Deriving a Relationship
from a Single Example

Neil Mitchell
community.haskell.org/~ndm/derive

Qx Haskell data type

 Haskell let’'s us define data types:

data Language

= Haskell [Extension] Compiler
Javascript
Cpp Version

A N
N \
\

"\, EqInstance

@, \

* We can define equality on data types:

Instance Eqg Language where
Haskell x; x, = Haskelly, y, =x; =y, && X, £V,
Javascript = Javascript = True

Cpp X, =Cppy; =X =Y,
= = False

|

- What Is the relationship?

pe

e Glven a new data type, could you define
equality on 1t?

e Could you precisely specify the
relationship?
— If so, In what formalism?

"' .
\ \
\

\. The relationship

List [Instance ['EQ"] "Eq" (List [App "InsDecl" (List [App "FunBind" (List [Concat (List [MapCtor (App

(List [CtorName])]),MapField (App "PVar" (List [App "Ident" (List [Concat (List [String "X",ShowInt
Fieldindex])]D)]),App "PApp" (List [App "UnQual" (List [App "Ident" (List [CtorName])]),MapField (App
"PVar" (List [App "Ident" (List [Concat (List [String "y",ShowInt Fieldindex])])]))])],App "Nothing" (List
[1),App "UnGuardedRhs" (List [Fold (App "InfixApp" (List [Head,App "QVarOp" (List [App "UnQual"
(List [App "Symbol" (List [String "&&"])])]), Tail])) (Concat (List [MapField (App "InfixApp" (List [App
"Var" (List [App "UnQual" (List [App "Ident" (List [Concat (List [String "Xx",ShowInt FieldIndex])]]]),App

(List [App "Ident" (List [Concat (List [String "y",ShowInt FieldIndex])])])])])).List [App “"Con" (List [App
"UnQual" (List [App "Ident" (List [String "True"DDI)]).App "BDecls" (List [List []])])),List [App "Match"
(List [App "Symbol" (List [String "=="]),List [App "PWildCard" (List []),App "PWildCard" (List [])],App
"Nothing" (List []),App "GuardedRhss" (List [List [App "GuardedRhs" (List [List [App "Qualifier" (List
[App "InfixApp" (List [App "App" (List [App "Var" (List [App "UnQual" (List [App "ldent" (List [String
"length"D])]),App "List" (List [MapCtor (App "RecConstr" (List [App "UnQual" (List [App "ldent" (List
[CtorName])]),List []D)D]),App "QVarOp" (List [App "UnQual" (List [App "Symbol" (List [String
">S")DD,App "Lit" (List [App "Int" (List [Int 21DD]D],App “Con" (List [App "UnQual" (List [App "Ident" (List
[String "False"])]))DI]).App "BDecls” (List [List [INDIDDHDDI

Can anyone spot the deliberate typo?

“\. Relationship details

 To Implement the relationship:
— Input language/data type
— Transformation language
— Output language/data type

 Transformation could be Haskell?
e Others require a lot of learning

A N
N \
\

"\, An easier way

* Write one example instance for a
particular data type

* Derive the relationship automatically

e No human need read or write that horrible
slide

.9

"N\, The particular data type

data Sample a = First | Second a a | Third a

Instance Eq a = Eqg (Sample a) where
First = First = True
Second x, X, =Second y, Y, = X; Y, && X; =Y, && True
Third X, =Thirdy, = x; =y, && True
= = False

+ the Derive tool
= the relationship

“\. The Derive tool

« Automatically generate instances for data
types

— Works via Template Haskell
— Orvia SYB
— Or via Haskell-src-exts

e More Instances = better
— But more work for me...

Our Scheme

\x Our scheme

Input Relationship Output
Data type Instance decl

e Given 1 output for a particular input, derive
the relationship

“\, Restricted relationship (DSL)

* The relationship is a function

e But there are infinite functions, we can'’t
write functions down easily...

* Instead have a DSL for the relationship
— Tallored to each problem
— Exactly the right expressive power

"' .
N \
\

“\, Our scheme (2)

data Input, Output, DSL
apply :: DSL - Input —» Output

sample :: Input
derive :: Output - [DSL]

+ correctness
+ predictability

-\, Correctness

* Derive must generate something
consistent

[Jo 0 Output, d LI derive o, apply d sample =0

\ \\" \)

"N\, Predictability

* The derive function is predictable If it does
what the user expects

 Two DSL values are congruent if for all
iInputs they produce the same output

 All outputs from derive must be congruent

 But now the user needs to
know/understand derive — not good!

