
Yhc.Core – from Haskell to Core

by Dimitry Golubovsky 〈golubovsky@gmail.com〉
and Neil Mitchell 〈ndm@cs.york.ac.uk〉
and Matthew Naylor 〈mfn@cs.york.ac.uk〉

The Yhc compiler is a hot-bed of new and interesting ideas. We present Yhc.Core
– one of the most popular libraries from Yhc. We describe what we think makes
Yhc.Core special, and how people have used it in various projects including an
evaluator, and a Javascript code generator.

What is Yhc Core?

The York Haskell Compiler (Yhc) [1] is a fork of the nhc98 compiler [2], started
by Tom Shackell. The initial goals included increased portability, a platform inde-
pendent bytecode, integrated Hat [3] support and generally being a cleaner code
base to work with. Yhc has been going for a number of years, and now compiles
and runs almost all Haskell 98 programs and has basic FFI support – the main
thing missing is the Haskell base library.

Yhc.Core is one of our most successful libraries to date. The original nhc com-
piler used an intermediate core language called PosLambda – a basic lambda cal-
culus extended with positional information. The language was neither a subset nor
a superset of Haskell. In particular there were unusual constructs and all names
were stored in a symbol table. There was also no defined external representation.

When one of the authors required a core Haskell language, after evaluating
GHC Core [4], it was decided that PosLambda was closest to what was desired
but required substantial clean up. Rather than attempt to change the PosLambda
language, a task that would have been decidedly painful, we chose instead to write
a Core language from scratch. When designing our Core language, we took ideas
from both PosLambda and GHC Core, aiming for something as simple as possible.
Due to the similarities to PosLambda we have written a translator from our Core
language to PosLambda, which is part of the Yhc compiler.

Our idealised Core language differs from GHC Core in a number of ways:

1



The Monad.Reader

I Untyped – originally this was a restriction of PosLambda, but now we see
this as a feature, although not everyone agrees.

I Syntactically a subset of Haskell.

I Minimal name mangling.

All these features combine to create a Core language which resembles Haskell
much more than Core languages in other Haskell compilers. As a result, most
Haskell programmers can feel at home with relatively little effort.

By keeping a much simpler Core language, it is less effort to learn, and the
number of projects depending on it has grown rapidly. We have tried to add facil-
ities to the libraries for common tasks, rather than duplicating them separately in
projects. As a result the Core library now has facilities for dealing with primitives,
removing recursive lets, reachability analysis, strictness analysis, simplification,
inlining and more.

One of the first features we added to Core was whole program linking – any
Haskell program, regardless of the number of modules, can be collapsed into one
single Yhc.Core module. While this breaks separate compilation, it simplifies
many types of analysis and transformation. If a such an analysis turns out to be
successful then breaking the dependence on whole program compilation is a worthy
goal – but this approach allows developers to pay that cost only when it is needed.

A Small Example

To give a flavour of what Core looks like, it is easiest to start with a small program:

head2 (x:xs) = x

map2 f [] = []

map2 f (x:xs) = f x : map2 f xs

test x = map2 head2 x

Compiling with yhc -showcore Sample.hs generates:

Sample.head2 v220 =

case v220 of

(:) v221 v222 -> v221

_ -> Prelude.error Sample._LAMBDA228

2



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

Sample._LAMBDA228 =

"Sample: Pattern match failure in function at 9:1-9:15."

Sample.map2 v223 v224 =

case v224 of

[] -> []

(:) v225 v226 -> (:) (v223 v225) (Sample.map2 v223 v226)

Sample.test v227 = Sample.map2 Sample.head2 v227

The generated Core can be treated as a subset of Haskell, with many restrictions:

I Case statements only examine their outermost constructor

I No type classes

I No where statements

I Only top-level functions.

I All names are fully qualified

I All constructors and primitives are fully applied

Yhc.Core.Overlay

We provide many library functions to operate on Core, but one of our most unusual
features is the overlay concept. Overlays specify modifications to be made to a
piece of code – which functions should be replaced, which ones inserted, which
data structures modified. By combining a Core file with an overlay, modifications
can be made after translation from Haskell to Core. This idea originated in the
Mozilla project [5], and is used successfully to enable extensions in Firefox, and
elsewhere throughout their platform.

