
c© ACM, 2007. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the Haskell Workshop 2007,

ISBN 978-1-59593-674-5, (30 Sep 2007) http://doi.acm.org/10.1145/1291201.1291208

Uniform Boilerplate and List Processing
Or: Scrap Your Scary Types

Neil Mitchell
University of York, UK
ndm@cs.york.ac.uk

Colin Runciman
University of York, UK
colin@cs.york.ac.uk

Abstract
Generic traversals over recursive data structures are often referred
to as boilerplate code. The definitions of functions involving such
traversals may repeat very similar patterns, but with variations for
different data types and different functionality. Libraries of opera-
tions abstracting away boilerplate code typically rely on elaborate
types to make operations generic. The motivating observation for
this paper is that most traversals have value-specific behaviour for
just one type. We present the design of a new library exploiting
this assumption. Our library allows concise expression of traver-
sals with competitive performance.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages, Performance

1. Introduction
Take a simple example of a recursive data type:

data Expr = Add Expr Expr | Val Int
| Sub Expr Expr | Var String
| Mul Expr Expr | Neg Expr
| Div Expr Expr

The Expr type represents a small language for integer expres-
sions, which permits free variables. Suppose we need to extract a
list of all the variable occurrences in an expression:

variables :: Expr → [String]
variables (Var x) = [x]
variables (Val x) = []
variables (Neg x) = variables x
variables (Add x y) = variables x ++ variables y
variables (Sub x y) = variables x ++ variables y
variables (Mul x y) = variables x ++ variables y
variables (Div x y) = variables x ++ variables y

This definition has the following undesirable characteristics: (1)
adding a new constructor would require an additional equation; (2)
the code is repetitive, the last four right-hand sides are identical;
(3) the code cannot be shared with other similar operations. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’07, September 30, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-674-5/07/0009. . . $5.00

problem is referred to as the boilerplate problem. Using the library
developed in this paper, the above example can be rewritten as:

variables :: Expr → [String]
variables x = [y | Var y ← universe x]

The type signature is optional, and would be inferred auto-
matically if left absent. This example assumes a Uniplate in-
stance for the Expr data type, given in §3.2. This example requires
only Haskell 98. For more advanced examples we require multi-
parameter type classes – but no functional dependencies, rank-2
types or GADTs.

The central idea is to exploit a common property of many
traversals: they only require value-specific behaviour for a single
uniform type. In the variables example, the only type of interest
is Expr. In practical applications, this pattern is common1. By
focusing only on uniform type traversals, we are able to exploit
well-developed techniques in list processing.

1.1 Contribution
Ours is far from the first technique for ‘scrapping boilerplate’. The
area has been researched extensively. But there are a number of
distinctive features in our approach:

• We require no language extensions for single-type traversals,
and only multi-parameter type classes (Jones 2000) for multi-
type traversals.

• Our choice of operations is new: we shun some traditionally
provided operations, and provide some uncommon ones.

• Our type classes can be defined independently or on top of
Typeable and Data (Lämmel and Peyton Jones 2003), making
optional use of built-in compiler support.

• We make use of list-comprehensions (Wadler 1987) for succinct
queries.

• We compare the conciseness of operations using our library, by
counting lexemes, showing our approach leads to less boiler-
plate.

• We compare the performance of traversal mechanisms, some-
thing that has been neglected in previous papers.

The ideas behind the Uniplate library have been used exten-
sively, in projects including the Yhc compiler (Golubovsky et al.
2007), the Catch tool (Mitchell and Runciman 2007) and the Reach
tool (Naylor and Runciman 2007). In Catch there are over 100 Uni-
plate traversals.

We have implemented all the techniques reported here. We
encourage readers to download the Uniplate library and try it out.

1 Most examples in boilerplate removal papers meet this restriction, even
though the systems being discussed do not depend on it.

It can be obtained from the website at http://www.cs.york.ac.
uk/~ndm/uniplate/. A copy of the library has also been released,
and is available on Hackage2.

1.2 Road map
§2 introduces the traversal combinators that we propose, along with
short examples. §3 discusses how these combinators are imple-
mented in terms of a single primitive. §4 extends this approach to
multi-type traversals, and §5 covers the extended implementation.
§6 investigates some performance optimisations. §7 gives compar-
isons with other approaches, using examples such as the “paradise”
benchmark. §8 presents related work, §9 makes concluding remarks
and suggests directions for future work.

2. Queries and Transformations
We define various traversals, using the Expr type defined in the
introduction as an example throughout. We divide traversals into
two categories: queries and transformations. A query is a function
that takes a value, and extracts some information of a different type.
A transformation takes a value, and returns a modified version of
the original value. All the traversals rely on the class Uniplate, an
instance of which is assumed for Expr. The definition of this class
and its instances are covered in §3.

2.1 Children
The first function in the Uniplate library serves as both a function,
and a definition of terminology:

children :: Uniplate α ⇒ α → [α]

The function children takes a value and returns all maximal
proper substructures of the same type. For example:

children (Add (Neg (Var "x")) (Val 12)) =
[Neg (Var "x"), Val 12]

The children function is occasionally useful, but is used more
commonly as an auxiliary in the definition of other functions.

2.2 Queries
The Uniplate library provides a the universe function to support
queries.

universe :: Uniplate α ⇒ α → [α]

This function takes a data structure, and returns a list of all
structures of the same type found within it. For example:

universe (Add (Neg (Var "x")) (Val 12)) =
[Add (Neg (Var "x")) (Val 12)
, Neg (Var "x")
, Var "x"
, Val 12]

One use of this mechanism for querying was given in the in-
troduction. Using the universe function, queries can be expressed
very concisely. Using a list-comprehension to process the results of
universe is common.

Example 1
Consider the task of counting divisions by the literal 0.

countDivZero :: Expr → Int
countDivZero x = length [() | Div (Val 0) ← universe x]

Here we make essential use of a feature of list comprehensions:
if a pattern does not match, then the item is skipped. In other

2 http://hackage.haskell.org/

syntactic constructs, failing to match a pattern results in a pattern-
match error. ¤

2.3 Bottom-up Transformations
Another common operation provided by many boilerplate removal
systems (Lämmel and Peyton Jones 2003; Visser 2004; Lämmel
and Visser 2003; Ren and Erwig 2006) applies a given function to
every subtree of the argument type. We define as standard a bottom-
up transformation.

transform :: Uniplate α ⇒ (α → α) → α → α

The result of transform f x is f x ′ where x ′ is obtained by
replacing each α-child xi in x by transform f xi .