A N
N \
\

“\, Predictability (2)

o Stronger: Any possible result satisfying the
correctness property is congruent

[1d,,d,, apply d, sample = apply d, sample
= d, Ud,

* Predictabllity is not related to the derive
function.

N\, Instantiation of our scheme

 Input Is data type descriptions
— Using the haskell-src-exts data type

e Output Is Haskell source code
— Again using haskell-src-exts

 DSL is the relationship
— Small functional language, with fold/map etc.
— Plus functions over constructors/fields
— And predictability proof

Bibtex Citations

|

‘x Bibtex citations

 There are many Bibtex citation styles
— All vary by where author name/year etc go

— Implemented in Latex style files (ish)
o | assume it's ugly — but don’t actually know!

e Let’s define a little DSL and prove it has
the right properties

— lllustrative of the paper

Q\ A citation type (Input)

data Input = Citation

{year :: Int

,authors :: [(String,String)]}

Citation
{year = 2009 --

laskell considered evil

,authors = [(“Bjarne”,“Stroustrup”)
,(“James”,“Gosling”)]}

N
N\ A
\

N\, Alittle language (DSL)

5)
=

data DSL1 = Str String

Year

Head DSL
AuthorFst
AuthorSnd

Authors String DSL

type DSL = [DSL1]

"' .
N \
\

“\,, Bibtex apply
apply ds i = concatMap (‘applyl i) ds

applyl :: DSL1 - Input — Output
applyl (Strx) i =X
applyl (Year x) i = show $ year i
applyl (Head x) i = take 1 $ apply x i
applyl (AuthorFst x) i = fst $ head $ authors i
applyl (AuthorSnd x) i = snd $ head $ authors |
applyl (Authors s x) | = intercalate s
[apply X {authors=[a]} | a ~ authors i]

"\, Some examples

o Stroustrup and Gosling 2009
— [Authors “ and " [AuthorSnd], Str “ 7, Year]

e B Stroustrup, J Gosling

— [Authors “, ” [Head [AuthorFst], Str “ ",
AuthorSnd]]

e SG2009
— [Authors “" [Head [AuthorSnd]], Year]

N
\ y
L\

N\, Challenge 1

e Stroustrup et al 2009

e Should omit “et al” if only 1 author
e Can this be defined in the DSL?

A N
N \
\

"\, Solution

e Stroustrup et al 2008

[AuthorSnd]++ map f “ et al” ++[Str “ ", Year]
where
f c = Head [Authors [c] []]

\\ Challenge 2

 Give 2 congruent DSL'’s

A N
\ \

Str “hello”] = [Str “he”, Str “llo”]

Head [Str *"]] = [Str]

Head [Head x]] = [Head X]

Authors ™ []] = [Str *]

Authors x [Authors y z]] = [Authors x Z]

e Lot’s of congruent DSL'’s

"' .
\ \
\

N\, C hallenge 3

 Come up with a sample input
* Needs to ensure the predictability property

[1d,,d,, apply d, sample = apply d, sample
= d, Ud,

"' .
\ \
\

"\, No solution!

 There Is no possible sample which could
work

derive “2009” =
[[Str “2009”]
[Year]]

e Can't tell what comes from where

A N
\ \

. Solution

e Glve restrictions on the DSL

— Aim to restrict to have only 1 meaning to each
sample

— Aim to give a natural/simple meaning

 Many possible design solutions
— First thought: restricting Str?
— Anyone any ideas?

\x Possible restrictions

e Restrict DSL

— Head can only be applied to AuthorFst or
AuthorSnd

— Str cannot contain upper case or numbers

sample = Citation {Year = 2009
, authors = [(“AMY”, “BALE")
,(“CRAIG”, “DODDS")]}

‘x Previous examples simple

e BALE and DODDS 2009
 ABALE, C DODDS
e BD2009

« Can’t do the challenge 1 task

A N
N \
\

* Define a sensible looking DSL

e Restrict DSL (if necessary) while thinking
about a sample

— There Is not always an obvious answer

e The derive In this restricted DSL is trivial
— Challenge 4 ©

Deriving Instances

“\, Back to instances

data Sample a = First | Second a a | Third a

Instance Eq a = Eqg (Sample a) where
First = First = True
Second x, X, =Second y, Y, = X; Y, && X; =Y, && True
Third X, =Thirdy, = x; =y, && True
= = False

e Glven sensible restrictions, how do we derive?

