
Detecting Pattern-Match Failures
in Haskell

Neil Mitchell and
Colin Runciman
York University

www.cs.york.ac.uk/~ndm/catch

Does this code crash?

risers [] = []
risers [x] = [[x]]
risers (x:y:etc) =

if x ≤ y then (x:s) : ss else [x] : (s:ss)
where (s:ss) = risers (y:etc)

> risers [1,2,3,1,2] = [[1,2,3],[1,2]]

Does this code crash?

risers [] = []
risers [x] = [[x]]
risers (x:y:etc) =

if x ≤ y then (x:s) : ss else [x] : (s:ss)
where (s:ss) = risers (y:etc)

> risers [1,2,3,1,2] = [[1,2,3],[1,2]]
Potential crash

Does this code crash?

risers [] = []
risers [x] = [[x]]
risers (x:y:etc) =

if x ≤ y then (x:s) : ss else [x] : (s:ss)
where (s:ss) = risers (y:etc)

> risers [1,2,3,1,2] = [[1,2,3],[1,2]]
Potential crash

Property:
risers (_:_) = (_:_)

Overview

The problem of pattern-matching
A framework to solve patterns
Constraint languages for the framework
The Catch tool
A case study: HsColour
Conclusions

The problem of Pattern-Matching

head (x:xs) = x

head x_xs = case x_xs of
x:xs → x
[] → error “head []”

Problem: can we detect calls to error

Haskell programs “go wrong”

“Well-typed programs never go wrong”
But...
– Incorrect result/actions – requires annotations
– Non-termination – cannot always be fixed
– Call error – not much research done

My Goal

Write a tool for Haskell 98
– GHC/Haskell is merely a front-end issue

Check statically that error is not called
– Conservative, corresponds to a proof

Entirely automatic
– No annotations

= Catch

Preconditions

Each function has a precondition
If the precondition to a function holds, and
none of its arguments crash, it will not crash

pre(head x) = x ∈ {(:) _ _}
pre(assert x y) = x ∈ {True}
pre(null x) = True pre(error x) = False

Properties

A property states that if a function is called
with arguments satisfying a constraint, the
result will satisfy a constraint

x ∈ {(:) _ _} ⇒ (null x) ∈ {True}
x ∈ {(:) [] _} ⇒ (head x) ∈ {[]}
x ∈ {[]} ⇒ (head x) ∈ {True}

Calculation direction

Checking a Program (Overview)

Start by calculating the precondition of main
– If the precondition is True, then program is safe

Calculate other preconditions and properties
as necessary

Preconditions and properties are defined
recursively, so take the fixed point

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss)

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss)

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss)

r ∈ {[]} ∨
xs ∈ {[]} ∨

risers (y:etc) ∈ {(:) _ _}

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss) ... ∨ [x] : (s:ss)

∈ {(:) _ _}

... ∨ (x:s) : ss
∈ {(:) _ _}

... ∨ ⊥
∈ {(:) _ _}

... ∨ (x:[]) : []
∈ {(:) _ _}

r ∈ {(:) _ _} ∨
[] ∈ {(:) _ _}

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss) ... ∨ [x] : (s:ss)

∈ {(:) _ _}

... ∨ (x:s) : ss
∈ {(:) _ _}

... ∨ ⊥
∈ {(:) _ _}

... ∨ (x:[]) : []
∈ {(:) _ _}

r ∈ {(:) _ _} ∨
[] ∈ {(:) _ _}

Property:
r ∈ {(:) _ _} ⇒

risers r ∈ {(:) _ _}

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss)

r ∈ {[]} ∨
xs ∈ {[]} ∨

risers (y:etc) ∈ {(:) _ _}

Property:
r ∈ {(:) _ _} ⇒

risers r ∈ {(:) _ _}

r ∈ {[]} ∨
xs ∈ {[]} ∨

y:etc ∈ {(:) _ _}

Checking risers

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → case risers (y:etc) of

[] → error “pattern match”
s:ss→ case x ≤ y of

True → (x:s) : ss
False → [x] : (s:ss)

Property:
r ∈ {(:) _ _} ⇒

risers r ∈ {(:) _ _}

Calculating Preconditions

Variables: pre(x) = True
– Always True

Constructors: pre(a:b) = pre(a) ∧ pre(b)
– Conjunction of the children

Function calls: pre(f x) = x ∈ pre(f) ∧ pre(x)
– Conjunction of the children
– Plus applying the preconditions of f
– Note: precondition is recursive

Calculating Preconditions (case)

pre(case on of
[] → a
x:xs → b)

= pre(on) ∧ (on ∉ {[]} ∨ pre(a))
∧ (on ∉ {(:) _ _} ∨ pre(b))

An alternative is safe, or is never reached

Extending Constraints (↑)

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → ...

xs ∈ {(:) _ _} ∨ ...
r<(:)-2> ∈ {(:) _ _}
r ∈ {(:) _ ((:) _ _)}

<(:)-2> ↑ {(:) _ _}
{(:) _ ((:) _ _)}

<(:)-1> ↑ {True}
{(:) True _}

Splitting Constraints (↓)

risers r = case r of
[] → []
x:xs → case xs of

[] → (x:[]) : []
y:etc → ...