Example 2
Suppose we wish to remove the Sub constructor assuming the
equivalence: x−y ≡ x+(−y). To apply this equivalence as a
rewriting rule, at all possible places in an expression, we define:

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f x = x

This code can be read: apply the subtraction rule where you can,
and where you cannot, do nothing. Adding additional rules is easy.
Take for example: x+y = 2∗x where x ≡ y . Now we can add
this new rule into our existing transformation:

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f (Add x y) | x ≡ y = Mul (Val 2) x
f x = x

Each equation corresponds to the natural Haskell translation of
the rule. The transform function manages all the required boiler-
plate. ¤

2.4 Top-Down Transformation
The Scrap Your Boilerplate approach (Lämmel and Peyton Jones
2003) (known as SYB) provides a top-down transformation named
everywhere′. We describe this traversal, and our reasons for not
providing it, even though it could easily be defined. We instead
provide descend, based on the composOp operator (Bringert and
Ranta 2006).

The everywhere′ f transformation applies f to a value, then
recursively applies the transformation on all the children of the
freshly generated value. Typically, the intention in a transfor-
mation is to apply f to every node exactly once. Unfortunately,
everywhere′ f does not necessarily have this effect.

Example 3
Consider the following transformation:

doubleNeg (Neg (Neg x)) = x
doubleNeg x = x

The intention is clear: remove all instances of double nega-
tion. When applied in a bottom-up manner, this is the result. But
when applied top-down some nodes are missed. Consider the value
Neg (Neg (Neg (Neg (Val 1)))); only the outermost double nega-
tion will be removed. ¤

Example 4
Consider the following transformation:

reciprocal (Div n m) = Mul n (Div (Val 1) m)
reciprocal x = x

This transformation removes arbitrary division, converting it
to divisions where the numerator is always 1. If applied once
to each subtree, this computation would terminate successfully.
Unfortunately, top-down transformation treats the generated Mul
as being transformed, but cannot tell that the generated Div is the
result of a transformation, not a fragment of the original input. This
leads to a non-termination error. ¤

As these examples show, when defining top-down transforma-
tions using everywhere′ it is easy to slip up. The problem is that
the program cannot tell the difference between freshly created con-
structors, and values that come originally from the input.

So we do support top-down transformations, but require the pro-
grammer to make the transformation more explicit. We introduce
the descend function, inspired by the Compos paper (Bringert and
Ranta 2006).

descend :: Uniplate α ⇒ (α → α) → α → α

The result of descend f x is obtained by replacing each α-child
xi in x by f xi . Unlike everywhere′, there is no recursion within
descend.

Example 5
Consider the addition of a constructor Let String Expr Expr. Now
let us define a function subst to replace free variables with given
expressions. In order to determine which variables are free, we need
to “remember” variables that are bound as we descend3. We can
define subst using a descend transformation:

subst :: [(String, Expr)] → Expr → Expr
subst rep x =

case x of
Let name bind x → Let name (subst rep bind)

(subst (filter ((6≡ name) ◦ fst) rep) x)
Var x → fromMaybe (Var x) (lookup x rep)
→ descend (subst rep) x

The Var alternative may return an Expr from rep, but no addi-
tional transformation is performed on this value, since all transfor-
mation is made explicit. In the Let alternative we explicitly con-
tinue the subst transformation. ¤

2.5 Transformations to a Normal Form
In addition to top-down and bottom-up transformations, we also
provide transformations to a normal form. The idea is that a rule
is applied exhaustively until a normal form is achieved. Consider a
rewrite transformation:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α

A rewrite-rule argument r takes an expression e of type α, and
returns either Nothing to indicate that the rule is not applicable,
or Just e ′ indicating that e is rewritten by r to e ′. The intuition
for rewrite r is that it applies r exhaustively; a postcondition for
rewrite is that there must be no places where r could be applied.
That is, the following property must hold:

propRewrite r x = all (isNothing ◦ r) (universe (rewrite r x))

One way to define the rewrite function uses transform:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rewrite f = transform g

where g x = maybe x (rewrite f) (f x)

This definition tries to apply the rule everywhere in a bottom-
up manner. If at any point it makes a change, then the new value

3 For simplicity, we ignore issues of hygienic substitution that may arise if
substituted expressions themselves contain free variables.

has the rewrite applied to it. The function only terminates when a
normal form is reached.

A disadvantage of rewrite is that it may check unchanged sub-
expressions repeatedly. Performance sensitive programmers might
prefer to use an explicit transformation, and manage the rewrit-
ing themselves. We show under which circumstances a bottom-up
transformation obtains a normal form, and how any transformation
can be modified to ensure a normal form.

2.5.1 Bottom-Up Transformations to a Normal Form
We define the function always that takes a rewrite rule r and
produces a function appropriate for use with transform.

always :: (α → Maybe α) → (α → α)
always r x = fromMaybe x (r x)

What restrictions on r ensure that the property rewrite r x ≡
transform (always r) x holds? It is sufficient that the constructors
on the right-hand side of r do not overlap with the constructors on
the left-hand side.

Example 2 (revisited)
Recall the simplify transformation, as a rewrite:

r (Sub x y) = Just $ Add x (Neg y)
r (Add x y) | x ≡ y = Just $ Mul (Val 2) x
r = Nothing

Here Add occurs on the right-hand side of the first line, and on
the left-hand side of the second. From this we can construct a value
where the two alternatives differ:

let x = Sub (Neg (Var "q")) (Var "q")

rewrite r x ≡ Mul (Val 2) (Var "q")
transform (always r) x ≡ Add (Var "q") (Neg (Var "q"))

To remedy this situation in the original simplify transformation,
whenever the right-hand side introduces a new constructor, f may
need to be reapplied. Here only one additional f application is
necessary, the one attached to the construction of an Add value.

f (Sub x y) = f $ Add x (Neg y)
f (Add x y) | x ≡ y = Mul (Val 2) x
f x = x ¤

2.6 Action Transformations
Rewrite transformations apply a set of rules repeatedly until a
normal form is found. One alternative is an action transformation,
where each node is visited and transformed once, and state is
maintained and updated as the operation proceeds. The standard
technique is to thread a monad through the operation, which we do
using transformM.

Example 6
Suppose we wish to rename each variable to be unique:

uniqueVars :: Expr → Expr
uniqueVars x = evalState (transformM f x) vars

where
vars = [’x’ : show i | i ← [1 . .]]

f (Var i) = do y : ys ← get
put ys
return (Var y)

f x = return x

The function transformM is a monadic variant of transform.
Here a state monad is used to keep track of the list of names not yet

used, with evalState computing the result of the monadic action,
given an initial state vars. ¤

2.7 Paramorphisms
A paramorphism is a fold in which the recursive step may refer to
the recursive component of a value, not just the results of folding
over them (Meertens 1992). We define a similar recursion scheme
in our library.

para :: Uniplate α ⇒ (α → [r] → r) → α → r

The para function uses the functional argument to combine a
value, and the results of para on its children, into a new result.

