Accelerating Builds
with Buck?2

Neil Mitchell
Programmer, Meta

N Meta

e A build system
e Developed and used by Meta

e Supports many languages (C++, Rust,

Python, Go, OCaml, Erlang...)

Buck? is...

e Designed for large mono repos

e Open source - buck?2.build

github.com/facebook/buck?

e 2x as fast as Buck1 ==

https://buck2.build
https://github.com/facebook/buck2

S buck2 build //buck2:buck2

File changed: //buck2/app/buck2_core/src/cells/paths.rs

Network: Up: 2.4MiB 2.0MiB/s Down: 568B

Command: build. Remaining: 138/27K. Cache hits: 72%. Time elapsed: 49.

/ /buck2/app/buck2_query:buck2_query -- action (rustc metadata) [re_execute + 1]

/ /buck2/app/buck2_events:buck2_events -- action (rustc link) [re_upload + 1]

/ /buck2/app/buck2_query:buck2_query -- action (rustc link) [re_upload + 1]
//buck2/app/buck?2_test_api:buck2_test_api -- action (rustc link) [re_upload 6.2s + 1]
//buck2/shed/more_futures:more_futures -- action (rustc link) [re_download 0.2s + 1]
//buck2/app/buck2_test_api:buck2_test_api -- action (rustc metadata) [re_upload 0.2s + 1]
//buck2/shed/more_futures:more_futures -- action (rustc metadata) [re_upload 0.2s + 1]

/ /buck2:buck2 is a target, which depends on targets like
/ /buck2/app/buck2_events:buck2_events

BUCK

rust_binary(
name = "buck?2"”,

srcs = ["bin/buck2.rs"],

deps = |

Targets

"[/third-party/rust:anyhow"”,
"[/buck2/app/buck2_events:buck2_events”,

Written in Starlark, aka
deterministic simple Python

Core
Rust

Build graph
APls

Starlark interpreter
e Profiling

e LSP/DAP

e Linter

e T[ypechecker

Console output
Logging/events

Performance!

e Parallelism

e Incrementality

o |/O

e Remote execution

API

Rules
Starlark

Rules from Meta are
available,
but you can write your own

Libraries/binaries/tests

Supports many languages
C++

Python

Rust

Erlang

OCaml

Go

Haskell

Plus downloads, shell
commands, aliases etc

Rules

Targets
Starlark

Written by the user
Specific to each project
Can use Starlark functions to

abstract over common
patterns

e 2Xx as fast as Buck1 ==
e Waiting 10 minutes — 5 minutes

Faster! e Engineers whose builds were sped up
by Buck?2 often produced meaningfully

more code M

Performance 1 of 5: Abstraction

Good APIls mean you can optimize the core,
without rewriting the rules.

Starlark/Rust boundary is a strong abstraction.
Requires good API design, powerful APls.
APl should say what to do, but be insulated from how.

In Buck1, rules were written co-mingled with the core,
prevented optimisations.

Performance 2 of 5: Parallel + incremental

A single graph on which all computations live.

Computations are functions from keys to values,

which may access the values of other keys.
e.g. read a file, evaluate Starlark, run a command line

Those computations are run in parallel with dependency tracking.
Some computations (e.g. read file) can get invalidated externally.

Performance 3 of 5: Remote execution

Canrun Commands OonNn an external server.
Reuse the Bazel Remote Execution API

% CAS (Content Addressable Storage) maps hashes to files.
% Execution server takes a hash of command line plus input files,
runs it, producing output hashes.

More parallelism - can spawn 1000’s of compiles.
More incrementality - execution server can also cache.

Performance 4 of 5: Virtual files

/O is expensive!

Intermediate files don’t have to be downloaded if going remote.
Just use hashes in memory, download final result.

Integrates with Eden file system (from Meta) backed by version
control. Hash a file without having it locally.

Maybe one day: use a virtual file system for the output too.

Performance 5 of 5: Avoid O(repo)

Big repo = O(repo) = O(=)

Checking modtime of every file in the repo is too slow.

Use inotify or Watchman (from Meta) to watch for changed files.
Watchman also knows about Eden.

Store graph reverse-dependencies for fast invalidation.

Never scan the entire repo - just the subset you use.

The good

e Powerful, fast, modern build
system

e Actively developed

e Open source.
o Diffs go upstream ~15 min
o We accept PRs
o Same as internal version
(minus RE server)

The bad

e Changing build system is
hard!

e New - only a few external
users

e Some rules don’t work open
source yet (Java, iOS)

e |Integration with package
managers a bit weak

Questions?

https://buck?2.build

https://github.com/facebook/buck? 0Q Meta

https://buck2.build
https://github.com/facebook/buck2

