
Buck2 for OCaml Users and Developers

Shayne Fletcher Neil Mitchell

Meta Platforms Inc.

shaynefletcher@meta.com

OCaml Users and Developers Workshop
August 10, 2023

Buck2 overview

Roadmap
1 Buck2 overview

About
Goals, properties & features

2 Buck2 for OCaml Development
Hello world!
Third-party setup
Accessing the OCaml toolchain
Defining and using PPXs
Extending & Embedding
”Wrapped” libraries

3 Buck2 vs Dune
Performance comparisons

4 Questions? Comments?
5 Bibliography

Buck2 overview About

Buck2

A multi-language large-scale build system open-sourced by Meta
https://buck2.build.

Written in Rust over the last 4 years by a team of people.

https://buck2.build

Buck2 overview Goals, properties & features

Multi-language

Buck2 has no baked in knowledge of any programming language.
Configured through Starlark/Python files which say how to build
ocaml_library etc.
Rules produce providers that say how they provide stuff.

E.g. all native languages produce MergedLinkInfo.
OCaml produces it, Rust can work with it, the system linker can link them.
Therefore, C++ can depend on Rust which depends on C++.

More generally, languages don’t need to know about OCaml to link with it.

Buck2 overview Goals, properties & features

Large scale builds

Buck2 is designed for large scale (millions of files).
File watching with watchman - too many files to check modification time.
Bazel compatible remote execution.

If anyone else has already run a command, just copy.
Run commands remotely on a server - thousands at a time.

Deferred materialisation - if an intermediate product is available remotely,
don’t download it.

Buck2 overview Goals, properties & features

Theoretical power

Provides monadic/dynamic dependencies as per Build Systems à la Carte
[1].
An OCaml library must have its files compiled in dependency order.
Buck1: Run ocamldep once and hope it doesn’t change much.
Bazel: specify the internal file dependencies.
Buck2: runs ocamldep automatically and follow the dependencies.

Define the OCaml library dependency node and declare it outputs a .cmxa.
Run the ocamldep tool, producing a text file (Makefile).
Read the output, parsing it (in Starlark) to produce a graph.
Fill OCaml compilation commands into that graph.
Point at where the output file ends up.

Buck2 for OCaml Development

Roadmap
1 Buck2 overview

About
Goals, properties & features

2 Buck2 for OCaml Development
Hello world!
Third-party setup
Accessing the OCaml toolchain
Defining and using PPXs
Extending & Embedding
”Wrapped” libraries

3 Buck2 vs Dune
Performance comparisons

4 Questions? Comments?
5 Bibliography

Buck2 for OCaml Development Hello world!

Buck2 OCaml Examples

The referenced examples are from the facebook/buck2 GitHub repositorya.

aSee the examples/with-prelude/ocaml directory.

https://github.com/facebook/buck2
https://github.com/facebook/buck2/tree/main/examples/with_prelude/ocaml

Buck2 for OCaml Development Hello world!

Hello world

Example (Library)
build with: buck2 build //ocaml/hello-world:hello-world-lib
ocaml_library(
name = "hello-world-lib",
srcs = ["hello_world_lib.ml"],

)

Example (Binary)
build & run with: buck2 run //ocaml/hello-world:hello-world --
ocaml_binary(
name = "hello-world",
srcs = ["hello_world.ml"],
deps = [":hello-world-lib"],

)

Buck2 for OCaml Development Hello world!

Bytecode vs. native

Use the bytecode sub-target to produce OCaml programs built via ocamlc:
Run native executable

buck2 run ’:hello-world’

Run bytecode (standalone) executable
buck2 run ’:hello-world[bytecode]’

Use --show-output to locate materialized artifacts:
buck2 target ’:hello-world’ --show-output

buck-out/.../hello_world/__hello-world__/hello-world.opt

buck2 target ’:hello-world[bytecode]’ --show-output
buck-out/.../hello_world/__hello-world__/hello-world

Buck2 for OCaml Development Hello world!

Native rules

The full set of Buck2 prelude OCaml rules:
prebuilt_ocaml_library (’.cma’, ’.cmxa’)
ocaml_library (’.cma’, ’.cmxa’)
ocaml_binary (’.opt’ or no extension)
ocaml_object (’.o’)
ocaml_shared (’.cmxs’)1

1Native code plugin suitable for use with the Dynlink module

https://v2.ocaml.org/api/Dynlink.html

Buck2 for OCaml Development Third-party setup

Integrating OPAM

Figure: Symlinks into .opam

2
2Scripts to help OCaml projects using Buck2 facebook/ocaml-scripts.

https://github.com/facebook/ocaml-scripts

Buck2 for OCaml Development Third-party setup

Prebuilt libraries

Example (Defining a prebuilt library)
prebuilt_ocaml_library(

name = "ppxlib",
include_dir = "opam/lib/ppxlib",
native_lib = "opam/lib/ppxlib/ppxlib.cmxa",
...

)

Example (Using a prebuilt library)
ocaml_library(

name = "ppx-record-selectors",
deps = ["//third-party/ocaml:ppxlib", ...],
...

