

Faster Haskell

Neil Mitchell
www.cs.york.ac.uk/~ndm

The Goal

• Make Haskell “faster”
– Reduce the runtime
– But keep high-level declarative style

• Full automatic - no “special functions”
– Different from foldr/build, steam/unstream

• Whole program optimisation
– But fast (developed in Hugs!)

Word Counting

• In Haskell

main =
 print . length . words =<< getContents

• Very high level
• A nice “specification” of the problem

Note: getContents reimplemented in terms of getchar

And in C
int main() {

int i = 0, c, last_space = 1;
while ((c = getchar()) != EOF) {

int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

}
printf("%i\n", i);
return 0;

} About 3 times faster
than Haskell

Why is Haskell slower?

• Intermediate lists! (and other things)
– GHC goes through 4Gb of memory – O(n)
– C requires ~13Kb – O(1)

• length . words =<< getContents
– getContents produces a list
– words consumes a list, produces a list of lists
– length consumes the outer list

Removing the lists

• GHC already has foldr/build fusion
– map f (map g x) == map (f . g) x

• But getContents is trapped under IO
– Much harder to fuse automatically
– Don’t want to rewrite everything as foldr
– Easy to go wrong (take function in GHC 6.6)

Supero: My Optimiser

• Fully automatic
– No annotations, special functions

• Evaluate the program at compile time
– Start at main, and execute

• Stop when you reach a primitive
– The primitive is in the optimised program

With wordcount

main r
(print . length . words =<< getContents) r
(getContents >>= print . length . Words) r
case getContents r of (# s, r #) -> …
getChar >>= if c == 0 then return [] else …
case getChar r of …

• Have reached a case on a primitive

The new program

main r = case getChar r of
 (# c, r #) -> main2 c r

• Create main2, for the alternative
• Continue optimisation on the branches of

the case, main2
• The evaluation mainly does inlining

– Also case/case, case/ctor, let movement

Tying in the knot

• Each name in the new program
corresponds to an expression in the old
– main = print . length . words =<< getContents
– main2 = the case alternative

• If you reach the same expression, use the
same name – makes recursive call

Summing a list
sum x = case x of

 [] -> 0
 (x:xs) -> x + sum xs

range i n = case i > n of
 True -> []
 False -> i : range (i+1) n

main n = sum (range 0 n)

Evaluate
main n
sum (range 0 n)
main n = main2 0 n
 where main2 i n = sum (range i n)
case range i n of {[] -> 0; x:xs -> x + sum xs}
case (case i > n of {True -> []; False -> …}) of …
case i > n of {True -> 0
 ;False -> i + sum (range (i+1) n)}
tie back: main2 (i+1) n

The Result

main n = main2 i n

main2 i n = if i > n then 0 else i + main2 (i+1) n

• Lists have gone entirely
• Everything is now strict
• Using sum as foldl or foldl’ would have

given accumulator version

Ensuring Termination

• To make the optimisation terminate
– Need to “hide” some information
– Anything which is an accumulator
– i.e. foldl’s 2nd argument

• Lots of possible termination criteria
– Want to give good optimisation
– But not blow up the size of the code

Termination Problems

• One theme – bound recursion depth
• Problem 1:

– Some optimisations require ~5 recursive
inlinings

– 5 recursive inlinings blows up code a lot
• Problem 2:

– Repeated application can square any bound
– Bound of 5 can become a bound of 25!

Back to word counting

• What if we use Supero on the Haskell?
– Compile using yhc, to Yhc.Core
– Optimise, using Supero
– Write out Haskell, compile with GHC

• GHC provides:
– Strictness/unboxing
– Native code generator

Problem 1: isSpace

• On GHC, isSpace is too slow (bug 1473)
– C's isspace: 0.375
– C's iswspace: 0.400
– Char.isSpace: 0.672

• For this test, I use the FFI

SOLVED!

Problem 2: words

words :: String -> [String]
words s = case dropWhile isSpace s of
 "" -> []
 s' -> w : words s''
 where (w, s'') = break isSpace s'

•Does two extra isSpace tests per word
•Better version in Yhc SOLVED!

Other Problems

• Wrong strictness information (bug 1592)
– IO functions do not always play nice

• Badly positioned heap checks (bug 1498)
– Tight recursive loop, where all time is spent
– Allocates only on base case (once)
– Checks for heap space every time

• Unnecessary stack checks
• Probably ~15% slowdown Pending

Performance

• Now Supero+GHC is 10% faster than C!
– Somewhat unexpected…
– Can anyone guess why?

while ((c = getchar()) != EOF)
int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

The Inner Loop

• Haskell encodes space/not in the program
counter!

• Hard to express in C

space/not

not/space

C Haskell

The “wc” benchmark

0

5

10

15

20

25

charcount linecount wordcount

C
Supero
GHC

Haskell Benchmarks

• Working towards the nofib/nobench suite
– Termination vs optimisation problem
– Massively more complex
– Much larger volumes of code

• Particular issues
– The read function
– Invoking a Haskell lexer to read an Int!
– List comprehensions (as desugared by Yhc)

Conclusions

• Still lots of work to do before concluding!
– Nobench is a priority

• Haskell can be both beautiful and fast

Thanks to: Simon Peyton Jones, Simon Marlow,
Tim Chevalier for low-level GHC help

