
Accelerating Builds
with Buck2

Neil Mitchell
Programmer, Meta

Buck2 is…

● A build system

● Developed and used by Meta

● Supports many languages (C++, Rust,

Python, Go, OCaml, Erlang…)

● Designed for large mono repos

● Open source - buck2.build

github.com/facebook/buck2

● 2x as fast as Buck1 😎

https://buck2.build
https://github.com/facebook/buck2

$ buck2 build //buck2:buck2
File changed: //buck2/app/buck2_core/src/cells/paths.rs
Network: Up: 2.4MiB 2.0MiB/s Down: 568B
Command: build. Remaining: 138/27K. Cache hits: 72%. Time elapsed: 49.5s
--
//buck2/app/buck2_query:buck2_query -- action (rustc metadata) [re_execute + 1] 2.4s
//buck2/app/buck2_events:buck2_events -- action (rustc link) [re_upload + 1] 2.4s
//buck2/app/buck2_query:buck2_query -- action (rustc link) [re_upload + 1] 2.4s
//buck2/app/buck2_test_api:buck2_test_api -- action (rustc link) [re_upload 0.2s + 1] 0.4s
//buck2/shed/more_futures:more_futures -- action (rustc link) [re_download 0.2s + 1] 0.4s
//buck2/app/buck2_test_api:buck2_test_api -- action (rustc metadata) [re_upload 0.2s + 1] 0.4s
//buck2/shed/more_futures:more_futures -- action (rustc metadata) [re_upload 0.2s + 1] 0.4s

//buck2:buck2 is a target, which depends on targets like
//buck2/app/buck2_events:buck2_events

Targets

BUCK

rust_binary(

 name = "buck2",

 srcs = ["bin/buck2.rs"],

 deps = [

 "//third-party/rust:anyhow",

 "//buck2/app/buck2_events:buck2_events",

 …

],

)
Written in Starlark, aka
deterministic simple Python

Rules from Meta are
available,
but you can write your own

Libraries/binaries/tests

Supports many languages
● C++
● Python
● Rust
● Erlang
● OCaml
● Go
● Haskell
● …

Plus downloads, shell
commands, aliases etc

Build graph

APIs

Starlark interpreter
● Profiling
● LSP/DAP
● Linter
● Typechecker

Console output

Logging/events

Performance!
● Parallelism
● Incrementality
● I/O
● Remote execution

Written by the user

Specific to each project

Can use Starlark functions to
abstract over common
patterns

Core
Rust

Rules
Starlark

Targets
Starlark

API Rules

Faster!

● 2x as fast as Buck1 😎
● Waiting 10 minutes → 5 minutes ⏰
● Engineers whose builds were sped up

by Buck2 often produced meaningfully

more code 💻

Performance 1 of 5: Abstraction

Good APIs mean you can optimize the core,
without rewriting the rules.

Starlark/Rust boundary is a strong abstraction.
Requires good API design, powerful APIs.
API should say what to do, but be insulated from how.

In Buck1, rules were written co-mingled with the core,
prevented optimisations.

Performance 2 of 5: Parallel + incremental

A single graph on which all computations live.

Computations are functions from keys to values,
which may access the values of other keys.

e.g. read a file, evaluate Starlark, run a command line

Those computations are run in parallel with dependency tracking.
Some computations (e.g. read file) can get invalidated externally.

Performance 3 of 5: Remote execution

Can run commands on an external server.
Reuse the Bazel Remote Execution API

★ CAS (Content Addressable Storage) maps hashes to files.
★ Execution server takes a hash of command line plus input files,

runs it, producing output hashes.

More parallelism - can spawn 1000’s of compiles.
More incrementality - execution server can also cache.

Performance 4 of 5: Virtual files

I/O is expensive!

Intermediate files don’t have to be downloaded if going remote.
Just use hashes in memory, download final result.

Integrates with Eden file system (from Meta) backed by version
control. Hash a file without having it locally.

Maybe one day: use a virtual file system for the output too.

Performance 5 of 5: Avoid O(repo)

Big repo ⇒ O(repo) ≅ O(😴)

Checking modtime of every file in the repo is too slow.
Use inotify or Watchman (from Meta) to watch for changed files.
Watchman also knows about Eden.

Store graph reverse-dependencies for fast invalidation.

Never scan the entire repo - just the subset you use.

The good The bad
● Powerful, fast, modern build

system

● Actively developed

● Open source.
○ Diffs go upstream ~15 min
○ We accept PRs
○ Same as internal version

(minus RE server)

● Changing build system is
hard!

● New - only a few external
users

● Some rules don’t work open
source yet (Java, iOS)

● Integration with package
managers a bit weak

Questions?

https://buck2.build

https://github.com/facebook/buck2

https://buck2.build
https://github.com/facebook/buck2

