
Distributed
Build Systems

Neil Mitchell

@ndm_haskell

https://ndmitchell.com

main.exe : main.o

 gcc -o main.exe main.o

main.o : main.c

 gcc -c main.c

Make, 1976
(42 years ago, 12BG)

A simple build system

We focus on general-purpose build systems

A build system performs
necessary actions,

respecting dependencies

Build system definition

Excel

Shake

Ninja

Nix

Buck

Bazel

Pants

Make

Hippo

Build systems

Excel

Shake

Ninja

Nix

Buck

Bazel

Pants Make

necessary actions

re
sp

e
ct

in
g

d
e

p
e

n
d

en
ci

es

suspend

restart

topological

dirty
verifying

trace
constructive

trace

deterministic
constructive

trace

Engineering +

Build Systems à la Carte

The order in which to execute tasks

• Topological

• Restart

• Suspend

RESPECTING DEPENDENCIES

• When do I tell you my dependencies?

– Applicative: Before doing anything, in advance

– Monadic: Before I use them

“Monadic” dependencies

main.o :

 need main.c

 need $(includes_of main.c)

 gcc -c main.c

main.c : …

• Only works for Applicative dependencies

• Build a graph, traverse graph

main.exe

main.o

main.c util.h

util.o

util.c

Topological

• Build a rule

• If it depends on a rule not yet built

– Restart: Cancel this rule, schedule it last, build dep

– Suspend: Pause this rule, build dep, resume

• Can you cancel or pause your rules?

• Pause requires more memory, but less work

Restart/Suspend

• Bazel

– Use the applicative dependencies to part order

– Doesn’t really allow user written monadic deps

• Excel

– Keep a list of the order that worked last time

– Consequence: Your sheet calcs faster over time!

Tricks for restarting

• Topological – Applicative only, easy

• Restart – May duplicate work

• Suspend – May be hard to orchestrate

Shake

• Shake’s raison d'être is monadic deps

• Uses continuations to efficiently suspend

– First version used green threads

Respecting dependencies

I rebuilt this rule last time, should I do so again?

• Dirty

• Verifying trace

• Constructive trace

• Deterministic constructive trace

NECESSARY ACTIONS

A rule is dirty if anything it depends on is dirty

• Excel records it directly

• Make encodes dirty bit with relative modtimes

– modtime(in) > modtime(out) = dirty

– Cute trick: outputting a new result clears the bit,
and propagates dirty bits upstream

• You need to know your deps, ~Applicative only

Dirty bit

A trace records the relevant bit of the state

• What did I depend on last time?

• What were the values of those things?

main.o depends on main.c, which had hash 0x12

• If the trace matches, don’t rerun

Verifying trace

• What if I build but don’t change?

• Possible with Dirty? Possible with Verifying?

main.exe

main.o

main.c util.h

util.o

util.c

Early cut-off

Aka “Cloud build” or “Distributed build systems”

• Record the output with the trace

• Shove all the traces on the server

• Now you can download already built stuff

Lots of engineering involved…

Constructive traces

Imagine the output of a rule depends only on its
inputs (deterministic)

• Given the inputs, I can predict the value of any
output, download the final answer

• Less round-trips to the server

• Doesn’t support cut-off

Deterministic constructive traces

• Dirty – ~Applicative only

• Verifying trace – local only

• Constructive trace

• Deterministic constructive trace – no cut-off

Shake

• Uses optimised verifying trace (two versions)

Necessary actions

Excel

Shake HEAD

Ninja

Nix

Buck

Bazel

Pants

necessary actions

re
sp

e
ct

in
g

d
e

p
e

n
d

en
ci

es

suspend

restart

topological

dirty
verifying

trace
constructive

trace

deterministic
constructive

trace

Accepted to ICFP 2018 with Andrey Mokhov, Simon Peyton Jones

Build Systems à la Carte

Make

Engineering +

Engineering: Shake

Neil Mitchell

@ndm_haskell

https://shakebuild.com

PhD build system Haskell EDSL

Standard Chartered
Replace Make with Shake

Academic paper Monadic dependencies

Open source

Papers with Andrey Mokhov, Simon Peyton Jones, Simon Marlow

Engineering

GHC build system

Commercial users

Comparative
academic paper

Distributed

Rewind the clock

Academic paper

out : in
cp in out

"out" %> \out -> do

 need ["in"]

 cmd "cp in out"

:: Rule ()
Monad Rule :: Action ()

Monad Action

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule ()

Simple Shake

result.tar

notes.txt
talk.pdf
pic.jpg

import Development.Shake

import Development.Shake.FilePath

main = shakeArgs shakeOptions $ do

 want ["result.tar"]

 "*.tar" %> \out -> do

 need [out -<.> "lst"]

 contents <- readFileLines $ out -<.> "lst"

 need contents

 cmd "tar -cf" [out] contents

result.lst

notes.txt
talk.pdf
pic.jpg

Longer example

MyGen.hs MySource.xml

MySource.c

MySource.o

What does MySource.o depend on?

