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Buck2 is…

● A build system

● Developed and used by Meta 

● Supports many languages (C++, Rust, 

Python, Go, OCaml, Erlang…)

● Designed for large mono repos 

● Open source - buck2.build  

github.com/facebook/buck2 

● 2x as fast as Buck1 😎

https://buck2.build
https://github.com/facebook/buck2


Rules from Meta are 
available,
but you can write your own

Libraries/binaries/tests

Supports many languages
● C++
● Python
● Rust
● Erlang
● OCaml
● Go
● Haskell
● …

Plus downloads, shell 
commands, aliases etc

Build graph

APIs

Starlark interpreter
● Profiling
● LSP/DAP
● Linter
● Typechecker

Console output

Logging/events

Performance!
● Parallelism
● Incrementality
● I/O
● Remote execution

Written by the user

Specific to each project

Can use Starlark functions to 
abstract over common 
patterns

Core
Rust

Rules
Starlark

Targets
Starlark

API Rules



Faster!

● 2x as fast as Buck1 😎
● Waiting 10 minutes → 5 minutes ⏰
● Engineers whose builds were sped up 

by Buck2 often produced meaningfully 

more code 💻



Performance tricks

1. Abstraction - rewrite the code without changing rules.

2. Single dependency graph for parallelism and incrementality.

3. Remote execution - with precomputed merkle trees and Blake3.

4. Virtual files
a. Deferred materialisation - building without the bytes
b. Virtual file system for input, Eden

5. Rust, so no GC

6. Nothing O(repo)



The good The bad
● Powerful, fast, modern build 

system

● Actively developed

● Open source.
○ Diffs go upstream ~15 min
○ We accept PRs
○ Same as internal version 

(minus RE server)

● Changing build system is 
hard!

● New - only a few external 
users

● Some rules don’t work open 
source yet (Java, iOS)

● Integration with package 
managers a bit weak



Fat Platforms



Fat platforms

Problem:
Same project built on Macs and on Linux, with naive solution:
- cache isn’t shared, must build everything on both
- building on mac requires mac RE, which may be significantly 

more expensive than linux RE

Bad Solution: Run everything on linux by leveraging RE
- Resolves cache duplication + high mac RE cost
- If build host is mac, cannot use hybrid execution and build 

duration is slow

Q: Could we produce actions that can be run on either of 
Mac+Linux? Generally, on any platform?



Fat platforms

Solution: “Fat platforms” and fat tools

Basic Idea: A “fat tool” is a tool that can run on any of some set of 
platforms (for example Mac or Linux).

A “fat platform” is in a superset of platforms. Ex. a Mac+Linux fat 
platform. 

Only fat tools are compatible with fat platforms.



Fat platforms

Two main approaches:
1. a naturally cross-platform binary (e.g. java, python)
2. a “fat binary” includes multiple platform-specific binaries, with 
one selected at runtime

For (2):
Can wrap a binary rule with a fat_binary() that performs a split 
transition on the underlying binary and then selects at runtime

Example: android ndk has prebuilt binaries for multiple platforms, 
easily wrapped into fat-platform supporting targets



Fat platforms

Recap: fat tools run on multiple platforms, “fat platforms” 
represent a platform that may be one of multiple possibilities (e.g. 
mac or linux)

Benefits: Ex. Devs can locally develop on macs, use hybrid 
execution, but still use linux RE. Builds from mac or linux share 
cache (as they both use the same fat exec platform).

Downsides: fat tools may be significantly larger than their non-fat 
counterparts



Slightly dynamic

Dynamic (monadic) dependencies are helpful. E.g. OCaml 
compilation, ThinLTO.

But, figuring out the blast radius of a change is super important for 
CI. Requires a static target graph.

Solution: We only add features that give dynamic action graph 
(dyamic_outputs) OR refine a graph (anonymous target).



Dynamic Outputs



dynamic_outputs()

Problem: Existing build apis require constructing static action 
graph, we cannot create actions or determine the inputs to actions 
based on the output of other actions.