To take a simple example, in Haskell there are two common definitions for
reverse:

reverse = foldl (flip (:)) []

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

3



The Monad.Reader

The first definition uses an accumulator, and takes O(n). The second definition
requires O(n2), as the tail element is appended onto the whole list. Clearly a
Haskell compiler should pick the first variant. However, a program analysis tool
may wish to use the second variant as it may present fewer analysis challenges.
The overlay mechanism allows this to be done easily.

The first step is to write an overlay file:

global_Prelude’_reverse [] = []

global_Prelude’_reverse (x:xs) = global_Prelude’_reverse xs ++ [x]

This Overlay file contains a list of functions whose definitions we would like to
replace. Any function that previously called Prelude.reverse will now invoke
this new copy. For a program to insert an overlay, both Haskell files need to be
compiled to Core, then the overlay function is called.

But we need not stop at simply replacing the reverse function. Yhc defines an
IO type as a function over the World type, but for some applications this may not
be appropriate. We can redefine IO as:

data IO a = IO a

global_Monad’_IO’_return a = IO a

global_Monad’_IO’_’gt’gt (IO a) b = b

global_Monad’_IO’_’gt’gt’eq (IO a) f = f a

global_YHC’_Internal’_unsafePerformIO (IO a) = a

The Overlay mechanism supports escape characters – ’gt is the > character –
allowing us to replace the bind and return methods.

We have found that with Overlays a compiler can be customized for many dif-
ferent tasks, without causing conflicts. With one code base, we can allow different
programs to modify the libraries to suit their needs. Taking the example of Int ad-
dition, there are at least three different implementations in use: Javascript native
numbers, binary arithmetic on a Haskell data type and abstract interpretation.

Semantics of Yhc Core

In this section an evaluator for Yhc Core programs is presented in the form of
a literate Haskell program. The aim is to define the informal semantics of Core
programs while demonstrating a full, albeit simple, application of the Yhc.Core

library.

4



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

module Main where

import Yhc.Core

import System

import Monad

Our evaluator is based around the function whnf that takes a Core program
(of type Core) along with a Core expression (of type CoreExpr) and reduces that
expression until it has the form of:

I a data constructor with unevaluated arguments, or

I an unapplied lambda expression.

In general, data values in Haskell are tree-shaped. The function whnf is often
said to “reduce an expression to head normal form” because it reveals the head (or
root) of a value’s tree and no more. Stricly speaking, when the result of reduction
could be a functional value (i.e. a lambda expression), and the body of that lambda
is left unevaluated, then the result is said to be in “weak head normal form” – this
explains the strange acronym.

The type of whnf is:

whnf :: Core -> CoreExpr -> CoreExpr

Defining it is a process of taking each kind of Core expression in turn, and asking
“how do I reduce this to weak head normal form?” As usual, it makes sense to
define the base cases first, namely constructors and lambda expressions:

whnf p (CoreCon c) = CoreCon c

whnf p (CoreApp (CoreCon c) as) = CoreApp (CoreCon c) as

whnf p (CoreLam (v:vs) e) = CoreLam (v:vs) e

Notice that a constructor may take one of two forms: stand-alone with no ar-
guments, or as function application to a list of arguments. Also, because of the
way our evaluator is designed, we may encounter lambda expressions with no ar-
guments. Hence, only lambdas with arguments represent a base-case. For the
no-arguments case, we just shift the focus of reduction to the body:

whnf p (CoreLam [] e) = whnf p e

5



The Monad.Reader

Currently, lambda expressions do not occur in the Core output of Yhc. They
are part of the Core syntax because they are useful conceptually, particularly when
maniplating (and evaluating) higher-order functions.

Moving on to case-expressions, we first reduce the case subject, then match it
against each pattern in turn, and finally reduce the body of the chosen alternative.
In Core, we can safely assume that patterns are at most one constructor deep, so
reduction of the subject to WHNF is sufficient.

whnf p (CoreCase e as) = whnf p (match (whnf p e) as)

We defer the definition of match for the moment.
To reduce a let-expression, we substitute the let-bindings in the body of the let.

