
Cheaply writing a
fast interpreter

Neil Mitchell
@ndm_haskell

Code at https://github.com/ndmitchell/interpret

https://github.com/ndmitchell/interpret

Given a language, we can:The options

InterpretCompile

Expensive Cheap

Static ASM code

JIT/dynamic ASM No ASM, cross-arch
C,
 R
us
t

Java

Python
Ja
va
Sc
ri
pt

Cheap interpreters
• Low cost of development and maintenance

• No Assembly (ASM) writing (may be some

reading)

• Can do better! But at cost (v8, Lua)

An example: Starlark (aka deterministic Python)

• Used by Buck/Bazel build systems for config

• How would we go about writing an interpreter in

Rust for Starlark?

This talk

Approach
• AST (abstract syntax tree) interpretation

• Bytecode (threaded?)

• Closure generation

• Intermediates: Native, Stack, Registers?

• Packed/Unpacked?

Possible alternatives

Benchmarks

x = 100;
for (i = 1000; i != 0; i--) {
 x = x + 4 + x + 3;
 x = x + 2 + 4;
}
x

Example

Deliberately use only +, to emphasise interpreter overhead
In reality, an expensive atoms might make all this noise

fn f(x: &Expr, vs: V) -> i64 {
 match x {
 Lit(i) => *i,
 Var(u) => vs[u],
 Add(x, y) =>
 f(x, vs) + f(y, vs),
 Assign(u, e) =>
 vs[u] = f(e, vs),
 …

Walk AST

What performance penalty?
Do the obvious things:

• Use unchecked array access

• Convert variables to indices

• No allocation

• Rust -O

(All these are always done in this talk)

What is the performance penalty?

Guess

570x

1 day 2.5 minutes

📆 ⏱

What did it do?Fairness
x = x + 4 + x + 3;
x = x + 2 + 4;

x = x + x + 13;

Make add a noinline function call
More representative of real work

6.4x

6 minutes 1 minute

☕ 🚰

What does it do?
• Match on AST nodes

• Perform operations

Could we match on AST nodes only once?

• Yes! Generate closures once, run closures

• Closure = function pointer + data

AST walk

Rust

AST

type K = Box<dyn Fn(V) -> i64>;

fn f(x: &Expr) -> K {
 match x {
 Lit(i) => {
 let i = *i;
 box move |_| i;
 }
 Add(x, y) => {
 let x = f(x);
 let y = f(y);
 box move |v| x(v) + y(v)
 }

Closures

Rust

AST

Closure

Storage Where do intermediates go?
With AST/Closure we reuse the native/Rust stack

•f(x, …) + f(y, …)

What could we do instead? Explicit:

Rust

AST

Closure

Registers

•Access by index

•r9 = 1

•r7 = r2 + r9

Stack

•Access the top

•PUSH 1

•ADD

• Pop top 2

• Push their sum

Bytecode With a stack

Rust

AST

Closure

PUSH -1
GET $i
ADD
SET $i

loop {
 match tape.next() {
 PUSH => stack.push(tape.next()),
 ADD => stack.push(
 stack.pop() + stack.pop()),
 …

Put variables at the
bottom of the stack

BCode

ASM view What happens on each op?

Rust

AST

Closure

loop {
 match tape.next() {
 LOOKUP match[tape.next()]
 JUMP '_
 …
 BODY
 }
 JUMP 'loop
}

BCode

ASM view What would be optimal?

Rust

AST

Closure

BCode

• Can’t generate new ASM on the fly

• The definition of a “Cheap” interpreter

• Must have a finite number of parameterisable

chunks of ASM

• Must JUMP between them - but only one JUMP

Sometimes known as “direct threading”

C++ (GCC) Computed goto

Rust

AST

Closure

BCode

static const Tape tape =
 {&&push, 1, &&add, &&set, 8, …};

push:
 stack.push(tape.next());
 goto tape.next();
add:
 stack.push(
 stack.pop() + stack.pop());
 goto tape.next();
set:

Rust Faking computed Goto

Rust

AST

Closure

BCode

Stack

• Tail calls are compiled to JUMP

• On x86_64, with -O

• Not guaranteed 🙁 (can abstract it)

• But is compositional 🙂

fn add(stack: Stack, tape: Tape) {

 stack.push(

 stack.pop() + stack.pop);

 let k = tape.next();

 k(stack, tape);

}

Even faster Use registers

Rust

AST

Closure

BCode

• Longer instructions, but fewer

• Less adjusting the stack

Reg

PUSH x

PUSH 1

ADD

r2 = 1

r3 = r1 + r2

5 words
3 instructions

3 + 4 words
1 + 1 instructions

Stack

What else? Didn’t work

Rust

AST

Closure

BCode

• Use compact tape instead of word-aligned

• A few percent slowdown

• A better register allocator (less registers)

• No difference on this particular benchmark

•Transform the code first (e.g. 2 + 4 => 6)

•Use “bigger” fragments (e.g. add3)

• Generate fresh assembly at runtime
Reg

Would workStack

Conclusion

Rust

AST

Closure

BCode

Reg

• 6.4x penalty
• Lowest effort, cleanest code

• 4.8x penalty
• More effort, but not much more

• 1.4x penalty
• Requires register allocator
• Uses unsafe operations (register indexing)
• Much more effort, but much better result

Stack