Solution: dynamic_outputs():
- During analysis, artifacts can be bound as outputs to a 

dynamic_output (instead of a normal action)
- dynamic_output holds a starlark lambda
- when run, has access to the contents of its artifact inputs
- can declare new artifacts and actions and re-bind its own 

outputs to new actions



dynamic_output()

Example: filtering inputs

def _some_impl(ctx):
inputs = ctx.attrs.includes
primary_input = ctx.attrs.src
output = ctx.actions.declare_output("output.o")
required_inputs = ctx.actions.declare_output("inputs.x")
ctx.actions.run([ctx.attrs.includes_filter, primary_input, required_inputs.as_output()])
def f(ctx, artifacts, outputs):
  computed_inputs = artifacts[required_inputs].read_lines()
  filtered_inputs = filter_inputs(inputs, computed_inputs)
  ctx.actions.run([ctx.attrs.processor, primary_input, outputs[output]] + 
filtered_inputs)
ctx.actions.dynamic_output(dynamic = [required_inputs], outputs = [output], f = f)
return [DefaultInfo(default_outputs = [output])]



dynamic_output()

Real life examples:

- Distributed thin lto
- bitcode optimizations 

dependencies are determined by 
the prelink

- Ocaml
- Run ocamldeps to determine deps for 

compilation



Anonymous Targets



anon_target()

Problem: The right graph structure is not necessarily just defined 
by user written targets. You might want a shadow graph (aka 
aspects/overlays) or to share nodes.

Solution: anon_target():
- A target node defined by the hash of its attributes - no name.
- At analysis time you can depend on an anon_target

Used for Python native library sharing, Swift modules (require 
adding configuration to)



anon_target()
UpperInfo = provider(fields = ["message"])

def _impl_upper(ctx):
   return [UpperInfo(message = ctx.attrs.message.upper()]

upper = rule(
   attrs = {"message", attrs.string()},
   impl = _impl_upper
)

# Use an anonymous target
def impl(ctx):
   def k(providers):
       print(providers[UpperInfo].message)
       # These are the providers this target returns
       return [DefaultInfo()]
   return ctx.actions.anon_target(upper, {
       name: "my//:greeting",
       message: "Hello World",
   }).promise.map(k)



BXL



BXL

Problem: 
Integrations (LSP, linters, binary/graph analysis, etc) are:
- very complex, needs lots of information encoded in build graph
- hard to define with existing build api
- don’t need to be consumable as build outputs

Solution:
BXL, a build extension language



BXL

Solution: BXL, a build extension language
- Starlark, with extensive APIs for interacting with buck’s graph
- Leverages buck2 core’s incremental caching engine
- API to define command line arguments

buck2 bxl my_custom_command.bxl -- --example-arg some.file --xxx-flag

- Query and inspect unconfigured and configured graphs
ctx.uquery.eval(), ctx.cquery.eval(), ctx.cquery.kind()/filter()/deps()/etc

- Access to analysis results
ctx.analysis(target).providers[DefaultInfo]

- Declare new artifacts and actions
ctx.actions.declare_output(), ctx.actions.run()

outputs based on bxl script + cli args (instead of configured target)

- Integrated with dynamic features
ctx.actions.dynamic_outputs(), ctx.actions.anon_target()

Starlark based scripting language that allows:
- Introspect and interact with the Buck2 graph structures natively, 

via Starlark, in a safe, controlled manner.
- Interaction with the Buck2 graph and nodes in all of 

unconfigured, configured, providers, and action stages.
- BXL leverages Buck2 core's incremental caching. It has support 

for running actions, dynamic outputs, and anonymous targets.



