Building an IDE on top
of a Build System

£ 3

P gnc-comvertcomment & ©O0A0 Ln1LColl Spaces:2 UTF-8 LF Haskel @ #

The tale of a Haskell IDE

How to write a compiler?

Simon L. Peyton Jones
The
Implementation
of Functional
Programming
Languages

. Principles of Compiler Design

C.AR HOARE SERIES EDITOR

+ 1000’s of papers, on every single aspect
+ A course at most universities
+ Blog posts galore

How to write an IDE?

Google Scholar

how to write an ide E

Kinetics and guantum vyield of photoconversion of protochlorophyll (ide) to
chlorophyll (ide) a
OF Nielsen, A Kahn - Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1973 - Elsevier

... process between protochlorophyll{ide)” and the reductant as proposed earlier 8. Next, we must
consider the possibilities for the deexcitation of protochloro- phyll{ide)® which do not lead to its
reduction but return protochlorophyli{ide)” to the ground-state. Accordingly we write ...

17 Y9 Cited by 41 Related articles All 4 versions

Base it on a
build system!

The tale of a Haskell IDE

* First implemented by Digital Asset for DAML
language (Haskell on a distributed ledger)

* Split out as ghcide, for Haskell
* Integrated into haskell-language-server

Now: A workable Haskell IDE
https://github.com/haskell/haskell-language-server

https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server

Demo

https://www.youtube.com/watch?v=WBYW1trKjKcE

https://www.youtube.com/watch?v=WBYWtrKjKcE
https://www.youtube.com/watch?v=WBYWtrKjKcE

Why does a build system feel right?

* Lots of dependencies
— Contents > Parse > TypeCheck

— TypeCheck also depends on the transitive import
type checks

e Lots of invalidation
— If source changes, invalidate Parsing + TypeCheck

Build primitives, then wire them together!

TypeCheck primitive

typecheckModule
:: HscEnv
-> [TcModuleResult]
-> ParsedModule
-> 10
([Diagnostic]
, Maybe TcModuleResult)

TypeCheck wiring

type instance RuleResult TypeCheck = TcModuleResult

define S \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use GetDependencies file
tms <- uses_ TypeCheck (transitiveModuleDeps deps)
packageState <- useNoFile GhcSession
iftlO S typecheckModule packageState tms pm

Architecture of an IDE

used by
GHC API Primitives
used by
Wiring
based on
Build wrapped IDE triggered

System Library Editor

Build an IDE library,
that does whatever an IDE requires,
on top of a build system

What does an IDE do?

Lots, but three “core” features.

* Errors/warnings — show the current state of
the code as you type.

* Hover/goto-definition — give information
about the code in front of you.

* Find references —tell you where an identifier
is used.

What does a build system do?

* Maps keys to values through computations
 Computations depend on other keys

 We use Shake, because:
— Has monadic dependencies (an IDE is not static)
— Written in Haskell, easy integration with GHC API
— Allows fully custom rules

IDE Library

A wrapper over Shake
Set up dependencies

— FilePath > Contents > Parse > Imports > TypeCheck

Every time anything changes (e.g. keystroke)
— Abort whatever is ongoing

— Restart from scratch, skipping things that haven’t
changed

Report errors as you get them

IDE Library features

Easy Less-easy

* Parallelism * Error reporting
* |Incrementality * Restarting

* Dependencies * Performance
* Monadic

* Well-engineered

Error Reporting

* Keys are (Phase, FilePath)
— (Parse, Foo.hs), (TypeCheck, Foo.hs)

* Values contain errors as first-class info
— ([Diagnostic], Maybe r)
— (xs, Nothing), | raised an error
— (xs, Just v), | raised some warnings
— ([], Nothing), my dependency failed

* Collect warnings for all phases for a file

IDE Library primitives

define S \Phase file -> do
use Phase file -- return the real value
use Phase file -- fail if Nothing
uses_Phase files -- parallel use _

Restarting

On change:
— Abort, with asynchronous exception
— Restart

Rules are cached. In-progress actions are lost.