N
\ y
L\

N\ What must derive do?

derive :: Output - [DSL]

* Be correct

e Terminate, ideally quickly

 Hope to find an answer If one exists

e The following implementation Is just one
possible version

N\, Create guesses

guess .. OutputFragment - [Guess]

data Guess

= Guess DSL
GuessCitr Int._ Obased DSL
GuessFKId Int_1based DSL

e Guess bottom-up and combine

‘x Examples

X1=Y

Fld1l: xi =vyi

oy oo
DICHIOINICY

3
\ Examples

Second x; X,

Ctrl: NAME (FIELDS xi)

\x Examples

X; EY; && X, =Y, && True

"N\, Guessing atoms - Integers

 The number 2
— Might be the literal 2
— Might be the second field
— Might be the arity of constructor Second
— Might be the index of constructor Third

* Produce all these guesses

N\, Guessing atoms - strings

* “Fo0” — the literal string “Foo0”

e “Second” — the name of Second
— not allowed to be a literal

e “Sample” — the name of the data type
— again, not allowed to be a literal

A N
N \
\

"N\, Application

e Given (a b)
— Guess a, then b, then combine If consistent

 Guess x can be turned into GuessCtr | X
[Xl
— Guess (Lit“x”) & GuessFld 1 Fieldind
— GuessFId 1 (Lit “x” "Append Fieldind)

\ \\" \\

A\ Lists

e Can combine adjacent elements similar
like we do for application

e Can lift a complete sequence:

— [GuessFId 1 x, GuessFId 2 x] =
GuessCtr 1 (Fields x)

— [GuessCtr 0 x, GuessCtr 1 x, GuessCtr 2 x| =
Guess (Ctors x)

<
LN
\

\. Special guesses

e Folds

— Special hard-coded patterns are recognised

— Turns into a fold, then normal guess on the
arguments to the fold

e Vector application
— haskell-src-exts has binary App nodes

— Sometimes vector application is required,
transform separately

Examples and Limitations

A N
N \
\

"\, Module names

typename Language =
mkTyCon "ModuleName.Language®

* This doesn’t work as the input doesn’t
contain the module name

— Can always enrich the input
— But might need a more complex sample

"N\, Infix constructors

show (Prefix a b) = [*Prefix”,show a,show D]
show (a :+: b) = [show a,“:+:",show D]

e The Input type doesn’t know about fixity
— Could enrich the input type

<
LN
\

"\, Type-based derivations

e Some classes make choices based on the
types of a constructors fields (i.e. Uniplate)

e The Input doesn’t have type information
— If it did, a suitable sample would be huge

e Lack of type signatures means no -Wall

— Some functions can be derived without their
type sig, but not with

\" .
N A
B\

N\, Variable naming

* Be careful when naming your variables

Second xy --bad
Second x, X, -- good

e Think if you could come up with a simple
pattern

Qx Redundant fold terms

o Specify redundant fold units to make a
pattern

0, X;+X5, X4] -- bad
0, x;+x,+0, x,+0] -- good

* Derive will usually optimise these bits
away

N
N\ A
\

N\, The empty record

 The empty record match is incredibly
useful

f (First{}) = ...
f (Second{}) = ...
f (Third{}) = ...

Results

A N
\ \

"N\, The results

e Our scheme iIs used In Derive

e Works (14)

— ArbitraryQOld, Arities, Binary, BinaryDefer,
Bounded, Default, Enum, EnumCyclic, Eq,
Monoid, NFData, Ord, PlateTypeable, Serial

« Partial (4)
— Arbitrary, Data, DataAbstract, Read, Show

"\, Main causes of failure

 Record based (5)
— Update, Set, Ref, LazySet, Has
 Type based (6)

— Uniplate, TTypeable, Traversable,
PlateDirect, Functor, Foldable

e Other (3)

— Is (type sig), Fold (type sig), Typeable (kind
Info)

<
\ \

"N\, Conclusion

 From a single example we can define a
relationship

— Which Is correct and predictable

 Has been practically applied to instance
generation (Derive tool)

cabal install derive