This is easily done using the Core function replaceFreeVars. Like in Haskell,
let-expressions in Core are recursive, but before evaluating a Core program we
transform them all to non-recursive lets (see below). Notice that we are in no way
trying to preserve the sharing implied by let-expressions, although we have done
so in more complex variants of the evaluator. Strictly speaking, Haskell evaluators
are not obliged to implement sharing – this is why it is more correct to term Haskell
non-strict than lazy.

whnf p (CoreLet bs e) = whnf p (replaceFreeVars bs e)

When we ecounter an unapplied function we call coreFunc to lookup its defi-
nition (i.e. its arguments and its right-hand-side), and construct a corresponding
lambda expression:

whnf p (CoreFun f) = whnf p (CoreLam bs body)

where

CoreFunc _ bs body = coreFunc p f

This means that when reducing function applications, we know that reduction
of the function part will yield a lambda:

whnf p (CoreApp f []) = whnf p f

whnf p (CoreApp f (a:as)) = whnf p (CoreLet [(b,a)]

(CoreApp (CoreLam bs e) as))

where

CoreLam (b:bs) e = whnf p f

Core programs may contain information about where definitions originally oc-
curred in the Haskell source. We just ignore these:

whnf p (CorePos _ e) = whnf p e

6



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

And the final, fall-through case covers primitive literals and functions which we
are not concerned with here:

whnf p e = e

Now, for the sake of completeness, we return to our match function. It takes
the evaluated case subject and tries to match it against each case-alternative (a
pattern-expression pair) in order of appearance. We use the “failure by a list of
successes” technique [6] to model the fact that matching may fail.

type Alt = (CoreExpr, CoreExpr)

match :: CoreExpr -> [Alt] -> CoreExpr

match e as = head (concatMap (try e) as)

Before defining try, it is useful to have a function that turns the two possible
constructor forms into a single normal form. This greatly reduces the number of
cases we need to consider in the definition of try.

norm :: CoreExpr -> CoreExpr

norm (CoreCon c) = CoreApp (CoreCon c) []

norm x = x

Hopefully, by now the definition of try will be self-explanatory:

try :: CoreExpr -> Alt -> [CoreExpr]

try e (pat, rhs) =

case (norm pat, norm e) of

(CoreApp (CoreCon f) as, CoreApp (CoreCon g) bs)

| f == g -> [CoreLet (zip (vars as) bs) rhs]

(CoreVar v, e) -> [CoreLet [(v, e)] rhs]

_ -> []

where

vars = map fromCoreVar

This completes the definition of whnf. However, we would like to be able to fully
evaluate expressions – to what we simply call “normal form”– so that the resulting
value’s tree is computed in its entirety. Our nf function repeatedly applies whnf

at progressively deeper nodes in the growing tree:

7



The Monad.Reader

nf :: Core -> CoreExpr -> CoreExpr

nf p e =

case whnf p e of

CoreCon c -> CoreCon c

CoreApp (CoreCon c) es -> CoreApp (CoreCon c) (map (nf p) es)

e -> e

All that remains is to turn our evaluator into a program by giving it a sen-
sible main function. We first load the Core file using loadCore and then ap-
ply removeRecursiveLet, as discussed ealier, before evaluating the expression
CoreFun "main" to normal form and printing it.

main :: IO ()

main = liftM head getArgs

>>= liftM removeRecursiveLet . loadCore

>>= print . flip nf (CoreFun "main")

In future we hope to use a variant of this evaluator (with sharing) in a property-
based testing framework. This will let us check that various program analyses
and transformations that we have developed are semantics-preserving. As part
of another project, we have sucessfully extended the evaluator to support various
functional-logic evaluation strategies.

Javascript backend

The Javascript backend is a unique feature of Yhc. The idea to write a converter
from Haskell to Javascript, enabling the execution of Haskell programs in a web
browser, has been floating around for some time [7, 8, 9]. Many people expressed
interest in such feature, but no practical implementation has emerged.

Initial goals of this subproject were:

I To develop a program that converts the Yhc Core to Javascript, thus making
it possible to execute arbitrary Haskell code within a web browser.