Don’t underestimate the engineering effort in
async exceptions

Would a GHC suspend primitive work?

Performance

* Build systems are about files

— We contributed an in-memory API for Shake

* |IDEs might restart 200 times per minute
— Scanning a large graph can get expensive
— Some optimisation work, some GHC bugs
— Ongoing effort

e Would an FRP-like solution work better?

Connecting to the IDE

» Key/Value mappings which depend on each
other

— Wiring GHC functions and types into a graph

 Request comes in from IDE
— Modify the input values
— Compute some values from keys
— Format that information appropriately

* Lots of plumbing

Shake was a good idea

IDE is a very natural dependency problem
Robust parallelism
Thoroughly debugged for exception handling

— GHC API has a few issues in corner cases here
Has good profiling (caught a few issues)

Has lots of features — we could replicate the
end state, but not the path there

Full IDE

SN S

haskell-Isp

hie-bios ghcide
\ Haskell- /
language-
server

https://github.com/haskell/haskell-language-server

https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server

It works!

524 stars, 85 forks, 399 pull requests, 62
contributors, 4K VS Code installs (at least)

Can edit the GHC codebase (~*500 modules)

Used by several companies
Still the basis of the DAML IDE

How to write an IDE?

Building an Integrated Development Environment
(IDE) on top of a Build System
The tale of a Haskell IDE

Neid Mitchell Moritz Kiefer Pepe Borma
Facboak Degstal Aset Facebook
ndmeshell @gmad com mants kieferdpuslyfuncticnal ooy pepaborraidgmad com
Luke Law Zubin Duggal Hannes Sicbesshand!
Trauty College Dubin Cheana Mathematical lnst2ule TU Waen
hake_laugmdond com subeduggdidgmailcom hames sisbenhaod ippoatro net

Matthew Pickering

Ursvezuty of Exietal

mashewtpickenngdgmal com

Abstract
When developing a Haskell IE we bt upom an dea ~ why

t boow an [DE oo as budd sysiers’ s tha paper we'll
go from that ides o 2 wable IDE, mchuding

explain bow i
the deficel s tesposed by neusng 3 build syvies, and thoos
ampesed by techrical detads spocific to Haskell Our destgn
m mccensiul and hopefully provades 3 blae-peint for

x wrstsng [DEs

1 Introduction
Wrtiag an [DE (sograted Development Envirosmest) =
mot 2 eoy a0 2 books Whae there acv thoucads of papen
sad uatveraity lectuses oo how to wrile & compibe thaae =
mnch bewx wrstten about IDEs ([1] tx ome of the excoptions)
We emburked on 2 project to wrate 3 Haskell DE (onigmally
Sor the GHC -based DAML language [4]) bet owr first few
at a dedys where the
Beavy-liftng of the IDE was performed by » b

desgns faded Eventially, we amr

M aywirm
That idea tezmwd cut fo be the turming potet. sad the mlbject
of thix paper

Ovwer the past two vesrs we bave contimsed developrent
s=d found thae the ideax behand 3 build syssen asv both
spplicable sad natural for an WE The remk o avadable 2
a proge

namwd ghode’, which u then integrated into the

Heakell Language Servee®
In thes paper we cutline the core of cur [DE §2, how 1t

= deched out inte an [DE comporseat §3, aad then how we
bradd 3 cumpiliete IDE around # axing plugine §4 We baok
sad hertx §5. We then
lock st the cograsg sad utter wock §6 before conclnding