Example 7
Compiler writers might wish to compute the depth of expressions:

depth :: Expr → Int
depth = para (λ cs → 1+maximum (0 : cs)) ¤

2.8 Contexts
The final operation in the library seems to be a novelty – we have
not seen it in any other generics library, even in those which attempt
to include all variations (Ren and Erwig 2006). This operation is
similar to contextual pattern matching (Mohnen 1996).4

contexts :: Uniplate α ⇒ α → [(α, α → α)]

This function returns lists of pairs (x , f) where x is an element
of the data structure which would have been returned by universe,
and f replaces the hole which x was removed from.

Example 8
Suppose that mutation testing requires all expressions obtained
by incrementing or decrementing any single literal in an original
expression.

mutants :: Expr → [Expr]
mutants x = [c (Val j) | (Val i , c) ← contexts x

, j ← [i−1, i+1]]

¤
In general, contexts has the following properties:

propUniverse x = universe x ≡ map fst (contexts x)
propId x = all (≡ x) [b a | (a, b) ← contexts x]

2.9 Summary
We present signatures for all our methods in Figure 1, includ-
ing several monadic variants. In our experience, the most com-
monly used operations are universe and transform, followed by
transformM and descend.

3. Implementing the Uniplate class
Requiring each instance of the Uniplate class to implement ten
separate methods would be an undue imposition. Instead, given
a type specific instance for a single auxiliary method with a pair
as result, we can define all ten operations generically, at the class
level. The auxiliary is:

uniplate :: Uniplate α ⇒ α → ([α], [α] → α)
uniplate x = (children, context)

The children are all the maximal proper substructures of the
same type as x ; the context is a function to generate a new value,
with a different set of children. The caller of context must ensure

4 This function was contributed by Eric Mertens.

module Data.Generics.Uniplate where

children :: Uniplate α ⇒ α → [α]
contexts :: Uniplate α ⇒ α → [(α, α → α)]
descend :: Uniplate α ⇒ (α → α) → α → α
descendM :: (Uniplate α, Monad m) ⇒

(α → m α) → α → m α
para :: Uniplate α ⇒ (α → [r] → r) → α → r
rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rewriteM :: (Uniplate α, Monad m) ⇒

(α → m (Maybe α)) → α → m α
transform :: Uniplate α ⇒ (α → α) → α → α
transformM :: (Uniplate α, Monad m) ⇒

(α → m α) → α → m α
universe :: Uniplate α ⇒ α → [α]

Figure 1. All Uniplate methods.

class Uniplate α where
uniplate :: α → ([α], [α] → α)

instance Uniplate Expr where
uniplate (Neg a) = ([a] , λ[a ′] → Neg a ′)
uniplate (Add a b) = ([a, b], λ[a ′, b′] → Add a ′ b′)
uniplate (Sub a b) = ([a, b], λ[a ′, b′] → Sub a ′ b′)
uniplate (Mul a b) = ([a, b], λ[a ′, b′] → Mul a ′ b′)
uniplate (Div a b) = ([a, b], λ[a ′, b′] → Div a ′ b′)
uniplate x = ([] , λ[] → x)

Figure 2. The Uniplate class and an instance for Expr.

that the length of the list given to context is the same as the length
of children . The result pair splits the information in the value, but
by combining the context with the children the original value can
be recovered:

propId x = x ≡ context children
where (children, context) = uniplate x

3.1 Operations in terms of uniplate

All ten operations of §2 can be defined in terms of uniplate very
concisely. We define four functions as examples.

children :: Uniplate α ⇒ α → [α]
children = fst ◦ uniplate

universe :: Uniplate α ⇒ α → [α]
universe x = x : concatMap universe (children x)

transform :: Uniplate α ⇒ (α → α) → α → α
transform f x = f $ context $ map (transform f) children

where (children, context) = uniplate x

descend :: Uniplate α ⇒ (α → α) → α → α
descend f x = context $ map f children

where (children, context) = uniplate x

The common pattern is to call uniplate, then operate on the
current children, often calling context to create a modified value.
Some of these definitions can be made more efficient – see §6.1.

3.2 Writing Uniplate instances
We define a Uniplate instance for the Expr type in Figure 2.

D[[data d v1 ...vn = a1 ...am]] =
N [[d]] v1 ...vn x = case x of C[[a1]] ... C[[am]]
where x is fresh

C[[c t1 ...tn]] =
c y1 ...yn → UNIT c <> T [[t1]] y1 <> ... <> T [[tn]] yn

where y1 ...yn are fresh

T [[TargetType]] = TARGET

T [[PrimitiveType]] = UNIT

T [[d t1 ...tn]] = N [[d]] T [[t1]] ... T [[tn]]
T [[v]] = v

N is an injection to fresh variables

Figure 3. Derivation rules for Uniplate instances.

The distinguishing feature of our library is that the children are
defined in terms of their type. While this feature keeps the traversals
simple, it does mean that rules for deriving instance definitions are
not purely syntactic, but depend on the types of the constructors.
We now describe the derivation rules, followed by information
on the DERIVE tool that performs this task automatically. (If we
are willing to make use of Multi-Parameter Type Classes, simpler
derivation rules can be used: see §5.)

3.3 Derivation Rules
We can define derivation rules for the children and context func-
tions, allowing the definition:

instance Uniplate Type where
uniplate x = (children x , context x)

Alternatively, it is possible to define one single function which
generates both elements of the pair at once, avoiding the need to
examine each value twice (see §6.2 for an example).

We model the derivation of an instance by describing a deriva-
tion from a data type to a set of declarations. The derivation rules
have three functional parameters: (<>), UNIT and TARGET. By
varying these parameters we derive either children or context
functions.

The derivation rules are given in Figure 3. The D rule takes a
data type declaration, and defines a function over that data type.
The C rule defines a case alternative for each constructor. The T
rule defines type specific behaviour: a type is either the target type
on which an instance is being defined, or a primitive such as Char,
or an algebraic data type, or a free type variable.

Applying D to Expr, the result is:

N [[Expr]] x = case x of
Val y1 → UNIT Val <> UNIT y1

Var y1 → UNIT Var <> N [[List]] UNIT y1

Neg y1 → UNIT Neg <> TARGET y1

Add y1 y2 → UNIT Add <> TARGET y1 <> TARGET y2

Sub y1 y2 → UNIT Sub <> TARGET y1 <> TARGET y2

Mul y1 y2 → UNIT Mul <> TARGET y1 <> TARGET y2

Div y1 y2 → UNIT Div <> TARGET y1 <> TARGET y2

N [[List]] v1 x = case x of
[] → UNIT []
(:) y1 y2 → UNIT (:) <> v1 y1 <> N [[List]] v1 y2

3.3.1 Defining children

To derive the children function, the derivations are applied with
the following parameter values.

UNIT = const []
TARGET = (:[])
(<>) = (++)

children x = N [[Type]] x

The generated function is a traversal which visits every value in
the data type. A list is created of all the target types by placing
the targets into lists, combining lists using (++), and skipping
uninteresting values.