I To develop an unsafe interface layer for quick access to Javascript objects
with ability to wrap arbitrary Javascript code into a Haskell-callable function.

I To develop a typesafe interface layer on top of the unsafe interface layer
for access to the Document Object Model (DOM) available to Javascript
executed in a web browser.

I To develop or adopt an existing GUI library or toolkit working on top of the
typesafe DOM layer for actual development of client-side Web applications.

8



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

General concepts

The Javascript backend converts a linked and optimized Yhc Core file into a piece
of Javascript code to be embedded in a XHTML document. The Javascript code
generator tries to translate Core expressions to Javascript expressions one-to-one
with minor optimizations of its own, taking advantage of the Javascript capability
to pass functions around as values.

Three kinds of functions are present in the Javascript backend:

I Unsafe functions that embed pieces of Javascript directly into the generated
code: these functions pay no respect to types of arguments passed, and may
force evaluation of their arguments if needed.

I Typesafe wrappers that provide type signatures for unsafe functions. Such
wrappers are either handwritten, or automatically generated from external
interface specifications (such as the DOM interface).

I Regular library functions. These either come unmodified from the standard
Yhc packages, or are substituted by the Javascript backend using the Core
overlay technique. An example of such a function is the toUpper function
which is hooked up to the Javascript implementation supporting Unicode
(the original library function currently works correctly only for the Latin1
range of characters).

Unsafe interfaces

The core part of unsafe interface to Javascript (or, in other words, Javascript FFI)
is a pseudo-function unsafeJS. The function has a type signature:

foreign import primitive unsafeJS :: String -> a

The input is a String, but the type of the return value does not matter: the
function itself is never executed. Its applications are detected by the Yhc Core to
Javascript conversion program and dealt with at the time of Javascript generation.

The unsafeJS function should be called with a string literal. Both explicitly
coded (with (:)) lists of characters and the concatenation of two or more strings
will cause the converter to report an error.

A valid example of using unsafeJS is shown below:

global_YHC’_Primitive’_primIntSignum :: Int -> Int

global_YHC’_Primitive’_primIntSignum a = unsafeJS

"var ea = exprEval(a); if (ea>0) return 1; else if (ea<0)

return -1; else return 0;"

9



The Monad.Reader

This is a Javascript overlay (in the sense that it overlays the default Prelude
definition of the signum function) of a function that returns sign of an Int value.
The string literal given to unsafeJS is the Javascript code to be wrapped. Below
is the Javascript representation of this function found in generated code.

strIdx["F_hy"] = "YHC.Primitive.primIntSignum";

...

var F_hy=new HSFun("F_hy", 1, function(a){

var ea = exprEval(a); if (ea>0) return 1;

else if (ea<0) return -1; else return 0;});

Typesafe wrappers

These functions add type safety on top of unsafe interface to Javascript. Sometimes
they are defined within the same module as unsafe interfaces themselves, thus
avoiding the exposure of unsafe interfaces to programmers.

An example of a handwritten wrapper is a function to create a new JSRef: a
mechanism similar to Haskell’s IORef, but specific to Javascript.

data JSRef a

newJSRef :: a -> CPS b (JSRef a)

newJSRef a = toCPE (newJSRef’ a)

newJSRef’ a = unsafeJS "return {_val:a};"

Technically, a JSRef is a Javascript object with a property named val that holds
a persistent reference to some value. On the unsafe side, invoking a constructor
for such an object would be sufficient. It is however desired that:

I calls to functions creating such persistent references are properly sequenced
with calls to functions using these references, and

I the type of values referred to are known to the Haskell compiler.

The unsafe part is implemented by the function newJSRef’ which merely calls
unsafeJS with a proper Javascript constructor. The wrapper part newJSRef wraps
the unsafe function into a CPS-style function, and is given a proper type signature,
so more errors can be caught at compile time.

