
Fixing Records in Haskell
Neil Mitchell et al, ndmitchell.com

https://ndmitchell.com/

an in-your-face, glaring
weakness telling you there is

something wrong with Haskell
- Greg Weber

Haskell’s record
system is a cruel

joke - Scrive

Records' syntax sucks
- Bitcheese

What is your least favorite thing about
Haskell? Records are still tedious -
2018 State of Haskell Survey

The record system is a
continual source of pain

- Stephen Diehl

myPerson.name

Which language is this?

It can be Haskell!

• Using record-dot-preprocessor

– github.com/ndmitchell/record-dot-preprocessor

– Available as a textual preprocessor and plugin

• Using DAML – a Haskell derivative

– daml.com

• If the latest GHC proposal gets accepted and
implemented

– tinyurl.com/ghc-records

https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://github.com/ndmitchell/record-dot-preprocessor
https://daml.com/
https://tinyurl.com/ghc-records
https://tinyurl.com/ghc-records
https://tinyurl.com/ghc-records
https://tinyurl.com/ghc-records

Forbidden Questions (until later)

L**s

What I want to do

data Company = Company {
 name :: String,
 owner :: Person}

data Person = Person {
 name :: String,
 age :: Int}

ERROR: Multiple declarations of ‘name’

Automatic selectors

• Haskell helpfully generates

name :: Company -> String
owner :: Company -> Person
name :: Person -> String
age :: Person -> Int

ERROR: Multiple declarations of ‘name’

What I actually do #1

data Company = Company {
 companyName :: String,
 companyOwner :: Person}

data Person = Person {
 personName :: String,
 personAge :: Int}

personName (companyOwner x)

What I actually do #2

import qualified Company(Company(..)) as C

import qualified Person(Person(..)) as P

P.name (C.owner x)

What I actually do #3

Especially when explaining this to Haskell beginners…
Especially experienced programmers…

With RecordDotSyntax

data Company = Company {
 name :: String,
 owner :: Person}

data Person = Person {
 name :: String,
 age :: Int}

x.owner.name

This change is a BIG deal

• DAML is a Haskell inspired DSL for smart
contracts on a Distributed Ledger

– Written by Digital Asset, a company that is hiring,
that I used to work for: digitalasset.com

• Wanted to move from Haskell inspired to GHC
based implementation

• Records stopped us, until we implemented
this extension (in use ~18 months)

https://digitalasset.com/

How does it work?

• Step 1: Don’t generate the selectors

– Already part of the NoFieldSelectors proposal

– But now how do I get at the fields?

– Record puns to the rescue

case x of

 Company{owner} -> case owner of

 Person{name} -> name

Sugar that up #1

a.B.c => case a of B{c} -> c

x.Company.owner.Person.name

• Ugly! Company should be inferred from the
type of ‘a’.

Sugar that up #2

x.owner.name

a.b => getField a b

getField :: r -> String -> F r String

"b" :: String -- a value of type String

@"b" :: Label -- a type of kind Label

Type vs Value

Implement that sugar

class HasField x r a | x r -> a where
 getField :: r -> a

instance HasField "name" Person String where
 getField Person{name} = name

x.owner.name

getField @"name" (getField @"owner" x)

Appreciate the Magic

• NoFieldSelectors

• HasField type class

• Automatic instances

• Minor syntax sugar

= records solved

Pairs of labels

instance (HasField l1 a b, HasField l2 b c) =>
 HasField (l1, l2) a c where
 getField = getField @l2 . getField @l1

• Since type is either a Label (lifted String) or
pair (lifted pair)

getField @("owner", "name") x

Standalone selectors

• Old world

map name people

• New world

map (getField @"name") people

map (.name) people

Record Updates

Step 1: Make them work

a{b=c} => setField @"b" a c

class HasField x r a | x r -> a where
 setField :: r -> a -> r

Step 2: Multiple field updates

• a{b=c, d=e}

setField @"d" (setField @"b" a c) e

Real updates are more powerful.
Where did I cheat?