(x:[]):[] ∈ {(:) _ _} ∨ ...
True

((:) 1 2) ↓ {(:) _ _}
True

((:) 1 2) ↓ {[]}
False

((:) 1 2) ↓ {(:) True []}
1 ∈ {True} ∧ 2 ∈ {[]}

Summary so far

Rules for Preconditions
How to manipulate constraints
– Extend (↑) – for locally bound variables
– Split (↓) – for constructor applications
– Invoke properties – for function application

Can change a constraint on expressions, to
one on function arguments

Algorithm for Preconditions

set all preconditions to True
set error precondition to False
while any preconditions change

recompute every precondition
end while

Algorithm for properties is very similar

Fixed Point!

Fixed Point

To ensure a fixed point exists demand only a
finite number of possible constraints
At each stage, (∧) with the previous
precondition

Ensures termination of the algorithm
– But termination ≠ useable speed!

The Basic Constraints

These are the basic ones I have introduced

Not finite – but can bound the depth
– A little arbitrary
– Can’t represent infinite data structures

But a nice simple introduction!

A Constraint System

Finite number of constraints
Extend operator (↑)
Split operator (↓)
notin creation, i.e. x ∉ {(:) _ _)}
Optional simplification rules in a predicate

Regular Expression Constraints

Based on regular expressions
x ∈ r → c
– r is a regular expression of paths, i.e. <(:)-1>
– c is a set of constructors
– True if all r paths lead to a constructor in c

Split operator (↓) is regular expression
differentiation/quotient

RE-Constraint Examples

head xs
– xs ∈ (1 → {:})

map head xs
– xs ∈ (<(:)-2>* ⋅ <(:)-1> → {:})

map head (reverse xs)
– xs ∈ (<(:)-2>* ⋅ <(:)-1> → {:}) ∨

xs ∈ (<(:)-2>* → {:})

RE-Constraint Problems

They are finite (with certain restrictions)
But there are many of them!
Some simplification rules
– Quite a lot (19 so far)
– Not complete

In practice, too slow for moderate examples

This fact took 2
years to figure

out!

Multipattern Constraints

Idea: model the recursive and non-recursive
components separately

Given a list
– Say something about the first element
– Say something about all other elements
– Cannot distinguish between element 3 and 4

MP-Constraint Examples

head xs
– xs ∈ ({(:) _} ∗ {[], (:) _})

Use the type’s to determine recursive bits

xs must be (:)
xs.<(:)-1> must be _

All recursive tails
are unrestricted

More MP-Constraint Examples

map head xs
– {[], (:) ({(:) _} ∗ {[], (:) _})} ∗

{[], (:) ({(:) _} ∗ {[], (:) _})}

An infinite list
– {(:) _} ∗ {(:) _}

MP-Constraint “semantics”

MP = {set Val}

Val = _ | {set Pat} ∗ {set Pat}

Pat = Constructor [(non-recursive field, MP)]

Element must satisfy
at least one pattern

Each recursive part must
satisfy at least one pattern

MP-Constraint Split

((:) 1 2) ↓ {(:) _} ∗ {(:) {True}}
– An infinite list whose elements (after the first) are

all true
1 ∈ _
2 ∈ {(:) {True}} ∗ {(:) {True}}

MP-Constraint Simplification

There are 8 rules for simplification
– Still not complete...

But!
– x ∈ a ∨ x ∈ b = x ∈ c union of two sets
– x ∈ a ∧ x ∈ b = x ∈ c cross product of two sets

MP-Constraint Currying

We can merge all MP’s on one variable
We can curry all functions – so each has only
one variable
MP-constraint Predicate ≡ MP-constraint

(||) a b (||) (a, b)

MP vs RE constraints

Both have different expressive power
– Neither is a subset/superset

RE-constraints grow too quickly
MP-constraints stay much smaller

Therefore Catch uses MP-constraints

Numbers

data Int = Neg | Zero | One | Pos

Checks
– Is positive? Is natural? Is zero?

Operations
– (+1), (-1)

Work’s very well in practice

Summary so far

Rules for Preconditions and Properties
Can manipulate constraints in terms of three
operations
MP and RE Constraints introduced
Have picked MP-Constraints

Making a Tool (Catch)

Haskell

Core

First-order Core

Curried

Analyse

Yhc

In draft paper,
see website

This talk

Testing Catch

The nofib benchmark suite, but

main = do [arg] ← getArgs
print $ primes !! (read arg)

Benchmarks have no real users
Programs without real users crash

Nofib/Imaginary Results (14 tests)

Trivially Safe

Perfect Answer

Good Failures

Bad Failures

Good failure:
Did not get perfect answer,

but neither did I!

