
Drive-by Haskell
Contributions

Neil Mitchell

http://ndmitchell.com

Getting started contributing

• Or: ideas to improve your existing project

Static
-Wall

Docs
Haddock

Test
hpc

Perf
profile

Goal: Start doing cooler stuff

Time

Complexity
Typo

Docs

New func

New feature

Do: Check your change is welcome

• Is the project on GitHub?

• Look at the open PR’s – do they languish?

• When was the last commit?

• Does it compile with the latest deps?

• On Stackage?

• Improve things you use/believe-in

• Is there a contrib policy? Is it friendly?

• Ask before investing too much (github issue)

I welcome and appreciate
contributions. If you've
contributed to my code, and we
meet in real life, I'll buy you a
beer.

If you want to amend a pull
request, rewrite your branch and
leave a comment. Do not add
commits to the branch or open
new pull requests for that.

Perhaps: Infer tone from docs

Don’t: Rearrange the deck chairs

e.g. Reindent, add -Wall, add new dependencies

Change
Effort

Build and use it

• Was that easy?

• If not, improve the README

– What it does

– Why you should use it

– How you use it (example)

• Maintainers have too much knowledge to do
this well

Docs

Look at the Haddock

• Are the functions clear?

– More examples required?

– Are corner cases clear?

– Add docs liberally, don’t worry about being wrong

• Haddock coverage stats are useless

– I use “haddock --hoogle” then munge the output

Docs https://www.haskell.org/haddock/

Do the docs work

• Rule: Code that is not compiled rots

– Includes Haddock comments and examples in the
manual

• Manually check a few instances

– Report any buggy examples

– Perhaps a bigger project of automatic checks?

Docs

Is the bug tracker clean?

• Are all the things on the bug tracker still
relevant?

• Are there things on the bug tracker that are
related but not cross-linked?

• Beware: Don’t want to add to maintainer
woes

Docs

Apply static checkers

• Do: apply static checkers, report good finds

• Don’t: make maintainers use them

• Maintainers may choose to use the static
checker if the payoff is high, but that’s up to
them

Static

-Wall

• cabal build --ghc-options=-Wall

– Get a list of the issues, which make sense?

• Example: Shake has 895 warnings

– Most in the test suite, plenty unused arguments

Shake\Classes.hs:5:15: warning: [-Wdodgy-exports]

 The export item `Typeable(..)' suggests that

 `Typeable' has methods, but it has none

Static

A thread to pull on, not an answer

HLint

• cabal install hlint && hlint . --report

– See report.html, which make sense?

Static http://hackage.haskell.org/package/hlint

HLint best hints

• HLint reports a lot – find the “good stuff”

• From Shake:

{-# LANGUAGE GeneralizedNewtypeDeriving,
DeriveDataTypeable, ScopedTypeVariables,
ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances, TypeFamilies,
ConstraintKinds #-}

Static

HLint good stuff

• Redundant language extensions

• Use of mapM instead of mapM_

• Simple sugar functions (concatMap)

– Look for refactor introduced noise

• Don’t rearrange the deck chairs:

– If vs case

– Redundant lambda

Static

How HLint works

• Parse the source (using haskell-src-exts)

• Traverse the syntax tree (using uniplate)

• Some hints are hardcoded (e.g. extensions)

• Most hints are expression templates

– {lhs: map (uncurry f) (zip x y), rhs: zipWith f x y}

– {lhs: not (elem x y), rhs: notElem x y}

– {lhs: any id, rhs: or}

Static

How HLint works

findIdeas

 :: [HintRule] -> Scope ->

 -> Decl_ -> [Idea]
findIdeas matches s decl =

 [(idea (hintRuleSeverity m) (hintRuleName m) x y
[r]){ideaNote=notes}

 | (parent,x) <- universeParentExp decl, not $ isParen x

 , m <- matches, Just (y,notes, subst, rule) <- [matchIdea s
decl m parent x]

 , let r = R.Replace R.Expr (toSS x) subst (prettyPrint rule)]

Static

Weeder

• Finds the “weeds” in a program
– weeder .

= Package ghcid

== Section exe:ghcid test:ghcid_test

Module reused between components

* Ghcid

Weeds exported

* Wait

 - withWaiterPoll

Static

Function exported but
not used elsewhere

Module used in two
cabal projects

http://hackage.haskell.org/package/weeder

Weeder best hints

• Code is exported and not used outside

– Delete the export

• GHC warnings detect definition is unused

– Delete the code entirely

• Package dependency is not used

– Remove a dependency (see also packdeps)

Static

How Weeder works

• Stack compiles with dump .hi files

– Each module has a large blob of text

• Parse these .hi files, extract relevant data

– What packages you make use of

– What imported identifiers you use

• Analyse

– If ‘foo’ is exported, but not used, it’s a weed

Static

How Weeder works

data Hi = Hi
 {hiModuleName :: ModuleName
 -- ^ Module name
 ,hiImportPackage :: Set.HashSet PackageName
 -- ^ Packages imported by this module
 ,hiExportIdent :: Set.HashSet Ident
 -- ^ Identifiers exported by this module
 ,hiImportIdent :: Set.HashSet Ident
 -- ^ Identifiers used by this module
 ,hiImportModule :: Set.HashSet ModuleName
 -- ^ Modules imported and used by this module

Static

HLint and Weeder

• Both have binary releases on github

curl -sL https://.../hlint/travis.sh | sh -s .