&

2 whare the buald rywiem both help

et gt s

- Gegtal annst Chunde

Wl gthatma Suskell Namholt Lo g asge s v

FLI Soptemhar 34 2% Onloe
o0

Alan Zissmermuan
Facebook

slan steen gl com

2 Design

In thex secticn wy show how to implersent an [DE s top of
2 bueld vywtem. Furat we look 3t what an 10E peovides, thes

what 2 budd vywlem peovades. Sallowed by how

cmhe
the two

2.1 Feabtures on an IDE

To denign an IDE, 1t tv weeth fout refloctng on wha featuees

an IDE provides ks oo veow, the primary featuoex of an [DE

can be grouped into thawe capabiltu. tn asder of prasity

Errorv'warnings The muun benefit of s IDE s 2o get
irzmediate feedback aa the uws types That tmvolves
producieg esrond warnsags om every keystroke. In s
language vech ax Haokell that invedves runnisg e
paeser and type chocker oz every keyviraks

Hover/goto definition The nest most tmpartaat fes
ture tx the sty to mte the code = front of
you Wayx to do that sschade hoverseg over 2 e

tifier 82 mow o type, and choking on an densfer o
jemrg 0o it defirstocn. In 3 gy like Haskell thew
fratures =

perfoemng nare mashuman

Find references Fanally, the Lut featioe o the abdity 4o
find where 3 ryzbol i wsed. This feature reqatres s
undentsndag of all the code, and the abdity to mdex
oastucand.

The deagn of Haskell i wach that to type check 3 module
e
pe check the madiale saelf
If are of the imparts changes, them any module immparting

requirex 4o get ity contents, parw it resabve the tmpata,

check the imparts and caly then ¢

muet alwo be rechecked That process caa heppes ence per
wer chomacter pross, o 1x repeated incoedibly froquently
Given the maun value of =

Lt the peewnoe shano of

errors, the way usch aron se procesed shoukd be heavdy

sptumamed. |n partsadar. if @ tmpartant to bade show an ermar

Lots more details,
including:

 What garbage
collection means

 How to put plugins
over the top

* How we test it

* Memory leaks

we’ve had
e .hi files

Authors

Neil Mitchell, Moritz Kiefer, Pepe Iborra,
Luke Lau, Zubin Duggal, Hannes Siebenhand],

Matthew Pickering, Alan Zimmerman

Additional Credits

Digital Asset, ZuriHac, MuniHac, many others...

What does LSP do?

Language Server Protocol (LSP)

Communication protocol for VS Code, Vim,
Emacs etc.

Tell the editor when diagnostics change
Be told when a file changes

What does the GHC APl do?

* GHC is the Haskell compiler

* GHC APl exposes most of that as a library
— Type checking, parsing, loading packages
— .hi files, .hie files
— Lots of building blocks, which are hard to use
* Also provides a dependency tracker
— Which is mostly useless to an IDE
— Not incremental (we had to write our own)

GHC downsweep

* GHC dependency graph is not incremental
— Give it all files, get all results

 We want to get the dependencies of a file
ourselves
— If there are cycles, we want to still work elsewhere

— Don’t want to have to do everything up front
— Con: Makes TH, CPP etc harder

* Needs abstracting and sending upstream

The GHC API

A scary place

|ORef’s hide everywhere

Huge blobs of state (HscEnv, DynFlags)
The GHC Monad

Lots of odd corners

Lots of stuff that is not fit for IDE (e.g.
downsweep)

<rant />

* Warnings from the type checker

{

data HscEnv = HscEnv
{hsc_dflags :: DynFlags -- 148 fields
,hsc_targets :: [Target]
,hsc_mod graph :: ModuleGraph
,hsc_IC :: InteractiveContext
,hsc_HPT :: HomePackageTable
,hsc_EPS :: IORef ExternalPackageState
,hsc_NC :: |IORef NameCache
,hsc_FC :: IORef FinderCache
,hsc_type env_var :: Maybe (Module, IORef TypeEnv)
,hsc_iserv :: MVar (Maybe IServ)

}

Wrap the GHC API Cleanly

 We want “pure” functions (morally)

typecheckModule
:: HscEnv
-> [TcModuleResult]
-> ParsedModule
-> 10 ([FileDiagnostic], Maybe TcModuleResult)