From these definitions we can do some reasoning. For example,
list ≡ concatMap, and concatMap (const []) ≡ const []. This
information can be used to simplify some instances.

3.3.2 Defining context

For context functions we apply the derivation rules with the fol-
lowing parameter values.

type Cont t α = [α] → (t , [α])

UNIT :: t → Cont t α
UNIT x ns = (x ,ns)

TARGET :: α → Cont α α
TARGET x (n : ns) = (n,ns)

(<>) :: Cont (a → b) α → Cont a α → Cont b α
(<>) a b ns1 = let (a ′,ns2) = a ns1

(b′ ,ns3) = b ns2
in (a ′ b′,ns3)

context x ns = fst (N [[Type]] x ns)

The central Cont type is an extension to the type of context
which takes a list of children to substitute into a value, and returns
both the new value, and the children which were not used. By re-
turning the unused children the (<>) operation is able to deter-
mine both the new value for a (namely a ′), and the remaining list
of children (namely ns2), sequencing the use of the children. The
TARGET function consumes a child, and the UNIT function returns
the children unmodified.

3.4 Automated Derivation of uniplate

Applying these derivation rules is a form of boilerplate coding!
The DrIFT tool (Winstanley 1997) derives instances automatically
given rules depending only on the information contained in a type
definition. However DrIFT is unable to operate with certain Haskell
extensions (TEX style literate Haskell, C pre processor), and re-
quires a separate pre-processing stage.

In collaboration with Stefan O’Rear we have developed the
DERIVE tool (Mitchell and O’Rear 2007). DERIVE is based on
Template Haskell (Sheard and Jones 2002) and has predefined rules
for derivation of Uniplate instances. It has special rules to remove
redundant patterns to produce simpler and more efficient instances.

Example 9

data Term = Name String
| Apply Term [Term]

deriving ({-! Uniplate ! -})

Running the DERIVE tool over this file, the generated code is:

instance Uniplate Term where
uniplate (Name x1) = ([] , λ → Name x1)
uniplate (Apply x1 x2) = (x1 : x2 , λ(n : ns) → Apply n ns)

¤

4. Multi-type Traversals
We have introduced the Uniplate class and an instance of it for type
Expr. Now let us imagine that Expr is merely the expression type
in a language with statements:

data Stmt = Assign String Expr
| Sequence [Stmt]
| If Expr Stmt Stmt
| While Expr Stmt

We could define a Uniplate instance for Stmt, and so perform
traversals upon statements too. However, we may run into limita-
tions. Consider the task of finding all literals in a Stmt – this re-
quires boilerplate to find not just inner statements of type Stmt, but
inner expressions of type Expr.

The Uniplate class takes a value of type α, and operates on its
substructures of type α. What we now require is something that
takes a value of type β, but operates on the children of type α
within it – we call this class Biplate. Typically the type β will be a
container of α. We can extend our operations by specifying how to
find the α’s within the β’s, and then perform the standard Uniplate
operations upon the α type. In the above example, α = Expr, and
β = Stmt.

We first introduce UniplateOn, which requires an explicit func-
tion to find the occurrences of type α within type β. We then make
use of Multi-parameter type classes (MPTC’s) to generalise this
function into a type class, named Biplate.

4.1 The UniplateOn Operations
We define operations, including universeOn and transformOn,
which take an extra argument relative to the standard Uniplate
operators. We call this extra argument biplate: it is a function from
the containing type (β) to the contained type (α).

type BiplateType β α = β → ([α], [α] → β)
biplate :: BiplateType β α

The intuition for biplate is that given a structure of type β, the
function should return the largest substructures in it of type α. If
α ≡ β the original value should be returned:

biplateSelf :: BiplateType α α
biplateSelf x = ([x], λ[x ′] → x ′)

We can now define universeOn and transformOn. Each takes a
biplate function as an argument:

universeOn :: Uniplate α ⇒ BiplateType β α → β → [α]
universeOn biplate x =

concatMap universe $ fst $ biplate x

transformOn :: Uniplate α
⇒ BiplateType β α → (α → α) → β → β

transformOn biplate f x =
context $ map (transform f) children
where (children, context) = biplate x

These operations are similar to the original universe and
transform. They unwrap β values to find the α values within them,
operate using the standard Uniplate operations for type α, then
rewrap if necessary. If α is constant, there is another way to ab-
stract away the biplate argument, as the following example shows.

Example 10
The Yhc.Core library (Golubovsky et al. 2007), part of the York
Haskell Compiler (Yhc), makes extensive use of Uniplate. In this
library, the central types include:

data Core = Core String [String] [CoreData] [CoreFunc]

data CoreFunc = CoreFunc String String CoreExpr

data CoreExpr = CoreVar String
| CoreApp CoreExpr [CoreExpr]
| CoreCase CoreExpr [(CoreExpr, CoreExpr)]
| CoreLet [(String, CoreExpr)] CoreExpr

-- other constructors

Most traversals are performed on the CoreExpr type. However,
it is often convenient to start from one of the other types. For
example, coreSimplify::CoreExpr → CoreExpr may be applied not
just to an individual expression, but to all expressions in a function
definition, or a complete program. If we are willing to freeze the
type of the second argument to biplate as CoreExpr we can write a
class:

class UniplateExpr β where
uniplateExpr :: BiplateType β CoreExpr

universeExpr x = universeOn uniplateExpr x
transformExpr x = transformOn uniplateExpr x

instance Uniplate CoreExpr
instance UniplateExpr Core
instance UniplateExpr CoreFunc
instance UniplateExpr CoreExpr
instance UniplateExpr β ⇒ UniplateExpr [β] ¤

This technique has been used in the Yhc compiler. The Yhc
compiler is written in Haskell 98 to allow for bootstrapping, so only
the standard single-parameter type classes are available.

4.2 The Biplate class
If we are willing to make use of multi-parameter type classes
(Jones 2000) we can define a class Biplate with biplate as its sole
method. We do not require functional dependencies.

class Uniplate α ⇒ Biplate β α where
biplate :: BiplateType β α

We can now implement universeBi and transformBi in terms of
their On counterparts:

universeBi :: Biplate β α ⇒ β → [α]
universeBi = universeOn biplate

transformBi :: Biplate β α ⇒ (α → α) → β → β
transformBi = transformOn biplate

In general the move to Biplate requires few code changes,
merely the use of the new set of Bi functions. To illustrate we
give generalisations of two examples from previous sections, im-
plemented using Biplate. We extend the variables and simplify
functions to work on Expr, Stmt or many other types.

