
Ada: Generics
Neil Mitchell

http://www.cs.york.ac.uk/~ndm/ads.pdf

Want to follow along?

Again, again, again

Dave writes a linked list package for
characters

Sue writes a linked list package for integers
Ed writes a linked list package for booleans

What if Dave had written a linked list package
for <anything>?

Sue and Ed could have gone to the pub!

Generics allows Dave to do this

Generic?

Value Value
Function

Type Package
Generic Package

Value Action
Procedure

Type Function
Generic Function

procedure Swap_Float(X,Y: in out Float) is

T : Float;

begin

T := X;

X := Y;

Y := T;

end;

Swap_Float

generic

type Item is private;

procedure Swap(X,Y: in out Item);

procedure Swap(X,Y: in out Item) is

T: Item;

begin T := X; X := Y; Y:= T; end Swap;

-- an instantiation, which we use

procedure Swap_Float is new Swap(Float);

Swap (generic procedure)

generic

type Element is private;

package List is

type List is private;

Nil : constant List;

function Null_Query(L : List) return Boolean;

function Cons(Head : Element; Tail : List)

return List;

... -- other useful methods

private

... -- as before

end List;

Generic package specification

Note:
Save as “list.ads”

package body List is

function Null_Query (L : List) return Boolean is

begin return L = Nil;

end Null_Query;

function Cons(Head : Element; Tail : List)

return List is

begin

return new Cell'(Content => Head

,Next => Tail);

end Cons;

end List;

Generic package body

Note:
Save as “list.adb”

with List; -- import

procedure Test is

-- instantiate

package List_Integer is new List(Integer);

-- use

Ns : List_Integer.List := List_Integer.Nil;

begin

Ns := List_Integer.Cons(Head => 6, Tail => Ns);

...;

end Test;

Using a generic package

Note:
Save as “test.adb”

generic

type Element is <something>;

package List is

limited private = use as parameter type,
declare variables

private = limited private + assign and test
for equality

(<>) = private + treat as discrete type
(T’First, T’Range, etc)

Generic type parameters

Request: print a list
 procedure Put(L : List);

Impossible!

An item in list is generic

We don’t know how to write it to the screen

Solution: the user tells us how
 with procedure Element_Put(E : in Element);

Procedures as Parameters

generic

type Element is private;

with procedure Element_Put(E : in Element);

package List is

procedure Put(L : in List);

... -- as before

end List;

procedure Put(L : in List) is

begin

if not Null_Query(L) then

Element_Put(Head(L));

Implementing Put

with Ada.Text_IO, List;

procedure Test is

package List_Char is new List

(Element => Character

,Element_Put => Ada.Text_IO.Put);

Hi : List_Char.List := ...;

begin

List_Char.Put(Hi);

end Test;

Using Put

Each List package provides an unlimited
number of values:
◦Every operation takes a List parameter

◦Which data structure to operate on

◦Abstract Data Type (ADT)

An alternative is to have one value in one
package
◦No more saying which data structure

◦Can sometimes be simpler

◦Abstract Object

One package, one value?

generic

type Element is private;

with procedure Put(E : in Element);

package One_List is

-- Note: no exported type or constants!

-- All the state is in the body

-- A new facility (replaces constant Nil)

procedure Reset;

function Null_Query return Boolean;

procedure Cons(Head : in Element);

...

-- Note: no private section!

end One_List;

Abstract Object: Specification

with List;

package body One_List is

package List_Element is new List

(Element => Element, Put => Put);

The_List : List_Element.List;

function Null_Query return Boolean is

begin return List_Element.Null_Query(The_List);

end Null_Query;

procedure Cons(Head : in Element) is

begin The_List := List_Element.Cons(Head, The_List);

end Cons;

begin

Reset;

end One_List;

Abstract Object: Body

with One_List;

procedure Classify is

package Marks is new One_List(Integer, Num_Out);

package Age is new One_List(Natural, Num_Out);

begin

Marks.Cons(99); -- cheated, not caught

Marks.Cons(70); -- revised hard

Marks.Cons(-5); -- cheated, caught, expelled

Marks.Put;

Marks.Reset; -- get rid of last years marks

if Age.Null_Query then

Age.Cons(21);

Abstract Object: Use

Work through the exercises
◦No more of us talking at the start of practicals

◦Go from where you are

◦Get as far as you can

If you are struggling
◦Stick your hand up, get some help now

◦You will be expected to be able to program Ada for
the open assessment

◦You will not get Ada help during that time

What to do now?

