
Deriving Generic Functions
by Example (+10 years)

Neil Mitchell

http://ndmitchell.com

Guess the function

Input: aBc(

• (cBa

• bCd)

• ABC(

• aaBBcc((

• ac

Basic idea

f :: A → B

• I pick: a  A

• You pick f, give me b (where b = f a)

• I infer f

– Correct for a (b = f a)

– Correct for all A (predictable)

Concrete example

Let’s derive ‘is’ functions for Haskell types

a: data MyType = Foo | Bar

b: isFoo Foo{} = True; isFoo _ = False

 isBar Bar{} = True; isBar _ = False

You do not need to write down f.

Want to be sure f is what you wanted.

And the result…

MapCtor (App "FunBind" (List [List [App "Match" (List [App "Ident"(List
[Concat (List [String "is",CtorName])]),List [App "PParen" (List [App "PRec"
(List [App "UnQual" (List [App "Ident" (List [CtorName])]),List []])])],App
"Nothing" (List []),App"UnGuardedRhs" (List [App "Con" (List [App "UnQual"
(List [App"Ident" (List [String "True"])])])]),App "BDecls" (List [List []])]),App
"Match" (List [App "Ident" (List [Concat (List [String "is",CtorName])]),List
[App "PWildCard" (List [])],App "Nothing" (List[]),App "UnGuardedRhs" (List
[App "Con" (List [App "UnQual" (List[App "Ident" (List [String
"False"])])])]),App "BDecls" (List [List []])])]]))

Important to be predictable to treat f as a black box

What happened to this work?

Where this work went

• 2007: York Doctoral Symposium (YDS)
paper/talk

• 2008: York Programming Languages and
Systems (PLASMA) talk

• 2009: Approaches and Applications of
Inductive Programming (AAIP) keynote talk
and reviewed post-publication

• 2007-2017: DERIVE open source project

2007: YDS

• My PhD involved learning to write English

– With much thanks and credit to Colin Runciman

• YDS was a paper I wrote without Colin reading

– Reading back, it’s not too bad (6 small pages)

• All about an algorithm for inferring
‘f’ for one specific use case

2008: PLASMA

• More theory about how the algorithm
worked, a bit more principled

– f now quantified, can lift between quantifiers

• A sales pitch for the associated open-source
DERIVE tool

2009: AAIP

• Invited to give a talk at a workshop

– They’d seen my YDS work through my blog posts

• More formal and generic – less intuition

• Reviewed post-submission,
12 pages in 2-column style

Formal setup

We pick all of:

• Input the input type

• Output the output type

• DSL type of things describing functions

• sample :: Input chosen input

• apply :: DSL → Input → Output apply f

• derive :: Output → Maybe DSL guess f

Correctness

∀o ∈ Output,

 d ∈ derive o,

 apply d sample ≡ o

If derive succeeds,
it must work for the example

Predictability

∀i ∈ Input,

 d1,d2 ∈ DSL,

 apply d1 sample ≡ apply d2 sample ⇒

 apply d1 i ≡ apply d2 i

Predictability not influenced
by derive!

If any input can distinguish two DSLs
it must be sample

Guess the function solved

Input: aBc(

Output: ac

Function: Pick odd indicies, filter isLower

Option 1: Change sample to aBcd(

Option 2: Only permit one of those in DSL

2007-2017: DERIVE tool

• Generates instances

– 60% of instances defined by example

– Some instances have been moved into GHC

• Moderately successful Haskell tool

– https://github.com/ndmitchell/derive

– 843 commits

– 10 forks, 15 stars, 3 watchers

– 14 contributors (most a couple of patches)

https://github.com/ndmitchell/derive

DERIVE: End of the line

• There are lots of newer instances it can’t do

– Projects now ship an instance deriver with the
instance, rather than centrally

• New way to define generic instances with GHC

• Examples define simple instances, which are
the easiest ones anyway

• I don’t personally use it anymore

What happened to me?

Personal life

• -10Y Move to Cambridge

• -8Y Got married (Emily)

• -5Y Had child (Henry)

Hobby/Mission

Jobs

• 3 month Google Summer of Code

• 3 month internship at Credit Suisse

• 8 years at Standard Chartered

• 1 year at Barclays

Expected to have to abandon Haskell, instead
been programming it for a decade, and also
learnt finance

Academic

• Supercompilation

– Extension of my PhD, paper in ICFP 2010

– Had a few PhD students follow my work

– Mostly fizzled out (apart from Russia)

• Build systems (Shake)

– Required by Standard Chartered

– Papers at ICFP 2012, Haskell Symposium 2016

– Going strong: GHC switching, companies use it

– http://shakebuild.com/

http://shakebuild.com/

Open Source

• Lots and lots of projects (too many)

– Biggest: Hoogle, Shake, HLint, Ghcid

– Recent: Hexml, Weeder, Profiterole

– Contribute: Foundation, Alga

• All on GitHub https://github.com/ndmitchell/

https://github.com/ndmitchell/

Talks/Blog

• Still talk at user groups/conferences

– 46 talks since 2004, recently 2-4 a year

– All on http://ndmitchell.com

– Where I got all the material for this talk from

• Blog with 307 posts

– I write 4-8 posts a year (should do more)

– 976,729 views (not including aggregator sites)

– Initially just writing practice

http://ndmitchell.com/

Shake overview

• Haskell EDSL for writing build systems –
alternative to Make

– Monadic dependencies

– Unchanging dependencies

– Non-file dependencies

– Lots of engineering

• Vastly better for generated files

result.tar

notes.txt
talk.pdf
pic.jpg

import Development.Shake

import System.FilePath

main = shakeArgs shakeOptions $ do

 want ["result.tar"]

 "*.tar" %> \out -> do

 need [out -<.> "lst"]

 contents <- readFileLines $ out -<.> "lst"

 need contents

 cmd "tar -cf" [out] contents

result.lst

notes.txt
talk.pdf
pic.jpg

Shake example

• Standard Chartered have been using Shake since 2009,
1000’s of compiles per day.

• factis research GmbH use Shake to compile their
Checkpad MED application.

• Samplecount using Shake since 2012, producing
several open-source projects for working with Shake.

• CovenantEyes use Shake to build their Windows client.
• Keystone Tower Systems has a robotic welder with a

Shake build system.
• FP Complete use Shake to build Docker images.
• Genomics Plc use Shake for the build system, their first

major use of Haskell in the company.

Shake users

Conclusions

• YDS was fun, resulted in my first invited talk

• Suggestions:

– Do lots of things that interest you

– Make some of those things good

– Tell people what you are doing (blogs, talk etc)

– Be open about your work

– Start your website/blog now

