Building an IDE on top
of a Build System
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The tale of a Haskell IDE




How to write a compiler?

Simon L. Peyton Jones
The
Implementation
of Functional
Programming
Languages

. Principles of Compiler Design

C.AR HOARE SERIES EDITOR

+ 1000’s of papers, on every single aspect
+ A course at most universities
+ Blog posts galore



How to write an IDE?

Google Scholar

how to write an ide E

Kinetics and guantum vyield of photoconversion of protochlorophyll (ide) to
chlorophyll (ide) a
OF Nielsen, A Kahn - Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1973 - Elsevier

... process between protochlorophyll{ide)” and the reductant as proposed earlier 8. Next, we must
consider the possibilities for the deexcitation of protochloro- phyll{ide)® which do not lead to its
reduction but return protochlorophyli{ide)” to the ground-state. Accordingly we write ...

17 Y9 Cited by 41 Related articles  All 4 versions



Base it on a
build system!




The tale of a Haskell IDE

* First implemented by Digital Asset for DAML
language (Haskell on a distributed ledger)

* Split out as ghcide, for Haskell
* Integrated into haskell-language-server

Now: A workable Haskell IDE
https://github.com/haskell/haskell-language-server
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Demo

https://www.youtube.com/watch?v=WBYW1trKjKcE



https://www.youtube.com/watch?v=WBYWtrKjKcE
https://www.youtube.com/watch?v=WBYWtrKjKcE

Why does a build system feel right?

* Lots of dependencies
— Contents > Parse > TypeCheck

— TypeCheck also depends on the transitive import
type checks

e Lots of invalidation
— If source changes, invalidate Parsing + TypeCheck

Build primitives, then wire them together!



TypeCheck primitive

typecheckModule
:: HscEnv
-> [TcModuleResult]
-> ParsedModule
-> 10
([Diagnostic]
, Maybe TcModuleResult)




TypeCheck wiring

type instance RuleResult TypeCheck = TcModuleResult

define S \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use  GetDependencies file
tms <- uses_ TypeCheck (transitiveModuleDeps deps)
packageState <- useNoFile  GhcSession
iftlO S typecheckModule packageState tms pm



Architecture of an IDE

used by
GHC API Primitives
used by
Wiring
based on
Build wrapped IDE triggered

System Library Editor



Build an IDE library,
that does whatever an IDE requires,
on top of a build system



What does an IDE do?

Lots, but three “core” features.

* Errors/warnings — show the current state of
the code as you type.

* Hover/goto-definition — give information
about the code in front of you.

* Find references —tell you where an identifier
is used.



What does a build system do?

* Maps keys to values through computations
 Computations depend on other keys

 We use Shake, because:
— Has monadic dependencies (an IDE is not static)
— Written in Haskell, easy integration with GHC API
— Allows fully custom rules



IDE Library

A wrapper over Shake
Set up dependencies

— FilePath > Contents > Parse > Imports > TypeCheck

Every time anything changes (e.g. keystroke)
— Abort whatever is ongoing

— Restart from scratch, skipping things that haven’t
changed

Report errors as you get them



IDE Library features

Easy Less-easy

* Parallelism * Error reporting
* |Incrementality * Restarting

* Dependencies * Performance
* Monadic

* Well-engineered



Error Reporting

* Keys are (Phase, FilePath)
— (Parse, Foo.hs), (TypeCheck, Foo.hs)

* Values contain errors as first-class info
— ([Diagnostic], Maybe r)
— (xs, Nothing), | raised an error
— (xs, Just v), | raised some warnings
— ([], Nothing), my dependency failed

* Collect warnings for all phases for a file



IDE Library primitives

define S \Phase file -> do
use Phase file -- return the real value
use Phase file -- fail if Nothing
uses_Phase files -- parallel use _



Restarting

On change:
— Abort, with asynchronous exception
— Restart

Rules are cached. In-progress actions are lost.

Don’t underestimate the engineering effort in
async exceptions

Would a GHC suspend primitive work?



Performance

* Build systems are about files

— We contributed an in-memory API for Shake

* |IDEs might restart 200 times per minute
— Scanning a large graph can get expensive
— Some optimisation work, some GHC bugs
— Ongoing effort

e Would an FRP-like solution work better?



Connecting to the IDE

» Key/Value mappings which depend on each
other

— Wiring GHC functions and types into a graph

 Request comes in from IDE
— Modify the input values
— Compute some values from keys
— Format that information appropriately

* Lots of plumbing



Shake was a good idea

IDE is a very natural dependency problem
Robust parallelism
Thoroughly debugged for exception handling

— GHC API has a few issues in corner cases here
Has good profiling (caught a few issues)

Has lots of features — we could replicate the
end state, but not the path there



Full IDE

SN S

haskell-Isp

hie-bios ghcide
\ Haskell- /
language-
server

https://github.com/haskell/haskell-language-server
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It works!

524 stars, 85 forks, 399 pull requests, 62
contributors, 4K VS Code installs (at least)

Can edit the GHC codebase (~*500 modules)

Used by several companies
Still the basis of the DAML IDE



How to write an IDE?

Building an Integrated Development Environment
(IDE) on top of a Build System
The tale of a Haskell IDE
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Lots more details,
including:

 What garbage
collection means

 How to put plugins
over the top

* How we test it

* Memory leaks

we’ve had
e .hi files
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What does LSP do?

Language Server Protocol (LSP)

Communication protocol for VS Code, Vim,
Emacs etc.

Tell the editor when diagnostics change
Be told when a file changes



What does the GHC APl do?

* GHC is the Haskell compiler

* GHC APl exposes most of that as a library
— Type checking, parsing, loading packages
— .hi files, .hie files
— Lots of building blocks, which are hard to use
* Also provides a dependency tracker
— Which is mostly useless to an IDE
— Not incremental (we had to write our own)



GHC downsweep

* GHC dependency graph is not incremental
— Give it all files, get all results

 We want to get the dependencies of a file
ourselves
— If there are cycles, we want to still work elsewhere

— Don’t want to have to do everything up front
— Con: Makes TH, CPP etc harder

* Needs abstracting and sending upstream



The GHC API

A scary place

|ORef’s hide everywhere

Huge blobs of state (HscEnv, DynFlags)
The GHC Monad

Lots of odd corners

Lots of stuff that is not fit for IDE (e.g.
downsweep)



<rant />

* Warnings from the type checker

{



data HscEnv = HscEnv
{hsc_dflags :: DynFlags -- 148 fields
,hsc_targets :: [Target]
,hsc_mod graph :: ModuleGraph
,hsc_IC :: InteractiveContext
,hsc_HPT :: HomePackageTable
,hsc_EPS :: IORef ExternalPackageState
,hsc_NC :: |IORef NameCache
,hsc_FC :: IORef FinderCache
,hsc_type env_var :: Maybe (Module, IORef TypeEnv)
,hsc_iserv :: MVar (Maybe IServ)

}



Wrap the GHC API Cleanly

 We want “pure” functions (morally)

typecheckModule
:: HscEnv
-> [TcModuleResult]
-> ParsedModule
-> 10 ([FileDiagnostic], Maybe TcModuleResult)