Type changing updates!

data Foo a = Foo {foo :: [a], bar :: Int}

(x :: Foo Int){foo = [True]} :: Foo Bool

setField :: Label -> r -> v -> F Label r v

Type inference issues

x{foo = [], bar = 2}

setField @"bar" (setField @"foo" x []) 2

:: Foo ???

There are complex solutions, but…

Powerful idea
Complex and rarely

used feature

Easily emulated

let Foo{..} = x in Foo{foo=[], bar=2, …}

Deep updates still suck

• Set the age of the owner to 42

x{owner = x.owner{age=42}}

Repeated owner twice. Gets much worse as we
nest further.

Deep updates fixed

• Set the age of the owner to 42

x{owner.age = 42}

setField @("owner","age") x 42

Field modification still sucks

• Increment the age of the owner

x{owner.age = x.owner.age + 1}

Not terrible, but not beautiful.

Field modification fixed

• Increment the age of the owner

x{owner.age + 1}

modifyField @("owner","age") x (+ (1))

Field modification with lambda

• Do something weird

x{owner.age & \i -> floor $ sqrt (i * 57) + 21}

modifyField @("owner","age") x (& (\i -> …))

Data.Function.(&) = flip ($)

Is modifyField expensive?

-- Traversing the structure twice is bad (maybe?)
modifyField @l x f =
 setField @l x $ f $ getField @l x

instance HasField x r a | x r -> a where
 hasField :: r -> (a, a -> r)

modifyField @l x f = u $ f v
 where (v, u) = hasField @l x

L**s

HasField FAQ

• Can I define my own HasField instance, e.g. to
pretend my structure has a virtual field

– Yes, you can. Let’s not do one for Map though,
please…

• Can I access non-exported fields now?

– No. HasField is magic. GHC manufactures it locally
only if the field/constructor are in scope.

Hmm, DuplicateRecordFields?

• An extension in GHC that let’s you write:

name (owner c :: Person)

• name’s arg must be a locally known type:
– f c = name (owner (c :: Company)) -- bad

– f c = name (owner c :: Person) -- good

– f (p :: Person) = name p -- bad

• We use real constraints for better power

Did you just reinvent lenses?

• There’s definitely overlap!

• Lenses are record fields as first-class values,
which is awesome. Powerful. Scary. These
records are concrete.

• It does conflict with the lens
c^.companyOwner.personName style.

 Lens

Remember the original motivation

For the domain
of DAML, lens is
not a feasible
solution.

DAML

Syntactic extensions

Expression Equivalent

e.lbl getField @"lbl" e

e{lbl = val} setField @"lbl" e val

(.lbl) (\x -> x.lbl)|

e{lbl1.lbl2 = val} e{lbl1 = (e.lbl1){lbl2 = val}}

e{lbl * val} e{lbl = e.lbl * val}

e{lbl1.lbl2} e{lbl1.lbl2 = lbl2}

Combinations

Expression Equivalent

e.lbl1.lbl2 (e.lbl1).lbl2

(.lbl1.lbl2) (\x -> x.lbl1.lbl2)

e.lbl1{lbl2 = val} (e.lbl1){lbl2 = val}

e{lbl1 = val}.lbl2 (e{lbl1 = val}).lbl2

e{lbl1.lbl2 * val} e{lbl1.lbl2 = e.lbl1.lbl2 * val}

e{lbl1 = val1, lbl2 = val2} (e{lbl1 = val1}){lbl2 = val2}

e{lbl1.lbl2, ..} e{lbl2=lbl1.lbl2, ..}

myPerson.name

Coming to a GHC near you! (Maybe)

Acknowledgements: DAML Team, incl Shayne Fletcher. Adam Gundry.
 Mathieu Boespflug. Simon Hafner.