In some cases, such typesafe wrappers may be generated automatically, using
some external interface specifications provided by third parties for their APIs. The
W3C DOM interface is one such API. For instance, this piece of OMG IDL:

10



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

interface Text : CharacterData {

Text splitText(in unsigned long offset)

raises(DOMException);

};

is converted into:

data TText = TText

...

instance CText TText

instance CCharacterData TText

instance CNode TText

...

splitText :: (CText this, CText zz) => this -> Int -> CPS c zz

splitText a b = toCPE (splitText’ a b)

splitText’ a b

= unsafeJS "return((exprEval(a)).splitText(exprEval(b)));"

These instances and signatures give the Haskell compiler better control over this
function’s (initially type-agnostic) arguments.

Usage of Continuation Passing Style

Initially we attempted to build a monadic framework. The JS monad was designed
to play the same role as the IO monad plays in “regular” Haskell programming.
There were, however, arguments in favor of using Continuation Passing Style (CPS)
[10]:

I CPS involves less overhead as each expression passes its continuation itself,
instead of bind which takes the expression and invokes the continuation

I CPS results in Javascript patterns that are easy to detect and optimize,
although this is a not implemented yet.

I The Fudgets [11] GUI library internals are written in CPS, so taking CPS as
general approach to programming is believed to make adoption of Fudgets
easier.

Integration with DOM

The Web Consortium [12] provides OMG IDL [13] files to describe the API to use
with the Document Object Model (DOM) [14]. A utility was designed, based on

11



The Monad.Reader

HaskellDirect [15], to parse these files and convert them to set of Haskell mod-
ules. The way interface inheritance is reflected differs from HaskellDirect: in
HaskellDirect this was achieved by declaration of “nested” algebraic data types.
The Javascript backend takes advantage of Haskell typeclasses – representing DOM
types with phantom types, and declaring them instances of appropriate classes.

Unicode support

Despite the fact that all modern Web browsers support Unicode, this is not the
case with Javascript: no access to Unicode characters’ properties is provided. At
the same time it is desirable for a Haskell application running in a browser to have
access to such information. The approach used is the same as in Hugs [16] and
GHC [17]: the Unicode characters database file from the Unicode Consortium [18]
was converted into a set of Javascript arrays, each array entry represents a range
of character code values, or a case conversion rule for a range. For this imple-
mentation, Unicode support is limited to the character category, and simple case
conversions. First, a range is found by looking up the character code; then the
character category and case conversion distances, i.e. values to add to character
code to convert between upper and lower cases, are retrieved from the range entry.
The whole set of arrays adds about 70 kilobytes to the web page size, if embedded
inside a <script> tag.

Using the Core overlay technique, Haskell character functions (like toUpper,
isAlpha, etc.) were hooked up to the Javascript implementations supporting Uni-
code. This did not result in noticeable slowdowns; some browsers even showed a
minor speedup in functions like read::String -> Int that perform large amounts
of string manipulations.

Examples of code generation

The two examples below show conversion of real-life functions from Haskell, via
Core, to Javascript. It is important to mention that as the Javascript code gener-
ator evolves, the resultant code may do so too.

Example 1. Taking a function from a Roman Numeral package:

fromRoman = foldr fromNumeral 0 . maxmunch . map toUpper

When converted to Yhc Core this becomes:

Roman.fromRoman =

Prelude._LAMBDA27191

(Prelude._LAMBDA27191

12



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

(Prelude.map Data.Char.toUpper)

(Roman.maxmunch Prelude.Prelude.Num.Prelude.Int))

(Prelude.foldr

(Roman.fromNumeral

Prelude.Prelude.Num.Prelude.Int

Prelude.Prelude.Ord.Prelude.Int)

0)

Prelude._LAMBDA27191 v22167 v22166 v2007 = v22166 (v22167 v2007)

The introduced LAMBDA is similar to the composition function (.), only with
inverted order of application: _LAMBDA27191 f g x = g (f x)

When convert to Javascript we get:

/* fromRoman, code was formatted manually */

var F_g8=new HSFun("F_g8", 0, function(){

return (F_e9)._ap([(F_e9)._ap([new HSFun("F_gz", 0,

function(){

return (F_gz)._ap([F_Z]);

}), new HSFun("F_g9", 0,

function(){

return (F_g9)._ap([F_dC]);

})]), new HSFun("F_gp", 0,

function(){

return (F_gp)._ap([new HSFun("F_g7", 0,

function(){

return (F_g7)._ap([F_dC, F_d1]);

}), 0]);

})]);

});

/* _LAMBDA27191 */

var F_e9=new HSFun("F_e9", 3, function(_b3, _b2, _bO)

{return (_b2)._ap([(_b3)._ap([_bO])]);});

During the conversion to Javascript, all identifiers found in Yhc Core are re-
named to much shorter ones consisting only of alphanumeric characters and thus
surely valid for Javascript (identifiers in Yhc Core often are very long, or contain
special characters, etc.)