BXL
def _ebin_paths(ctx):
    target_universe = ctx.uquery().owner(ctx.cli_args.source)
    test_target = ctx.cquery().kind("erlang_test", ctx.cquery().owner(ctx.cli_args.source, target_universe))
    app_target = ctx.cquery().kind("erlang_app$", ctx.cquery().owner(ctx.cli_args.source, target_universe))

    target = test_target + app_target

    paths = []
    failed_targets = []
    for k, value in ctx.build(target).items():
        for _ in value.failures():
            failed_targets.append(str(k.raw_target()))
            break
        paths.extend(ctx.output.ensure_multiple(value.artifacts()))

    if failed_targets:
        fail("failed to build {} targets: {}".format(len(failed_targets), failed_targets))

    ctx.output.print(sep = "\n", *paths)

ebin_paths = bxl_main(
    impl = _ebin_paths,
    cli_args = {
        "source": cli_args.string(),
    },
)



BXL

Examples:

Erlang shell:

https://github.com/facebook/buck2/blob/main/prelude/erlang/shell/shell.bxl

Rust recursive check/clippy support:

https://github.com/facebook/buck2/blob/main/prelude/rust/rust-analyzer/check.bxl

Rust-analyzer support:

https://github.com/facebook/buck2/blob/main/prelude/rust/rust-analyzer/resolve_deps.bxl

Python sourcedb support:

https://github.com/facebook/buck2/tree/main/prelude/python/sourcedb

https://github.com/facebook/buck2/blob/main/prelude/erlang/shell/shell.bxl
https://github.com/facebook/buck2/blob/main/prelude/rust/rust-analyzer/check.bxl
https://github.com/facebook/buck2/blob/main/prelude/rust/rust-analyzer/resolve_deps.bxl
https://github.com/facebook/buck2/tree/main/prelude/python/sourcedb


Incremental Actions



Incremental Actions

Problem: 
binary-level actions are often O(repo)

Ex: linking, packaging, etc

Old Solution:
must design the tools such that the action can be broken up and 

expressed as smaller actions to an opinionated build system like 
buck



Incremental Actions

Problem: 
binary-level actions are often O(repo)

Ex: linking, packaging, etc

New Solution: Incremental Actions
API that allows for lightweight incremental actions
No need to encode the units of incrementality into build actions



Incremental Actions

How???

Two simple items:
1. no_outputs_cleanup = True

An executing action can access the previous outputs
2. metadata_env_var/metadata_path

buck provides hashes for all inputs

Expectation:
- The action writes as part of its output whatever it needs to 

compute its incremental update



Incremental Actions: Example
def _impl(ctx):
    json_srcs = ctx.actions.write_json("srcs.json", ctx.attrs.srcs, with_inputs = True)
    result = ctx.actions.declare_output("result", dir = True)
    state = ctx.actions.declare_output("incremental_state.json")
    command = cmd_args([ctx.attrs.script[RunInfo], "--output", result.as_output(), 
"--incremental-state", state.as_output(), "--srcs", json_srcs])
    ctx.actions.run(command,  category = "x", metadata_env_var = "ACTION_METADATA",   
metadata_path = "action_metadata.json",   no_outputs_cleanup = True)
    return [DefaultInfo(default_outputs=[result])]

sample_incremental = rule(
    impl = _impl,
    attrs = {
        "script": attrs.exec_dep(),
        "srcs": attrs.dict(attrs.source(), attrs.string()),

    }
)



Incremental Actions: Example
import json
import os
import shutil
import sys

prev_state = None
if os.path.exists(sys.argv[4]):
    with open(sys.argv[4]) as statefile:
        prev_state = json.load(statefile)

metadata = json.load(open(os.environ["ACTION_METADATA"]))
srcs = json.load(open(sys.argv[6]))

known_paths = {v["path"]: v["digest"] for v in metadata["digests"] if v["path"] in srcs.keys()}
unknown_paths = {v["path"]: v["digest"] for v in metadata["digests"] if v["path"] not in srcs.keys()}

# unknown paths includes srcs json and so the paths are part of the incremental key
key = [metadata["version"], sys.argv, unknown_paths]

if prev_state:
    if key != prev_state["key"]:
        prev_state = None

os.makedirs(sys.argv[2], exist_ok = True)
for path, h in known_paths.items():
    if prev_state and prev_state["srcs"][path] == h:
        print('skipping', path, file=sys.stderr)
        continue
    shutil.copyfile(path, os.path.join(sys.argv[2], srcs[path]))

with open(sys.argv[4], 'w') as statefile:
    json.dump({"key": key, "srcs": known_paths}, statefile)