Example from §1 (revisited)

variables :: Biplate β Expr ⇒ β → [String]
variables x = [y | Var y ← universeBi x]

The equation requires only one change: the addition of the
Bi suffix to universe. In the type signature we replace Expr with

Biplate β Expr ⇒ β. Instead of requiring the input to be an Expr,
we merely require that from the input we know how to reach an
Expr. ¤

Example 2 (revisited)

simplify :: Biplate β Expr ⇒ β → β
simplify x = transformBi f x

where f (Sub x y) = Add x (Neg y)
f x = x

In this redefinition we have again made a single change to the
equation: the addition of Bi at the end of transform. ¤

5. Implementing Biplate

The complicating feature of biplate is that when defining Biplate
where α ≡ β the function does not descend to the children, but
simply returns its argument. This “same type” restriction can be
captured either using the type system, or using the Typeable class
(Lämmel and Peyton Jones 2003). We present three methods for
defining a Biplate instance – offering a trade-off between perfor-
mance, compatibility and volume of code.

1. Direct definition requires O(n2) instances, but offers the high-
est performance with the fewest extensions.

2. The Typeable class can be used, requiring O(n) instances and
no further Haskell extensions, but giving worse performance.

3. The Data class can be used, providing fully automatic instances
with GHC, but requiring the use of rank-2 types, and giving the
worst performance.

All three methods can be fully automated using DERIVE, and
all provide a simplified method for writing Uniplate instances. The
first two methods require the user to define instances of auxiliary
classes, PlateAll and PlateOne, on top of which the library defines
the Uniplate and Biplate classes. The Biplate class definition itself
is independent of the method used to implement its instances.
This abstraction allows the user to start with the simplest instance
scheme available to them, then move to alternative schemes to gain
increased performance or compatibility.

5.1 Direct instances
Writing direct instances requires the Data.Generics.PlateDirect
module to be imported. This style requires a maximum of n2

instance definitions, where n is the number of types which contain
each other, but gives the highest performance and most type-safety.
The instances still depend on the type of each field, but are easier
to define than the Uniplate instance discussed in §3.2. Here is a
possible instance for the Expr type:

instance PlateOne Expr where
plateOne (Neg a) = plate Neg |∗ a
plateOne (Add a b) = plate Add |∗ a |∗ b
plateOne (Sub a b) = plate Sub |∗ a |∗ b
plateOne (Mul a b) = plate Mul |∗ a |∗ b
plateOne (Div a b) = plate Div |∗ a |∗ b
plateOne x = plate x

Five infix combinators (|∗ , |+ , |-- , ||∗ and ||+) indicate the
structure of the field to the right. The |∗ combinator says that the
value on the right is of the target type, |+ says that a value of the
target type may occur in the right operand, |-- says that values of
the target type cannot occur in the right operand. ||∗ and ||+ are
versions of |∗ and |+ used when the value to the right is a list
either of the target type, or of a type that may contain target values.

The law plate f |-- x ≡ plate (f x) justifies the definition presented
above.

This style of definition naturally expands to the multi-type
traversal. For example:

instance PlateAll Stmt Expr where
plateAll (Assign a b) = plate Assign |-- a |∗ b
plateAll (Sequence a) = plate Sequence ||+ a
plateAll (If a b c) = plate If |∗ a |+ b |+ c
plateAll (While a b) = plate While |∗ a |+ b

From the definitions of PlateOne and PlateAll the library can
define Uniplate and Biplate instances. The information provided
by uses of |-- and |+ avoids redundant exploration down branches
that do not have the target type. The use of ||∗ is an optimisation
which allows a list of the target type to be directly manipulated with
biplate instead of producing and consuming this list twice. The use
of ||+ avoids the definition of additional instances.

In the worst case, this approach requires an instance for each
container/contained pair. In reality few traversal pairs are actually
needed. The restricted pairing of types in Biplate instances also
gives increased type safety; instances such as Biplate Expr Stmt
do not exist.

In our experience definitions using these combinators offer sim-
ilar performance to hand-tuned instances; see §7.2 for measure-
ments.

5.2 Typeable based instances
Instead of writing O(n2) class instances to locate values of the tar-
get type, we can use the Typeable class to test at runtime whether
we have reached the target type. We present derivations much as
before, based this time only on combinators |+ and |-- :

instance (Typeable α, Uniplate α) ⇒ PlateAll Expr α where
plateAll (Neg a) = plate Neg |+ a
plateAll (Add a b) = plate Add |+ a |+ b
plateAll (Sub a b) = plate Sub |+ a |+ b
plateAll (Mul a b) = plate Mul |+ a |+ b
plateAll (Div a b) = plate Div |+ a |+ b
plateAll = plate x

instance (Typeable α, Uniplate α) ⇒ PlateAll Stmt α where
plateAll (Assign a b) = plate Assign |-- a |+ b
plateAll (Sequence a) = plate Sequence |+ a
plateAll (If a b c) = plate If |+ a |+ b |+ c
plateAll (While a b) = plate While |+ a |+ b

The |+ combinator is the most common, denoting that the value
on the right may be of the target type, or may contain values of
the target type. However, if we were to use |+ when the right-
hand value was an Int, or other primitive type we did not wish to
examine, we would require a PlateAll definition for Int. To omit
these unnecessary instances, we can use |-- to indicate that the type
is not of interest.

The Data.Generics.PlateTypeable module is able to automati-
cally infer Biplate instances given a PlateAll instance. Alas this is
not the case for Uniplate. Instead we must explicitly declare:

instance Uniplate Expr where
uniplate = uniplateAll

instance Uniplate Stmt where
uniplate = uniplateAll

The reader may wonder why we cannot define:

instance PlateAll α α ⇒ Uniplate α where
uniplate = uniplateAll

repChildren :: (Data α, Uniplate β, Typeable α, Typeable β)
⇒ α → ([β], [β] → α)

repChildren x = (children, context)
where

children = concat $ gmapQ (fst ◦ biplate) x

context xs = evalState (gmapM f x) xs
f y = do let (cs, con) = biplate y

(as, bs) ← liftM (splitAt $ length cs) get
put bs
return $ con as

Figure 4. Code for Uniplate in terms of Data.

Consider the Expr type. To infer Uniplate Expr we require an
instance for PlateAll Expr Expr. But to infer this instance we
require Uniplate Expr – which we are in the process of inferring! 5

5.3 Using the Data class
The existing Data and Typeable instances provided by the SYB
approach can also be used to define Uniplate instances:

import Data.Generics
import Data.Generics.PlateData

data Expr = ... deriving (Typeable, Data)
data Stmt = ... deriving (Typeable, Data)

The disadvantages of this approach are (1) lack of type safety –
there are now Biplate instances for many pairs of types where one
is not a container of the other; (2) compiler dependence – it will
only work where Data.Generics is supported, namely GHC at the
time of writing.6 The clear advantage is that there is almost no work
required to create instances.