13



The Monad.Reader

While it is hard to understand anything from the Javascript for the fromRoman

function (other than that the Javascript backend already makes a good obfuscator),
something may be seen in the Javascript for the composition function. It builds
an application of its first argument to the third, and then the application of the
second to the previous application, and returns the latter.

Example 2. An example of a function whose implementation was replaced via the
Overlay technique is the isSpace function:

global_Data’_Char’_isSpace = f . ord

where f a = unsafeJS "return uIsSpace(exprEval(a));"

Translated to Core:

Data.Char.isSpace =

Prelude._LAMBDA27191

Data._CharNumeric.ord

StdOverlay.StdOverlay.Prelude.287.f

Translated to Javascript:

var F_W=new HSFun("F_W", 0, function(){

return (F_e9)._ap([F_bh, F_hk]);});

In the Haskell code, the global_Data’_Char’_isSpace identifier tells the Core
Overlay engine that the function with qualified name Data.Char.isSpace is to
be replaced with a new implementation. In Yhc Core, the previously reviewed
reversed composition function can be seen which composes the ord function, and an
inner function that actually invokes the Javascript function which in turn performs
the Unicode properties lookup for a given character numeric code.

Browser compatibility

Our implementation is compatibile with major web browsers such as Netscape,
Mozilla, Firefox, Microsoft Internet Explorer, and Opera. Simple programs such
as echoing an input string, Roman to Decimal number conversion, a simple counter
with increment and decrement buttons, etc. were used to test browser compati-
bility. Some of these programs accessed the DOM directly, other used a subset of
the Fudgets API.

Opera generally showed the fastest execution of Javascript, but no representative
data sample has been collected yet. Microsoft Internet Explorer showed memory
leaks when closures over DOM elements were involved in versions up to 6, but

14



Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

one source reported that in version 7 memory leaks were greatly reduced, and
the speed of Javascript execution increased. The XML HTTP request technique
was positively tested on Netscape and Microsoft Internet Explorer. Konqueror
has never been tested. Compatibility with Safari has not been achieved so far:
attempts to execute any of the test programs mentioned above resulted in obscure
error messages delivering no information about the nature of incompatibility.

Future plan: Fudgets

We plan to port some portion of Fudgets, so it becomes possible to write Web
applications using this library. Several experiments showed that the Stream Pro-
cessors (SP), and some parts of Fudget Kernel layers work within a Javascript
application. More problems are expected with porting the toplevel widgets due to
differences in many concepts between a Web browser and X Windows, for which
the Fudgets library was originally developed.

Conclusion and Future Goals

Yhc.Core is a library which has been used by quite a few people, it is still evolving
– moving useful operations from the individual programs into the common library.
There are at least five additional projects we are aware of that make use of this li-
brary including: static checkers, program validation, Java generation, optimisation
and user hinting. We are always looking for more users – we hope that by providing
the dull stuff (interfacing to Haskell), others will provide the cool applications. If
you are tempted to use Core, we are most interested to know: yhc@haskell.org.

The original structure of nhc was as one big set of modules – some were broadly
divided into type checking/parsing etc, but the overall structure and grouping was
weaker than in other compilers. One of our first actions was to split up the code
into hierarchical modules, introducing Type.*, Parse.* etc to better divide the
components. We hope that some of these other sections can be repositioned as
libraries, allowing others to make use of them. This approach attracts us, and we
see this as the future direction of our compiler.

Acknowledgements

We would like to thank Mike Dodds and Tom Shackell for making comments on
earlier drafts of this article.

Thanks also to everyone who has submitted a patch, become a buildbot, reported
bugs or done anything else to benefit the Yhc project. We’ve put together a list

15



The Monad.Reader

of most of the people (if we’ve missed you, we apologise, but definitely value your
contribution!)