• Both have ignore files

weeder . --yaml > .weeder.yaml

hlint . --default > .hlint.yaml

Static

Tests are great

• Writing good tests takes time – often missed

• Find tests that are missing

– Will often lead to bugs (also fun to fix)

• Beware, tests are not always good:

– Verbosity (don’t check a dumb 1 liner)

– Performance (1M iterations of QuickCheck)

– Maintenance (do they need updating often)

Test

Read bug reports

• Take a bug report

– Is there a reproducible case? If not, write it

– Is the test case machine checked? If not, make it

– Is it ready to go in the test suite? If not, make it

• Now you have your test

– Is it fixed? Great, submit a pull request with it

– Is it still broken? Share the test anyway

Test

Use HPC

• Run the test suite through HPC
ghc –fhpc Main.hs && ./main

hpc report main.tix && hpc markup main.tix

Test

HPC – complex and untested

• Do: Look for the sweet spot

– Code that is not obviously correct

– Code that is untested

– Add a test based on its docs (are they sufficient?)

• Don’t: Aim for 100% coverage

– You want to reach that, not aim for it

– Incentives matter

Test

Run on Travis/Appveyor

• A good CI is import for a project

– Travis = Linux/Mac, Appveyor = Windows

• Very time consuming to set up

• There is a lot of variety

– Hvr provides a PPA archive of GHC binaries

– Stack can grab GHC binaries

– I use bootstrap scripts

Test

Bootstrap scripts

• Each repo…
curl -sL https://.../travis.sh | sh

• …calls a centralised shell script…
apt-get install ghc-$GHCVER

cabal install neil

./neil

• …which calls Haskell
system_ "cabal check"

Test

No \r
Installs cleanly

Full documentation
Lowercase cabal keys

Performance

• It’s nice for most code to be faster, smaller

– But make sure the tests are reasonable first

• Do: Check performance matters

– Saving 20% on a 1ms operation is often useless

– Saving 50% on something running yearly is useless

– All these apply to memory as well

Perf

The simple view
Perf

• Measure, Whack, repeat

– Something to measure

– Somehow to direct your whack

Time profiling

ghc Main.hs –prof –auto-all && ./Main +RTS –p

• HLint generates 6590 lines, top is a table

Perf

COST CENTRE MODULE % TIME % ALLOC

unifyExp Hint.Match 23.0 2.0

findIdeas Hint.Match 10.5 0.2

uniplateData Data.Generics.Uniplate.Internal.Data 7.5 19.8

set_unions Data.Generics.Uniplate.Internal.Data 6.2 3.8

matchIdea Hint.Match 6.1 12.8

follower Data.Generics.Uniplate.Internal.Data 4.1 1.0

pushContextL Language.Haskell.Exts.ParseMonad 4.0 5.3

Time profiling tree

COST CENTRE MODULE ENTRIES %TIME %ALLOC %TIME %ALLOC

unifyExp Hint.Match 16744713 23 2 29.3 11.8

 isDot HSE.Util 3 0 0 0 0

 rebracket Hint.Match 41 0 0 0 0

 opExp HSE.Util 152744 0 0.1 0 0.1

 nmOp Hint.Match 678224 0 0 1.7 3.4

 isDol HSE.Util 706356 0 0 0 0

 matchIdea.nm Hint.Match 831226 0 0 1.8 2.5

 fromParen HSE.Util 433761 0.2 0 0.2 0

 fromNamed HSE.Match 1728163 0.2 0 0.2 0

 isUnifyVar Config.Type 1728163 0 0 0 0

Perf

In reality, way harder to view…

Time profiling - Profiteur
Perf http://hackage.haskell.org/package/profiteur

Time profiling - Profiterole
Perf

 TOT INH IND

51.0 47.4 - Hint.Match readMatch (53)

12.0 12.0 - Data.Generics.Uniplate.Internal.Data readCacheFollower (3)

10.3 10.2 .6 Language.Haskell.Exts parseFileContentsWithComments (53)

8.7 7.5 7.5 Data.Generics.Uniplate.Internal.Data uniplateData (1377837)

99.9 5.2 - MAIN MAIN (0)

2.9 2.8 2.0 Data.Generics.Uniplate.Internal.Data descendBiData (109203)

2.4 2.4 - HSE.All runCpp (53)

http://hackage.haskell.org/package/profiterole

• Profiterole generates 442 lines, CSE and roots

Profiterole tower
Perf

 TOT INH IND

12.0 12.0 - Data.Generics.Uniplate.Internal.Data readCacheFollower (3)

7.2 7.2 - Data.Generics.Uniplate.Internal.Data insertHitMap (2)

7.2 7.2 - Data.Generics.Uniplate.Internal.Data fixEq (7)

7.2 7.2 6.2 Data.Generics.Uniplate.Internal.Data set_unions (0)

1.0 1.0 1.0 Data.HashMap.Array new_ (558259)

4.8 4.8 4.1 Data.Generics.Uniplate.Internal.Data follower (2)

.5 .5 .5 Data.HashMap.Base sparseIndex (635260)

Previously readCacheFollower
was in 155 distinct places

How Profiterole works
Perf

• Read GHC .prof with ghc-prof library

• Build a Tree Val, Val = {Name, TOT, INH, IND}

• Find roots
– Called by more than 2 places, or in a config file

• Lift roots to the top-level

• Merge equally named roots

• Write back out

• Can take 200K lines to 5K

Memory profiling

ghc Main.hs –prof –auto-all && ./Main +RTS –hm

hp2ps -c Main

Perf

Stack profiling
Perf

ghc --make Main.hs -rtsopts -prof -auto-all

– Compile with profiling

./Main +RTS -K${N}K

– Find lowest ${N} where program works

./Main +RTS -xc -K${N-1}K

– Get a stack trace, examine it

● Fix. Repeat until -K1K works

https://github.com/ndmitchell/spaceleak

Find performance bugs in vector, base, QuickCheck, happy, pretty…

Let the drive-by contributions begin!