Bad Failure: Bernouilli

tail (tail x)

Actual condition: list is at least length 2
Inferred condition: list must be infinite

drop 2 x

Bad Failure: Paraffins

radical_generator n = f undefined
where f unused = big_memory_result

array :: Ix a ⇒ (a, a) → [(a, b)] → Array a b
– Each index must be in the given range
– Array indexing also problematic

Perfect Answer: Digits of E2

e =
(“2.” ++) $
tail ⋅ concat $
map (show ⋅ head) $
iterate (carryPropagate 2 ⋅ map (10*) ⋅ tail) $
2 : [1,1 ..]

Performance of Catch

0
1
2
3
4
5
6
7
8

0 200 400 600 800 1000 1200 1400

Source Code

Ti
m

e
(S

ec
on

ds
)

Case Study: HsColour

Takes Haskell source code and prints out a
colourised version
4 years old, 6 contributors, 12 modules, 800+
lines

Used by GHC nightly runs to generate docs
Used online by http://hpaste.org

HsColour: Bug 1

data Prefs = ... deriving (Read,Show)
Uses read/show serialisation to a file
readFile prefs, then read result

Potential crash if the user has modified the
file
Real crash when Pref’s structure changed!

FIXED

HsColour: Bug 1 Catch

> Catch HsColour.hs
Check “Prelude.read: no parse”
Partial Prelude.read$252
Partial Language.Haskell.HsColour

.Colourise.parseColourPrefs
...
Partial Main.main

Full log is recorded
All preconditions
and properties

HsColour: Bug 2

The latex output mode had:
outToken (‘\”’:xs) = “``” ++ init xs ++ “’’”

file.hs: “
hscolour –latex file.hs
Crash

FIXED

HsColour: Bug 3

The html anchor output mode had:
outToken (‘`’:xs) = “<a>” ++ init xs ++ “”

file.hs: (`)
hscolour –html –anchor file.hs
Crash

FIXED

HsColour: Problem 4

A pattern match without a [] case
A nice refactoring, but not a crash
Proof was complex, distributed and fragile
– Based on the length of comment lexemes!

End result: HsColour cannot crash
– Or could not at the date I checked it...

Required 2.1 seconds, 2.7Mb

CHANGED

Case Study: FiniteMap library

Over 10 years old, was a standard library
14 non-exhaustive patterns, 13 are safe

delFromFM (Branch key ..) del_key
| del_key > key = ...
| del_key < key = ...
| del_key ≡ key = ...

Case Study: XMonad

Haskell Window Manager
Central module (StackSet)
Checked by Catch as a library

No bugs, but suggested refactorings
Made explicit some assumptions about Num

Catch’s Failings

Weakest Area: Yhc
– Conversion from Haskell to Core requires Yhc
– Can easily move to using GHC Core (once fixed)

2nd Weakest Area: First-order transform
– Still working on this
– Could use supercompilation

??-Constraints

Could solve more complex problems
Could retain numeric constraints precisely
Ideally have a single normal form

MP-constraints work well, but there is room
for improvement

Alternatives to Catch

Reach, SmallCheck – Matt Naylor, Colin R
– Enumerative testing to some depth

ESC/Haskell - Dana Xu
– Precondition/postcondition checking

Dependent types – Epigram, Cayenne
– Push conditions into the types

Conclusions

Pattern matching is an important area that
has been overlooked
Framework separate from constraints
– Can replace constraints for different power

Catch is a good step towards the solution
– Practical tool
– Has found real bugs

www.cs.york.ac.uk/~ndm/catch

	Detecting Pattern-Match Failures in Haskell
	Does this code crash?
	Does this code crash?
	Does this code crash?
	Overview
	The problem of Pattern-Matching
	Haskell programs “go wrong”
	My Goal
	Preconditions
	Properties
	Checking a Program (Overview)
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Checking risers
	Calculating Preconditions
	Calculating Preconditions (case)
	Extending Constraints ()
	Splitting Constraints ()
	Summary so far
	Algorithm for Preconditions
	Fixed Point
	The Basic Constraints
	A Constraint System
	Regular Expression Constraints
	RE-Constraint Examples
	RE-Constraint Problems
	Multipattern Constraints
	MP-Constraint Examples
	More MP-Constraint Examples
	MP-Constraint “semantics”
	MP-Constraint Split
	MP-Constraint Simplification
	MP-Constraint Currying
	MP vs RE constraints
	Numbers
	Summary so far
	Making a Tool (Catch)
	Testing Catch
	Nofib/Imaginary Results (14 tests)
	Bad Failure: Bernouilli
	Bad Failure: Paraffins
	Perfect Answer: Digits of E2
	Performance of Catch
	Case Study: HsColour
	HsColour: Bug 1
	HsColour: Bug 1 Catch
	HsColour: Bug 2
	HsColour: Bug 3
	HsColour: Problem 4
	Case Study: FiniteMap library
	Case Study: XMonad
	Catch’s Failings
	??-Constraints
	Alternatives to Catch
	Conclusions