How do we implement the Uniplate class instances? The fun-
damental operation is given in Figure 4. The repChildren function
descends to each of the child nodes, and is guarded by a Typeable
cast to ensure that α 6≡ β. The operation to get the children can be
done using gmapQ. The operation to replace the children is more
complex, requiring a state monad to keep track of the items to in-
sert.

The code in Figure 4 is not optimised for speed. Uses of splitAt
and length require the list of children to be traversed multiple
times. We discuss improvements in §6.2.

6. Performance Improvements
This section describes some of the performance improvements we
have been able to make. First we focus on our optimisation of
universe, using continuation passing and some foldr/build fusion
properties (Peyton-Jones et al. 2001). Next we turn to our Data
class based instances, improving them enough to outperform SYB
itself.

6.1 Optimising the universe function
Our initial universe implementation was presented in §3.1 as:

universe :: Uniplate on ⇒ on → [on]
universe x = x : concatMap universe (children x)

5 GHC has co-inductive or recursive dictionaries, but Hugs does not. To
allow continuing compatibility with Hugs, and the use of fewer extensions,
we require the user to write these explicitly for each type.
6 Hugs supports the required rank-2 types for Data.Generics, but the work
to port the library has not been done yet.

A disadvantage is that concatMap produces and consumes a
list at every level in the data structure. We can fix this by using
continuations:

universe x = f x []
where f :: Uniplate on ⇒ on → [on] → [on]

f x rest = x : concatCont (map f $ children x) rest

concatCont [] rest = rest
concatCont (x : xs) rest = x (concatCont xs rest)

Now we only perform one reconstruction. We can do even better
using GHC’s list fusion (Peyton-Jones et al. 2001). The user of
universe is often a list comprehension, which is a good consumer.
We can make concatCont a good consumer, and f a good producer:

universe :: Uniplate on ⇒ on → [on]
universe x = build (f x)

where
f :: Uniplate on ⇒ on → (on → res → res) → res → res
f x cons nil = x c̀ons̀

concatCont (map (flip f cons) $ children x) nil

concatCont xs rest = foldr ($) rest xs

6.2 Optimising PlateData

Surprisingly, it is possible to layer Uniplate over the Data instances
of SYB, with better performance than SYB itself. The first optimi-
sation is to generate the two members of the uniplate pair with
only one pass over the data value. We cannot use SYB’s gmapM or
gmapQ – we must instead use gfoldl directly. We also make use of
continuation passing style in some places.

With this first improvement in place we perform much the same
operations as SYB. But the overhead of list creation in uniplate
makes traversals about 15% slower than SYB.

The next optimisation relies on the extra information present
in the Uniplate operations – namely the target type. A boilerplate
operation walks over a data structure, looking for target values to
process. In SYB, the target values may be of any type. For Uniplate
the target is a single uniform type. If a value is reached which is not
a container for the target type, no further exploration is required
of the values children. Computing which types are containers for
the target type can be done relatively easily in the SYB framework
(Lämmel and Peyton Jones 2004):

data DataBox = ∀ α • (Typeable α, Data α) ⇒ DataBox α

contains :: (Data α, Typeable α) ⇒ α → [DataBox]
contains x = if isAlgType dtyp then concatMap f ctrs else []

where
f c = gmapQ DataBox (asTypeOf (fromConstr c) x)
ctrs = dataTypeConstrs dtyp
dtyp = dataTypeOf x

The contains function takes a phantom argument x which is
never evaluated. It returns all the fields of all possible constructors
of x ’s type, along with a type representation from typeOf. Hence
all types can be divided into three sets:

1. The singleton set containing the type of the target.

2. The set of other types which may contain the target type.

3. The set of other types which do not contain the target type.

We compute these sets for each type only once, by using a
CAF inside the class to store it. The cost of computing them is
small. When examining a value, if its type is a member of set 3 we
can prune the search. This trick is surprisingly effective. Take for

example an operation over Bool on the value (True, "Haskell").
The SYB approach finds 16 subcomponents, Uniplate touches only
3 subcomponents.

With all these optimisations we can usually perform both
queries and transformations faster than SYB. In the benchmarks
we range from 4% worse to 127% better, with an average of 56%
faster. Full details are presented in §7.2.

7. Results and Evaluation
We evaluate our boilerplate reduction scheme in two ways: firstly
by the conciseness of traversals using it (i.e. the amount of boil-
erplate it removes), and secondly by its runtime performance. We
measure conciseness by counting lexemes – although we concede
that some aspects of concise expression may still be down to per-
sonal preference. We give a set of nine example programs, written
using Uniplate, SYB and Compos operations. We then compare
both the conciseness and the performance of these programs. Other
aspects, such as the clarity of expression, are not so easily mea-
sured. Readers can make their own assessment based on the full
sources we give.

7.1 Boilerplate Reduction
As test operations we have taken the first three examples from this
paper, three from the Compos paper (Bringert and Ranta 2006), and
the three given in the SYB paper (Lämmel and Peyton Jones 2003)
termed the “Paradise Benchmark”. In all cases the Compos, SYB
and Uniplate functions are given an appropriately prefixed name.
In some cases, a helper function can be defined in the same way
in both SYB and Uniplate; where this is possible we have done so.
Type signatures are omitted where the compiler is capable of infer-
ring them. For SYB and Compos we have used definitions from the
original authors where available, otherwise we have followed the
guidelines and style presented in the corresponding paper.

7.1.1 Examples from this Paper
Example from §1 (revisited)

uni variables x = [y | Var y ← universe x]

syb variables = everything (++) ([] m̀kQ̀ f)
where f (Var y) = [y]

f = []

com variables :: Expr a → [String]
com variables x = case x of

Var y → [y]
→ composOpFold [] (++) com variables x

Only Compos needs a type signature, due to the use of GADTs.
List comprehensions allow for succinct queries in Uniplate. ¤

Example 1 (revisited)

uni zeroCount x = length [() | Div (Val 0) ← universe x]

syb zeroCount = everything (+) (0 m̀kQ̀ f)
where f (Div (Val 0)) = 1

f = 0

com zeroCount :: Expr a → Int
com zeroCount x = case x of

Div y (Val 0) → 1+com zeroCount y
→ composOpFold 0 (+) com zeroCount x

In the Uniplate solution the list of () is perhaps inelegant. How-
ever, Uniplate is the only scheme that is able to use the standard

data Stm = SDecl Typ Var | SAss Var Exp
| SBlock [Stm] | SReturn Exp

data Exp = EStm Stm | EAdd Exp Exp
| EVar Var | EInt Int

data Var = V String
data Typ = T int | T float

Figure 5. Data type from Compos.

length function: the other two express the operation as a fold.
Compos requires additional boilerplate to continue the operation
on Div y . ¤

Example 2 (revisited)

simp (Sub x y) = simp $ Add x (Neg y)
simp (Add x y) | x ≡ y = Mul (Val 2) x
simp x = x

uni simplify = transform simp

syb simplify = everywhere (mkT simp)

com simplify :: Expr a → Expr a
com simplify x = case x of

Sub a b → com simplify $
Add (com simplify a) (Neg (com simplify b))

Add a b → case (com simplify a, com simplify b) of
(a ′, b′) | a ′ ≡ b′ → Mul (Val 2) a ′

| otherwise → Add a ′ b′

→ composOp com simplify x

This is a modified version of simplify discussed in §2.5.1. The
two rules are applied everywhere possible. Compos does not pro-
vide a bottom-up transformation, so needs extra boilerplate. ¤

7.1.2 Multi-type examples from the Compos paper
The statement type manipulated by the Compos paper is given in
Figure 5. The Compos paper translates this type into a GADT,
while Uniplate and SYB both accept the definition as supplied.

