
Pyrefly
A Python typechecker

Neil Mitchell, Meta

What is Pyrefly?

● An open-source standards-compliant Python type checker
● An IDE/LSP provider
● Fast and parallel (written in Rust)
● The successor to Pyre

pyrefly.org

https://pyrefly.org/

Sandbox (pyrefly.org/sandbox)

.

https://pyrefly.org/sandbox

How to get it?

● Alpha version available now!
● pip install pyrefly && pyrefly init
● VS Code extension (search for “pyrefly”)

pyrefly.org

https://pyrefly.org/

History of Pyrefly

● Meta develops Instagram which is a massive codebase of Python
● In 2017 we started work on Pyre

○ Descendent of Hack (PHP) and Flow (Javascript)
○ Written in OCaml

● Very useful! But…
○ Didn’t work on Windows
○ Parallelism was hard (multiprocess)
○ Performance a bit lacking
○ IDE was lackluster, switched to Pyright
○ Open source was never a focus

History of Pyrefly (2)

● August 2024 two of us started prototyping MiniPyre
○ 7 prototypes written, constraints, subset based, abstract interpretation…
○ Using Rust (cross platform and fast)
○ Hard bits first: generics, recursion, overloads, import *

● October 2024 it was working well, so we started Pyre2 Pyrefly
○ Implement features, following the typing spec
○ Implement LSP
○ Package
○ Optimise

● May 2025 we released it at

Features 1/4 - Performance

● Performance is a feature! 🚀
○ No trade off between safety and developer speed
○ Check on every keystroke - 1.8M lines/second*, 35x faster than Pyre (on

Instagram), 14x faster than Mypy/Pyright (on Pytorch)**
● Fast as standard - Rust, memory representations
● Parallelism - at the module level, so larger projects go faster
● Incrementality - don’t invalidate too much, even with cyclic imports

Fight the O(n2) monsters!

* On my Meta Linux dev machine, 166 cores, 228Gb RAM
** On a Macbook, 10 cores, 32Gb RAM

Features 2/4 - Inference

● I like types (my DNA is Haskell). Some people don’t.
● Pyrefly is designed to meet you where you are!
● Infer function return types
● Infer local types
● Infer container types

Features 3/4 - IDE

● Designed as an IDE, that can also run on the command line
● In-memory transactional database to manage state
● VS Code extension, follows LSP (used on NeoVim too)
● Hover, goto-def, completions, find-refs, document symbols…
● Type inference: return types and container types
● Inlay hints - easily insert inferred types

Features 4/4 - Open Source

● We have gained much from open source!
○ Python itself
○ Python typing specification, plus existing checkers (Pyright, Mypy etc)
○ Ruff parser (really awesome - thanks!)
○ Open source Python projects, e.g. PyTorch

● MIT license, https://github.com/facebook/pyrefly
● Delighted to accept pull requests (5 last week), all issues are on issue tracker

https://github.com/facebook/pyrefly

But Python is untyped?

● At runtime Python has types (str ≠ int)
● For developers, Python has types “the user identifier”
● If these don’t agree, your program will not have a good time

Python types (including annotations) let you connect between human types and
interpreter types

Why types?

● Faster inner loop - run the code less
● Spot typos
● Make corner cases safer
● Understand the code better, documentation, goto-def
● Write code faster - auto-completion
● Machine checked documentation
● Refactor with peace of mind

.

Why types?

● Reliability
● Productivity
● Understanding
● Where it makes sense!

final case class Kleisli[F[_], A, B](run: A => F[B]) {
 def map[C](f: B => C)(implicit F: Functor[F]): Kleisli[F, A, C] =
 Kleisli[F, A, C](a => F.map(run(a))(f))
}

Pyrefly design

3 phases! Each about 10x more expensive than the previous one

● Exports - what does each module export
○ Module foo exports builtins.str and MyClass

● Bindings - how do statements relate to each other
○ x on line 7 is defined at line 3

○ y is assigned to x.pop(4)
● Answers - how expressions/types relate

○ x is list[str], 4 is Literal[4], what is x.pop(4)

display(3.142).fraction.

● Find the type of display(3.142).fraction
● First, find display

○ Might come from typing or numbers
○ Figure out the export table from each
○ Which might require a fixed-point of recursive * imports…

from typing import *

from numbers import *

The journey of autocomplete

@dataclass
class Number[T]:
 whole: T
 fraction: Final[T]

def display(x: float) -> Number[float]:
 whole = float(math.floor(x))
 fractional = x - whole
 return Number(whole, fractional)

● Interpret @dataclass
● Infer types for each variable
● Infer the return type
● Instantiate some generics
● Understand Final

The journey of autocomplete (2)

display(3.142).fraction.

● Now we know we have float
● Figure out what methods it has

class float:
 def __new__(cls, x = ...) -> Self
 @classmethod
 def fromhex(cls, x: str) -> Self
 @property
 def real(self) -> float
 def conjugate(self) -> float
 def __add__(self, float) -> float

The journey of autocomplete (3)

Why not Pyrefly?

● It is an alpha - 25 known bugs, ∞ unknown
● You will be one of the first open-source users
● You will find bugs, most of which we will fix
● But you will get a sticker

Pyrefly @

Say hello!

We’ll be here
for the
conference and
the sprints.

Happy to help!

Pyrefly @

Booth to the right of the main entrance

Look for the ‘Meta Open Source’

Pyrefly @

Typing summit! Tomorrow 2-6pm, room 319, all welcome! (no pre-registration)

● Introducing Pyrefly, Steven Troxler
● Preventing unwanted mutation with PyreReadOnly, Amritha Raghunath and

Jia Chen
● Updates from the Typing Council, Rebecca Chen

Questions?

pyrefly.org

https://pyrefly.org/