Andrew Wilkinson, Bernie Pope, Bob Davie, Brian Alliet, Christopher Lane
Hinson, Dimitry Golubovsky, Gabor Greif, Goetz Isenmann, Ian Lynagh, Isaac
Dupree, Kartik Vaddadi, Krasimir Angelov, Malcolm Wallace, Michal Palka, Mike
Dodds, Neil Mitchell, Robert Dockins, Samuel Bronson, Simon Marlow, Stefan
O’Rear, Thorkil Naur, Tom Shackell, Twan van Laarhoven

About the Authors

Dimitry Golubovsky is a software engineer, originally from St-Petersburg, Russia.
He is currently working in the United States as a SAS consultant. He received
MS in Electronics Engineering from St-Petersburg State Electrical Engineering
University, formerly LEEI, in 1989. He only practices functional programming in
his spare time, but it helps him a lot during his day job.

Neil Mitchell has an MEng in Computer Science and Software Engineering from
the University of York. He is still there, working towards a PhD, under the super-
vision of Colin Runciman.

Matthew Naylor is a member of the programming languages and systems group
at the University of York.

References

[1] The Yhc Team. The York Haskell Compiler - user’s guide. http://www.haskell.
org/haskellwiki/Yhc.

[2] Niklas Röjemo. Highlights from nhc - a space-efficient Haskell compiler. In Proc.
FPCA ’95, pages 282–292. ACM Press (1995).

[3] Hat – the Haskell Tracer. http://www.haskell.org/hat.

[4] Andrew Tolmach. An External Representation for the GHC Core Language
(September 2001). http://www.haskell.org/ghc/docs/papers/core.ps.gz.

[5] XUL Overlays. http://developer.mozilla.org/en/docs/XUL_Overlays.

[6] Philip Wadler. How to replace failure by a list of successes. In Proc. of a conference
on Functional programming languages and computer architecture (1985).

[7] AJAX applications in Haskell. http://www.haskell.org//pipermail/
haskell-cafe/2006-August/017286.html.

[8] Re: AJAX applications in Haskell. http://www.haskell.org//pipermail/
haskell-cafe/2006-August/017287.html.

16

http://www.haskell.org/haskellwiki/Yhc
http://www.haskell.org/haskellwiki/Yhc
http://www.haskell.org/hat
http://www.haskell.org/ghc/docs/papers/core.ps.gz
http://developer.mozilla.org/en/docs/XUL_Overlays
http://www.haskell.org//pipermail/haskell-cafe/2006-August/017286.html
http://www.haskell.org//pipermail/haskell-cafe/2006-August/017286.html
http://www.haskell.org//pipermail/haskell-cafe/2006-August/017287.html
http://www.haskell.org//pipermail/haskell-cafe/2006-August/017287.html


Dimitry Golubovsky, Neil Mitchell, Matthew Naylor: Yhc.Core – from Haskell to Core

[9] Hajax. http://www.haskell.org/haskellwiki/Hajax.

[10] Continuations. http://haskell.org/haskellwiki/Continuation.

[11] Fudgets Home Page. http://www.md.chalmers.se/Cs/Research/Functional/
Fudgets/.

[12] World Wide Web Consortium. http://www.w3.org.

[13] Object Management Group. http://www.omg.org/gettingstarted/omg_idl.
htm.

[14] W3C Document Object Model. http://www.w3.org/DOM/.

[15] HaskellDirect. http://www.haskell.org/hdirect/.

[16] Hugs 98. http://www.haskell.org/hugs.

[17] The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[18] Unicode Home Page. http://www.unicode.org.

17

http://www.haskell.org/haskellwiki/Hajax
http://haskell.org/haskellwiki/Continuation
http://www.md.chalmers.se/Cs/Research/Functional/Fudgets/
http://www.md.chalmers.se/Cs/Research/Functional/Fudgets/
http://www.w3.org
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.omg.org/gettingstarted/omg_idl.htm
http://www.w3.org/DOM/
http://www.haskell.org/hdirect/
http://www.haskell.org/hugs
http://www.haskell.org/ghc
http://www.unicode.org