As the warnAssign function from the Compos paper could be
implemented much more neatly as a query, rather than a monadic
fold, we choose to ignore it. We cover the remaining three func-
tions.

Example 11 (rename)

ren (V x) = V ("_" ++ x)

uni rename = transformBi ren

syb rename = everywhere (mkT ren)

com rename :: Tree c → Tree c
com rename t = case t of

V x → V ("_" ++ x)
→ composOp com rename t

The Uniplate definition is the shortest, as there is only one
constructor in type Var. As Compos redefines all constructors in
one GADT, it cannot benefit from this knowledge. ¤

Example 12 (symbols)

uni symbols x = [(v , t) | SDecl t v ← universeBi x]

Table 1. Table of lexeme counts for solutions to the test problems using each of Uniplate, SYB and Compos.

simp var zero const ren syms bill incr incr1 Query Transform All
Uniplate 40 12 18 27 16 17 13 21 30 60 134 194
SYB 43 29 29 30 19 34 21 24 56 113 172 285
Compos 71 30 32 54 27 36 25 33 40 123 225 348

Table 2. Table of timing results, expressed as multiples of the run-time for a hand-optimised version not using any traversal library.

simp var zero const ren syms bill incr incr1 Query Transform All
Compos 1.34 1.17 1.74 1.28 1.22 1.30 2.49 1.52 1.57 1.68 1.39 1.51
Uniplate Manual 1.16 1.44 2.64 1.27 1.36 1.48 2.28 1.27 1.08 1.96 1.23 1.55
Uniplate Direct 1.22 1.61 3.28 1.21 1.18 1.38 2.35 1.19 1.16 2.15 1.19 1.62
Uniplate Typeable 1.43 2.09 4.81 1.42 1.37 2.63 5.86 1.53 1.53 3.85 1.46 2.52
Uniplate Data 2.30 4.64 12.70 1.84 1.89 3.60 10.70 2.07 1.69 7.91 1.96 4.60
SYB 2.21 5.88 16.62 2.30 2.13 5.56 24.29 3.12 2.35 13.09 2.42 7.16

type Manager = Employee
type Name = String
type Address = String
data Company = C [Dept]
data Dept = D Name Manager [Unit]
data Unit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Integer

Figure 6. Paradise Benchmark data structure.

syb symbols = everything (++) ([] m̀kQ̀ f)
where f (SDecl t v) = [(v , t)]

f = []

com symbols :: Tree c → [(Tree Var, Tree Typ)]
com symbols x = case x of

SDecl t v → [(v , t)]
→ composOpMonoid com symbols x

Whereas the Compos solution explicitly manages the traversal,
the Uniplate solution is able to use the built-in universeBi function.
The use of lists again benefits Uniplate over SYB. ¤

Example 13 (constFold)

optimise (EAdd (EInt n) (EInt m)) = EInt (n+m)
optimise x = x

uni constFold = transformBi optimise

syb constFold = everywhere (mkT optimise)

com constFold :: Tree c → Tree c
com constFold e = case e of

EAdd x y → case (com constFold x , com constFold y) of
(EInt n, EInt m) → EInt (n+m)
(x ′, y′) → EAdd x ′ y′

→ composOp com constFold e

The constant-folding operation is a bottom-up transformation,
requiring all subexpressions to have been transformed before an
enclosing expression is examined. Compos only supports top-down
transformations, requiring a small explicit traversal in the middle.
Uniplate and SYB both support bottom-up transformations. ¤

7.1.3 The Paradise Benchmark from SYB
The Paradise benchmark was introduced in the SYB paper (Lämmel
and Peyton Jones 2003). The data type is shown in Figure 6. The
idea is that this data type represents an XML file, and a Haskell
program is being written to perform various operations over it. The
Compos paper includes an encoding into a GADT, with tag types
for each of the different types.

We have made one alteration to the data type: Salary is no
longer of type Float but of type Integer. In various experiments
we found that the rounding errors for floating point numbers made
different definitions return different results.7 This change is of no
consequence to the boilerplate code.

Example 14 (increase)
The first function discussed in the SYB paper is increase. This
function increases every item of type Salary by a given percentage.
In order to fit with our modified Salary data type, we have chosen
to increase all salaries by k .

incS k (S s) = S (s+k)

uni increase k = transformBi (incS k)

syb increase k = everywhere (mkT (incS k))

com increase :: Integer → Tree c → Tree c
com increase k c = case c of

S s → S (s+k)
→ composOp (com increase k) c

In the Compos solution all constructors belong to the same
GADT, so instead of just matching on S, all constructors must be
examined. ¤

Example 15 (incrOne)
The incrOne function performs the same operation as increase, but
only within a named department. The one subtlety is that if the
named department has a sub-department with the same name, then
the salaries of the sub-department should only be increased once.
We are able to reuse the increase function from the previous section
in all cases.

uni incrOne d k = descendBi f
where f x@(D n) | n ≡ d = uni increase k x

| otherwise = descend f x

7 Storing your salary in a non-exact manner is probably not a great idea!

syb incrOne :: Data a ⇒ Name → Integer → a → a
syb incrOne d k x | isDept d x = syb increase k x

| otherwise = gmapT (syb incrOne d k) x
where isDept d = False m̀kQ̀ isDeptD d

isDeptD d (D n) = n ≡ d

com incrOne :: Name → Integer → Tree c → Tree c
com incrOne d k x = case x of

D n | n ≡ d → com increase k x
→ composOp (com incrOne d k) x

The SYB solution has grown substantially more complex, re-
quiring two different utility functions. In addition syb incrOne now
requires a type signature. Compos retains the same structure as be-
fore, requiring a case to distinguish between the types of construc-
tor. For Uniplate we use descend rather than transform, to ensure
no salaries are incremented twice. ¤

Example 16 (salaryBill)
The final function is one which sums all the salaries.

uni salaryBill x = sum [s | S s ← universeBi x]

syb salaryBill = everything (+) (0 m̀kQ̀ billS)
where billS (S s) = s

com salaryBill :: Tree c → Integer
com salaryBill x = case x of

S s → s
→ composOpFold 0 (+) com salaryBill x

Here the Uniplate solution wins by being able to use a list
comprehension to select the salary value out of a Salary object.
The Uniplate class is the only one that is able to use the standard
Haskell sum function, not requiring an explicit fold. ¤

7.1.4 Uniplate compared to SYB and Compos
In order to measure conciseness of expression, we have taken
the code for all solutions and counted the number of lexemes –
using the lex function provided by Haskell. A table of results is
given in Table 1. The definitions of functions shared between SYB
and Uniplate are included in both measurements. For the incrOne
function we have not included the code for increase as well.