Generated files

• Hardcode it?

– Very fragile.

• Hack an approximation of MyGen?

– Slow, somewhat fragile, a lot of effort.

• Build in stages?

– Non-compositional

• Run MyGen.hs and look at MySource.c

– Easy, fast, precise. Use monadic dependencies.

Generated approaches

• If any rule needs monadic, you need it

– Even if “rare” in your system

• Workarounds are not compositional

• Generated files cry out for monadic

– Generated code is common in large projects

• Advice: Don’t use a non-monadic system

Monadic is necessary

Build system
Monadic + suspend
Modern engineering
+ Haskell

Shake

Syntax

Types

Abstraction

Libraries

Monads

Profiling

Lint

Analysis

Parallelism
Robustness

Efficient

• In use for three nine years:

– 1M+ build runs, 30K+ build objects,
1M+ lines source, 1M+ lines generated

• Replaced 10,000 lines of Makefile
with 1,000 lines of Shake scripts

– Twice as fast to compile from scratch

– Massively more robust

Disclaimer: I used to be employed by Standard Chartered Bank.
These slides do not represent the views of Standard Chartered.

Shake at Standard Chartered (2012)

Ready for primetime!

• Standard Chartered have been using Shake since 2009,
1000’s of compiles per day.

• factis research GmbH use Shake to compile their
Checkpad MED application.

• Samplecount have been using Shake since 2012,
producing several open-source projects for working
with Shake.

• CovenantEyes use Shake to build their Windows client.
• Keystone Tower Systems has a robotic welder with a

Shake build system.
• FP Complete use Shake to build Docker images.

Don’t write a build system unless you have to!

• Syntax, reasonable DSLs

• Some use of the type system (not heavy)

• Abstraction, functions/modules/packages

• Profiling the Haskell functions

Stealing from Haskell

• HTML profile reports

• Very multithreaded

• Progress reporting

• Reports of live files

• Lint reports

• …

Extra features

Why is Shake fast?

• What does fast even mean?

– Everything changed? Rebuild from scratch.

– Nothing changed? Rebuild nothing.

• In practice, a blend, but optimise both
extremes and you win

Fast when nothing changes

• Don’t run users rules if you can avoid it

• Shake records a verifying trace, [(k, v, …)]

• Avoid lots of locking/parallelism

– Take a lock, check storedValue a lot

• Binary serialisation is a bottleneck

unchanged journal = flip allM journal $ \(k,v) ->

 (== Just v) <$> storedValue k

Fast when everything changes

• If everything changes, rule dominate (you hope)

• One rule: Start things as soon as you can

– Dependencies should be fine grained

– Start spawning before checking everything

– Make use of multiple cores

– Randomise the order of dependencies (~15% faster)

• Expressive dependencies, Continuation monad,
cheap threads, immutable values (easy in Haskell)

State changes

Ready Error

Running

Loaded Missing

Inside “Running”

• Build all my dependencies from last time

– If any changed, then dirty

• Look at my result from last time

– If it has changed, then dirty

• If dirty, see if I’m in the constructive trace

– If I am, copy the result into my trace

• If still dirty

– Run the user supplied action

Efficient suspend

• Continuations are mind-blowing (still)

• a = I get given ‘a’ now

• (a -> r) -> r = I get given ‘a’ later

• Covariant/contravariant equivalence

• Efficiently pause a running computation

a
(a -> r) -> r

Efficient resume

• Resumption is restarting suspended things

• Resume everything when changing status

– Resumption is required to be “quick”

– Therefore most resumption adds to the Pool...

data Status
 = Running [Either Error Ready -> IO ()]
 | …

Efficient parallelism

• A thread pool

• Not to reduce thread overhead

– Haskell threads are super cheap

• To limit parallelism, and cleanup/finish

addPool :: Pool -> PoolPriority -> IO () -> IO ()

Efficient journaling

• Shake needs to record the verifying traces

– Recorded in .shake.database

• A linear record of traces

– Append to the end

– Size prefixed to detect corruption

– Compact if < ½ the values still useful

– Flush every 5s

Conclusions

• Build systems make three choices:

– Respecting dependencies

– Necessary actions

– Engineering choices

• Shake occupies an interesting spot

– Plenty of engineering required to make it work