)

Buck2 for OCaml Development Accessing the OCaml toolchain

Parsers, lexers and interfacing with C

Example (Using ocamllex, menhir)
build & run with: buck2 run //ocaml/calc:calc
ocaml_binary(

name = "calc",
srcs = ["calc.ml","lexer.mll", "parser.mly",],

)

Example (Interfacing with C)
ocaml_binary(

name = "...",
srcs = ["fib.ml", "fib.c",],

)

Buck2 for OCaml Development Defining and using PPXs

Defining a Ppx

Example (Define ’record selectors’)
ocaml_library(

name = "ppx-record-selectors",
srcs = ["record_selectors.ml"],
deps = ["//third-party/ocaml:ppxlib"],

)
ocaml_binary(

name = "ppx",
srcs = ["ppx_driver.ml"],
compiler_flags = ["-linkall"],
deps = [":ppx-record-selectors",],

)

Figure: ’record selectors.ml’

Figure: ’ppx driver.ml’

Buck2 for OCaml Development Defining and using PPXs

Using a Ppx

Figure: ’ppx record selectors test.ml’

Inspecting preprocessed source

Use the ’expand’ sub-target to make the
elaborated program text available for
inspection (e.g.
buck2 build //ocaml/ppx:’ppx-record-selectors-test[expand]’).

Example (Use ’record selectors’)
ocaml_binary(

name = "ppx-record-selectors-test",
srcs = ["ppx_record_selectors_test.ml"],
compiler_flags = ["-ppx", "$(exe_target :ppx) --as-ppx"],

)

Buck2 for OCaml Development Extending & Embedding

Embedding

Example (OCaml)
ocaml_object(
name = "fib-ml",
srcs = ["fib.ml"]

)

Example (C++)
cxx_binary(
name = "fib-cpp",
srcs = ["fib.cpp"],
deps = [":fib-ml", ...],

)

User defined primitive written in
OCaml...

Figure: ’fib.ml’

... linked with and called from C++.

Figure: ’fib.cpp’

Buck2 for OCaml Development Extending & Embedding

Extending

User defined primitive, written in Rust...

Figure: ’hello stubs.rs’

... linked with and called from OCaml.

Figure: ’hello.ml’

Example (Rust)
rust_library(

name = "hello-stubs-rs",
srcs = ["hello_stubs.rs"],

)

Example (OCaml)
ocaml_binary(

name = "hello-rs",
srcs = ["hello.ml"],
deps = [":hello-stubs-rs"],

)

Buck2 for OCaml Development ”Wrapped” libraries

mylib

’mylib.mli’: alias map

’mylib A.ml’ implements A

’mylib B.ml’ implements B

Exercising mylib functions requires qualified syntax (’test Mylib.ml’):

Buck2 for OCaml Development ”Wrapped” libraries

mylib targets

export_file(name = "mylib.mli", src = "mylib.mli")

ocaml_library(
name = "mylib__",
srcs = ["mylib.ml", ":mylib.mli"],
compiler_flags = ["-no-alias-deps", "-w","-49"],

)

ocaml_library(
name = "mylib",
srcs = ["mylib__A.ml", "mylib__B.ml"],
compiler_flags = ["-no-alias-deps", "-w","-49", "-open","Mylib"],
ocamldep_flags = ["-open","Mylib", "-map","$(location :mylib.mli)"],
deps = [":mylib__"],

)

Buck2 vs Dune

Roadmap
1 Buck2 overview

About
Goals, properties & features

2 Buck2 for OCaml Development
Hello world!
Third-party setup
Accessing the OCaml toolchain
Defining and using PPXs
Extending & Embedding
”Wrapped” libraries

3 Buck2 vs Dune
Performance comparisons

4 Questions? Comments?
5 Bibliography

Buck2 vs Dune Performance comparisons

Pyre
Pyre is a typechecker for Python with ≈ 300 files. With Buck2, a build can be obtained from a full remote cache in ≈ 12s. Tests on a 72 core VM:

Tool Time RSS

Dune 4m25s 377KB
Buck2 3m09s 180KB

Table: Dev, single thread

Tool Time RSS

Dune 0m51s 377KB
Buck2 0m33s 180KB

Table: Dev, default thread settings

Tool Time RSS

Dune 7m54s 480KB
Buck2 7m11s 180KB

Table: Release, single thread

Tool Time RSS

Dune 3m56s 377KB
Buck2 4m23s 178KB

Table: Release, default thread settings

Buck2 vs Dune Performance comparisons

Flow
Flow is a multi-purpose binary for JavaScript language services with ≈ 1000 files. With Buck2, a build can be obtained from a full remote cache in ≈ 12s. Tests on
a 72 core VM:

Tool Time

Dune 4m38s
Buck2 6m33s

Table: Dev, single thread

Tool Time

Dune 0m41s
Buck2 0m59s

Table: Dev, default thread settings

Tool Time

Dune 4m56s
Buck2 9m33s

Table: Release, single thread

Tool Time

Dune 1m35s
Buck2 2m42s

Table: Release, default thread settings

Questions? Comments?

Roadmap
1 Buck2 overview

About
Goals, properties & features

2 Buck2 for OCaml Development
Hello world!
Third-party setup
Accessing the OCaml toolchain
Defining and using PPXs
Extending & Embedding
”Wrapped” libraries

3 Buck2 vs Dune
Performance comparisons

4 Questions? Comments?
5 Bibliography

Bibliography

Roadmap
1 Buck2 overview

About
Goals, properties & features

2 Buck2 for OCaml Development
Hello world!
Third-party setup
Accessing the OCaml toolchain
Defining and using PPXs
Extending & Embedding
”Wrapped” libraries

3 Buck2 vs Dune
Performance comparisons

4 Questions? Comments?
5 Bibliography

Bibliography

References

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones.
Build systems à la carte.
In Proceedings of the ACM on Programming Languages, Volume 2 Issue ICFP,
2018.

	Buck2 overview
	About
	Goals, properties & features

	Buck2 for OCaml Development
	Hello world!
	Third-party setup
	Accessing the OCaml toolchain
	Defining and using PPXs
	Extending & Embedding
	"Wrapped" libraries

	Buck2 vs Dune
	Performance comparisons

	Questions? Comments?
	Bibliography

