

Fastest Lambda First

Neil Mitchell
www.cs.york.ac.uk/~ndm/λ

The Problem

 Count the number of lines in a file
– “” = 0
– “test” = 1
– “test\n” = 1
– “test\ntest” = 2

 Read from the console
– Using getchar only
– No buffering

The Haskell

main = print . length . lines =<< getContents

 getContents :: IO String
 lines :: String → [String]
 length :: [a] → Int
 print :: Show a ⇒ a → String

The C

int main() {
int count = 0, last_newline = 1, c;
while ((c = getchar()) != EOF) {

if (last_newline) count++;
last_newline = (c == '\n');

}
printf("%i\n", count);
return 0;

} /* Is this correct? */

Thanks to Andrew Wilkinson

The Results

0
1
2
3
4
5
6
7
8
9

10

C Supero GHC

Disclaimer Slide

 Uses GHC as a backend
– GHC does some really cool optimisation
– Inlining, strictness, unboxing

 Only one benchmark presented
– Promising results on others, but not enough yet

Other Benchmarks

 Three results
– wc -c 13% faster GHC, 3% slower C
– wc -l 47% faster GHC, 2% slower C
– wc -w 70% faster GHC, 20% slower C

 All very similar programs…

Overview

 Different approach
 First order code
 First order code without data
 Termination
 What could be improved
 Conclusion

Whole program analysis

 Look at all the code at once
 Done by a few compilers (MLton, JHC)
 Usually compilation is really slow

 Linking is whole-program
 Mine is quite quick

Bullets versus a nuclear bomb

 Most (all?) optimising compilers use “bullets”
– Small, targeted transformations
– Hit programs with a hail of bullets

 I use one single optimisation
– No issues of “enabling transformations”
– No optimisation “dials”
– No “swings and roundabouts”

Alpha Renaming

 Some optimisers rely on special names
– foldr/build
– stream/unstream

 Achieves good practical results
– Limits what can be optimised well
– Requires functions to be defined unnaturally
– They tend to go wrong (take in GHC 6.6)

First Order Haskell

 Remove all lambda abstractions (lambda lift)
 Leaving only partial application/currying

odd = (.) not even

(.) f g x = f (g x)

 Generate templates (specialised fragments)

Oversaturation

f x y z, where arity(f) < 3

main = odd 12

<odd _> x = (.) not even x

main = <odd _> 12

Undersaturation

f x (g y) z, where arity(g) > 1

<odd _> x = (.) not even x

<(.) not even _> x = not (even x)

<odd _> x = <(.) not even _> x

Special Rules

let z = f x y, where arity(f) > 2 (let-under)
– inline z, after sharing x and y

d = Ctor (f x) y, where arity(f) > 1 (ctor-under)
– inline d
– The “dictionary” rule

Standard Rules

 let x = (let y = z in q) in … (let/let)
 case (let x = y in z) of … (case/let)
 case (case x of …) of … (case/case)
 (case x of …) y z (app/case)
 case C x of … (case/ctor)

Removing functions

\x → head xf x

Application Closure

head x

Removing data

x : xscase x of …

Consumption Production

…

Church Encoding

data List a =

 Nil

 | Cons a (List a)

len x = case x of

 Nil → 0

 Cons y ys → 1 + len ys

nil = \n c → n

cons x xs = \n c → c x xs

len x = x

 0

 (\y ys → 1 + len ys)

Efficient Interpretation by Transforming Data
Types and Patterns to Functions, TFP 2006

Optimisation Algorithm

1. Remove higher-order functions

2. Church encode

3. Remove higher-order functions

Proof: It doesn’t work

 A program has no data, and no functions
 Implies its not Turing complete!

 Linear Bounded Turing Machine
 Therefore, removing HO cannot be perfect

Failing Example

showPosInt x = f x “”

f 0 acc = acc

f i acc = f (i / 10) (c:acc)

 where c = ord ‘0’ + (i % 10)

 Requires a buffer O(log10 n)

 Cannot be removed automatically

Failing pleasantly

 Keep running
 At some point, stop

– 1000 new functions created
– 100 based on a particular function
– Some particular name recurring

 Leaves higher-order functions around

Failing Church Encoding

 Church encoding requires rank-2 types
– Cannot be inferred automatically
– Makes some things more complex

 Why not merely “pretend” Church Encode
– Failure is now left-over data
– Much more pleasant

Thanks to Tom Shackell

Pretend we are Church encoding

Summing the Integers

main n = sum (range 0 n)

sum xs = case xs of

[] → 0

(y:ys) → y + sum ys

range i n = if i > n then [] else i : range (i+1) n

Undersaturation of Data

 A constructor is higher-order

main n = sum (range 0 n)

<sum (range#2)> i n = case range i n of …

main n = <sum (range#2)> 0 n

Oversaturation of Data

 A case is an application

case range i n of {[] → 0; (y:ys) → y + sum ys}

<case range#2 {[] → 0; (y:ys) → y+sum ys}> i n =

 if i > n then 0 else i + sum (range (i+1) n)

Final Result

main n = sum’ 0 n

sum’ i n = range’ i n

range’ i n = if i > n then 0 else i + sum’ (i+1) n

 All constructors have disappeared
 First-order with Church encoding

Special Cases

let x = C y z
– inline x, after sharing y and z

let x = f y z, where f produces data
– inlining may break sharing
– only if one use of x

What isn’t Optimised?

 This optimisation does a lot
 But doesn’t always produce optimal code

 What can we do better?
– Ignore “better algorithms”

Call overhead

f1 x y = f2 x y

f2 x y = f3 y x

f3 y x = g x + y

 My optimisation gives loads of these!

GHC is very good at this

Strictness/Boxing

 Lazy evaluation requires “thunks”
 Strictness avoids these thunks

 Int is box stored in the heap
 Int# is more like a C int

Again, GHC is good at this

Sharing/lets

g (f x) (f x) ⇒ let y = f x in g y y
 Common sub expression

map (g 100) ys

g x y = f x + y
 Strength reduction

Can cause space leaks

Constant movement

countLines xs = count ‘\n’ xs

count n (x:xs) | n == x = 1 + count xs

| otherwise = count n xs

 This one remains in linecount example
 Should make the Haskell faster

Can Haskell beat C?

 A question of abstraction
– In C, abstraction is painful
– For linecount, not worth it

 Haskell can remove abstraction better than C
– Won’t win on micro-benchmarks (may draw)
– May win on real programs

Faster than C

print . sum . map readInt . lines =<< getContents

readInt :: Int → String

 Haskell can optimise sum/readInt
 C can’t optimise between them

 NB. Not actually tried, yet…

http://shootout.alioth.debian.org/

More Benchmarks

 Needs refactoring
– Some transformations in Yhc.Core
– Some in the optimiser
– Don’t glue together nicely

 GHC sometimes “over-optimises”
– Turns getchar into a constant!
– Need to integrate with GHC’s IO Monad

Conclusion

 Haskell can be made faster
– Nearly the speed of C (sometimes)
– But always more beautiful

 You can’t draw conclusions from small
benchmarks

