
Building an IDE on top
of a Build System

The tale of a Haskell IDE

How to write a compiler?

+ 1000’s of papers, on every single aspect
+ A course at most universities
+ Blog posts galore

How to write an IDE?

Base it on a
build system!

The tale of a Haskell IDE

• First implemented by Digital Asset for DAML
language (Haskell on a distributed ledger)

• Split out as ghcide, for Haskell

• Integrated into haskell-language-server

Now: A workable Haskell IDE

https://github.com/haskell/haskell-language-server

https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server

Demo

https://www.youtube.com/watch?v=WBYWtrKjKcE

https://www.youtube.com/watch?v=WBYWtrKjKcE
https://www.youtube.com/watch?v=WBYWtrKjKcE

Why does a build system feel right?

• Lots of dependencies

– Contents > Parse > TypeCheck

– TypeCheck also depends on the transitive import
type checks

• Lots of invalidation

– If source changes, invalidate Parsing + TypeCheck

Build primitives, then wire them together!

TypeCheck primitive

typecheckModule

 :: HscEnv

 -> [TcModuleResult]

 -> ParsedModule

 -> IO

 ([Diagnostic]

 , Maybe TcModuleResult)

TypeCheck wiring

type instance RuleResult TypeCheck = TcModuleResult

define $ \TypeCheck file -> do

 pm <- use_ GetParsedModule file

 deps <- use_ GetDependencies file

 tms <- uses_ TypeCheck (transitiveModuleDeps deps)

 packageState <- useNoFile_ GhcSession

 liftIO $ typecheckModule packageState tms pm

Architecture of an IDE

Wiring

GHC API

IDE
Library

Build
System

Editor

used by

wrapped triggered

based on

Primitives

used by

Build an IDE library,

that does whatever an IDE requires,

on top of a build system

What does an IDE do?

Lots, but three “core” features.

• Errors/warnings – show the current state of
the code as you type.

• Hover/goto-definition – give information
about the code in front of you.

• Find references – tell you where an identifier
is used.

What does a build system do?

• Maps keys to values through computations

• Computations depend on other keys

• We use Shake, because:

– Has monadic dependencies (an IDE is not static)

– Written in Haskell, easy integration with GHC API

– Allows fully custom rules

IDE Library

• A wrapper over Shake

• Set up dependencies

– FilePath > Contents > Parse > Imports > TypeCheck

• Every time anything changes (e.g. keystroke)

– Abort whatever is ongoing

– Restart from scratch, skipping things that haven’t
changed

• Report errors as you get them

IDE Library features

Easy

• Parallelism

• Incrementality

• Dependencies

• Monadic

• Well-engineered

Less-easy

• Error reporting

• Restarting

• Performance

Error Reporting

• Keys are (Phase, FilePath)

– (Parse, Foo.hs), (TypeCheck, Foo.hs)

• Values contain errors as first-class info

– ([Diagnostic], Maybe r)

– (xs, Nothing), I raised an error

– (xs, Just v), I raised some warnings

– ([], Nothing), my dependency failed

• Collect warnings for all phases for a file

IDE Library primitives

define $ \Phase file -> do

 use Phase file -- return the real value

 use_ Phase file -- fail if Nothing

 uses_ Phase files -- parallel use_

Restarting

• On change:

– Abort, with asynchronous exception

– Restart

• Rules are cached. In-progress actions are lost.

• Don’t underestimate the engineering effort in
async exceptions

• Would a GHC suspend primitive work?

Performance

• Build systems are about files

– We contributed an in-memory API for Shake

• IDEs might restart 200 times per minute

– Scanning a large graph can get expensive

– Some optimisation work, some GHC bugs

– Ongoing effort

• Would an FRP-like solution work better?

Connecting to the IDE

• Key/Value mappings which depend on each
other

– Wiring GHC functions and types into a graph

• Request comes in from IDE

– Modify the input values

– Compute some values from keys

– Format that information appropriately

• Lots of plumbing

Shake was a good idea

• IDE is a very natural dependency problem

• Robust parallelism

• Thoroughly debugged for exception handling

– GHC API has a few issues in corner cases here

• Has good profiling (caught a few issues)

• Has lots of features – we could replicate the
end state, but not the path there

Full IDE

ghcide hie-bios

haskell-lsp GHC

Haskell-
language-

server

https://github.com/haskell/haskell-language-server

https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server

It works!

• 524 stars, 85 forks, 399 pull requests, 62
contributors, 4K VS Code installs (at least)

• Can edit the GHC codebase (~500 modules)

• Used by several companies

• Still the basis of the DAML IDE

How to write an IDE?

Lots more details,
including:

• What garbage

collection means
• How to put plugins

over the top
• How we test it
• Memory leaks

we’ve had
• .hi files

Authors

Neil Mitchell, Moritz Kiefer, Pepe Iborra,

Luke Lau, Zubin Duggal, Hannes Siebenhandl,

Matthew Pickering, Alan Zimmerman

Additional Credits

Digital Asset, ZuriHac, MuniHac, many others…

What does LSP do?

• Language Server Protocol (LSP)

• Communication protocol for VS Code, Vim,
Emacs etc.

• Tell the editor when diagnostics change

• Be told when a file changes

What does the GHC API do?

• GHC is the Haskell compiler

• GHC API exposes most of that as a library

– Type checking, parsing, loading packages

– .hi files, .hie files

– Lots of building blocks, which are hard to use

• Also provides a dependency tracker

– Which is mostly useless to an IDE

– Not incremental (we had to write our own)

GHC downsweep

• GHC dependency graph is not incremental

– Give it all files, get all results

• We want to get the dependencies of a file
ourselves

– If there are cycles, we want to still work elsewhere

– Don’t want to have to do everything up front

– Con: Makes TH, CPP etc harder

• Needs abstracting and sending upstream

The GHC API

• A scary place

• IORef’s hide everywhere

• Huge blobs of state (HscEnv, DynFlags)

• The GHC Monad

• Lots of odd corners

• Lots of stuff that is not fit for IDE (e.g.
downsweep)

<rant />

• Warnings from the type checker

data HscEnv = HscEnv
 {hsc_dflags :: DynFlags -- 148 fields
 ,hsc_targets :: [Target]
 ,hsc_mod_graph :: ModuleGraph
 ,hsc_IC :: InteractiveContext
 ,hsc_HPT :: HomePackageTable
 ,hsc_EPS :: IORef ExternalPackageState
 ,hsc_NC :: IORef NameCache
 ,hsc_FC :: IORef FinderCache
 ,hsc_type_env_var :: Maybe (Module, IORef TypeEnv)
 ,hsc_iserv :: MVar (Maybe IServ)
 }

Wrap the GHC API Cleanly

• We want “pure” functions (morally)

typecheckModule

 :: HscEnv

 -> [TcModuleResult]

 -> ParsedModule

 -> IO ([FileDiagnostic], Maybe TcModuleResult)

