
Ada: Generics
Neil Mitchell

http://www.cs.york.ac.uk/~ndm/ads.pdf

Want to follow along?

Again, again, again

Dave writes a linked list package for
characters

Sue writes a linked list package for integers
Ed writes a linked list package for booleans

What if Dave had written a linked list package
for <anything>?

Sue and Ed could have gone to the pub!

Generics allows Dave to do this

Generic?

Value Value
Function

Type Package
Generic Package

Value Action
Procedure

Type Function
Generic Function

procedure Swap_Float(X,Y: in out Float) is

T : Float;

begin

T := X;

X := Y;

Y := T;

end;

Swap_Float

generic

type Item is private;

procedure Swap(X,Y: in out Item);

procedure Swap(X,Y: in out Item) is

T: Item;

begin T := X; X := Y; Y:= T; end Swap;

-- an instantiation, which we use

procedure Swap_Float is new Swap(Float);

Swap (generic procedure)

generic

type Element is private;

package List is

type List is private;

Nil : constant List;

function Null_Query(L : List) return Boolean;

function Cons(Head : Element; Tail : List)

return List;

... -- other useful methods

private

... -- as before

end List;

Generic package specification

Note:
Save as “list.ads”

package body List is

function Null_Query (L : List) return Boolean is

begin return L = Nil;

end Null_Query;

function Cons(Head : Element; Tail : List)

return List is

begin

return new Cell'(Content => Head

,Next => Tail);

end Cons;

end List;

Generic package body

Note:
Save as “list.adb”

with List; -- import

procedure Test is

-- instantiate

package List_Integer is new List(Integer);

-- use

Ns : List_Integer.List := List_Integer.Nil;

begin

Ns := List_Integer.Cons(Head => 6, Tail => Ns);

...;

end Test;

Using a generic package

Note:
Save as “test.adb”

generic

type Element is <something>;

package List is

limited private = use as parameter type,
declare variables

private = limited private + assign and test
for equality

(<>) = private + treat as discrete type
(T’First, T’Range, etc)

Generic type parameters

Request: print a list
 procedure Put(L : List);

Impossible!

An item in list is generic

We don’t know how to write it to the screen

Solution: the user tells us how
 with procedure Element_Put(E : in Element);

Procedures as Parameters

generic

type Element is private;

with procedure Element_Put(E : in Element);

package List is

procedure Put(L : in List);

... -- as before

end List;

procedure Put(L : in List) is

begin

if not Null_Query(L) then

Element_Put(Head(L));

Implementing Put

with Ada.Text_IO, List;

procedure Test is

package List_Char is new List

(Element => Character

,Element_Put => Ada.Text_IO.Put);

Hi : List_Char.List := ...;

begin

List_Char.Put(Hi);

end Test;

Using Put

Each List package provides an unlimited
number of values:
◦Every operation takes a List parameter

◦Which data structure to operate on

◦Abstract Data Type (ADT)

An alternative is to have one value in one
package
◦No more saying which data structure

◦Can sometimes be simpler

◦Abstract Object

One package, one value?

generic

type Element is private;

with procedure Put(E : in Element);

package One_List is

-- Note: no exported type or constants!

-- All the state is in the body

-- A new facility (replaces constant Nil)

procedure Reset;

function Null_Query return Boolean;

procedure Cons(Head : in Element);

...

-- Note: no private section!

end One_List;

Abstract Object: Specification

with List;

package body One_List is

package List_Element is new List

(Element => Element, Put => Put);

The_List : List_Element.List;

function Null_Query return Boolean is

begin return List_Element.Null_Query(The_List);

end Null_Query;

procedure Cons(Head : in Element) is

begin The_List := List_Element.Cons(Head, The_List);

end Cons;

begin

Reset;

end One_List;

Abstract Object: Body

with One_List;

procedure Classify is

package Marks is new One_List(Integer, Num_Out);

package Age is new One_List(Natural, Num_Out);

begin

Marks.Cons(99); -- cheated, not caught

Marks.Cons(70); -- revised hard

Marks.Cons(-5); -- cheated, caught, expelled

Marks.Put;

Marks.Reset; -- get rid of last years marks

if Age.Null_Query then

Age.Cons(21);

Abstract Object: Use

Work through the exercises
◦No more of us talking at the start of practicals

◦Go from where you are

◦Get as far as you can

If you are struggling
◦Stick your hand up, get some help now

◦You will be expected to be able to program Ada for
the open assessment

◦You will not get Ada help during that time

What to do now?

