoto :: [NSIS] -> [NSIS]

dullGoto = transform f

 where

 f (Goto l1:Label l2:xs)

 | l1 == l2 = Label l2 : xs

 f x = x

Goto foo
foo:

• Syntax, reasonable DSLs

• Phantom types to eliminate lots of errors

• Abstraction, build up in layers

• Standard compiler techniques

• Symbolic manipulation for optimisation

– (which is pretty much totally unnecessary)

Stealing from Haskell

• Doesn’t define an installer, wraps an installer

• Polish off the rough edges, fix a few bugs

• Hide all the complexity

• Keep all the good stuff

The Result

Bake

Continuous integration

Bake for managers

• Continuous integration – Travis, Jenkins…

• Designed for teams which are:

– Large: ~5-50 people

– Semi-trusted: Not always advance code review

– Productive: Writing lots of code

• Never break the build

https://github.com/ndmitchell/bake

Bake for developers

• Master branch always works perfectly

• When code is ready, tell Bake

• Bake compiles it, runs the tests, merges it

• Bad code is rejected

master neil

Not enough time in the day

• 50 patches are promoted per day

• Compile & test = 10 hours (multithreaded)

• 20+ servers testing is infeasible

– 2 might be reasonable, Windows & Linux

• Bake’s solution

– Assume if p1+p2 pass the tests, that’s fine

– If a test fails, then identify whether p1 or p2 fails

Configure in Haskell

data Action = Compile | Test

main = bake $

 ovenGit repo "master" Nothing $

 ovenTest (return [Compile,Test]) exec

 defaultOven

exec Compile = run $ cmd "shake"

exec Test = after [Compile] $ run $ cmd "test"

Users

Client(s)

Server *

Prepare Run

Query

Merge

HTTP
Command line

* Clever stuff

90% string passing

String Passing the Haskell way

data Stringy s = Stringy

 {stringyTo :: s -> String

 ,stringyFrom :: String -> s

 ,stringyPretty :: s -> String

 }

stringyTo . stringyFrom == id

stringyFrom . stringyTo == id

check :: Stringy s -> Stringy s

• Parameterisable and configurable

– Parameterised over version control

– Parameterised over tests

• Use types to safely pass different strings

• A bit of pure “clever” stuff in the middle

Stealing from Haskell

• Too early to say!

• Bake is only 6 weeks old

• Looks promising…

The Result

Shake

Build system
NSIS

Installer generator
Bake

Continuous integration
Todo

Lots more