The Compos approach requires much more residual boiler-
plate than Uniplate, particularly for queries, bottom-up transforma-
tions and in type signatures. The Compos approach also requires a
GADT representation.

Compared with SYB, Uniplate seems much more similar. For
queries, Uniplate is able to make use of list comprehensions, which
produces shorter code and does not require encoding a manual fold
over the items of interest. For transformations, typically both are
able to use the same underlying operation, and the difference often
boils down to the mkT wrappers in SYB.

7.2 Runtime Overhead
This section compares the speed of solutions for the nine exam-
ples given in the previous section, along with hand-optimised ver-
sions, using no boilerplate removal library. We use four Uniplate
instances, provided by:

Manual: These are Uniplate and Biplate instances written by
hand. We have chosen not to use continuation-passing to imple-
ment these instances, as it quickly becomes complex!

Direct: These instances use the direct combinators from §5.1.

Typeable: These instances use the Typeable combinators from
§5.2.

Data: These instances use the SYB Data instances directly, as
described in §5.3.

For all data types we generate 100 values at random using
QuickCheck (Claessen and Hughes 2000). In order to ensure a
fair comparison, we define one data type which is the same as
the original, and one which is a GADT encoding. All operations
take these original data types, transform them into the appropriate
structure, apply the operation and then unwrap them. We measure
all results as multiples of the time taken for a hand-optimised
version. We compiled all programs with GHC 6.6 and -O2 on
Windows XP.

The results are presented in Table 2. Using Manual or Direct
instances, Uniplate is roughly the same speed as Compos – but
about 50% slower than hand-optimised versions. Using the Data
instances provided by SYB, we are able to outperform SYB itself!
See §6 for details of some of the optimisations used.

8. Related Work
The Uniplate library is intended to be a way to remove the boil-
erplate of traversals from Haskell programs. It is far from the first
library to attempt boilerplate removal.

The SYB library (Lämmel and Peyton Jones 2003) is perhaps the
most popular boilerplate removal system in Haskell. One of the
reasons for its success is tight integration with the GHC compiler,
lowering the barrier to use. We have compared directly against
traversals written in SYB in §7.1, and have also covered how to
implement Uniplate in terms of SYB in §5.3. In our experience
most operations are shorter and simpler than the equivalents in
SYB, and we are able to operate without the extension of rank-
2 types. Most of these benefits stem directly from our definition of
children as being the children of the same uniform type, contrasting
with the SYB approach of all direct children.

The SYB library is, however, more powerful than Uniplate.
If you wish to visit values of different type in a single traversal,
Uniplate is unsuitable. The Data and Typeable methods have also
been pushed further in successive papers (Lämmel and Peyton
Jones 2004, 2005) – in directions Uniplate may be unable to go.

The Compos library (Bringert and Ranta 2006) is another ap-
proach to the removal of boilerplate, requiring GADTs (Peyton
Jones et al. 2006) along with rank-2 types. The Compos library
requires an existing data type to be rewritten as a GADT. The con-
version from standard Haskell data structures to GADTs currently
presents several problems: they are GHC specific, deriving is not
supported on GADTs, and GADTs require explicit type signatures.
The Compos approach is also harder to write instances for, having
no simple instance generation framework, and no automatic deriva-
tion tool (although one could be written). The inner composOp
operator is very powerful, and indeed we have chosen to replicate
it in our library as descend. But the Compos library is unable to
replicate either universe or transform from our library.

The Stratego tool (Visser 2004) provides support for generic
operations, focusing on both the operations and the strategies for
applying them. This approach is performed in an untyped language,
although a typed representation can be modelled (Lämmel 2003).
Rather than being a Haskell library, Stratego implements a domain
specific language that can be integrated with Haskell.

The Strafunski library (Lämmel and Visser 2003; Lämmel 2002)
has two aspects: generic transformations and queries for trees of
any type; and features to integrate components into a larger pro-
gramming system. Generic operations are performed using strategy
combinators which can define special case behaviour for particu-
lar types, along with a default to perform in other situations. The

Strafunski library is integrated with Haskell, primarily providing
support for generic programming in application areas that involve
traversals over large abstract syntax trees.

The Applicative library (McBride and Paterson 2007) works by
threading an Applicative operation through a data structure, in a
similar way to threading a Monad through the structure. There is
additionally a notion of Traversable functor, which can be used to
provide generic programming. While the Applicative library can
be used for generic programming, this task was not its original
purpose, and the authors note they have “barely begun to explore”
its power as a generic toolkit.

Generic Programming There are a number of other libraries
which deal with generic programming, aimed more at writing type
generic (or polytypic) functions, but which can be used for boiler-
plate removal. The Haskell generics suite8 showcases several ap-
proaches (Weirich 2006; Hinze 2004; Hinze and Jeuring 2003).

9. Conclusions and Future Work
We have presented the Uniplate library. It defines the classes
Uniplate and Biplate, along with a small set of operations to per-
form queries and transformations. We have illustrated by example
that the boilerplate required in our system is less than in others
(§7.1), and that we can achieve these results without sacrificing
speed (§7.2). Our library is both practical and portable, finding
use in a number of applications, and using fewer extensions to the
Haskell language than alternatives.

The restriction to a uniformly typed value set in a traversal
allows the power of well-developed techniques for list processing
such as list-comprehensions to be exploited. We feel this decision
plays to Haskell’s strengths, without being limiting in practice.

There is scope for further speed improvements: for example,
use of continuation passing style may eliminate tuple construction
and consumption, and list fusion may be able to eliminate some of
the intermediate lists in uniplate. We have made extensive practical
use of the Uniplate library, but there may be other traversals which
deserve to be added.

The use of boilerplate reduction strategies in Haskell is not yet
ubiquitous, as we feel it should be. We have focused on simplicity
throughout our design, working within the natural typed design
of Haskell, rather than trying to extend it. Hopefully the removal
of complicated language features (particularly ‘scary’ types) will
allow a wider base of users to enjoy the benefits of boilerplate-free
programming.

Acknowledgments
The first author is a supported by an EPSRC PhD studentship.
Thanks to Björn Bringert, Jules Bean and the anonymous reviewers
for feedback on an earlier drafts of this paper; Eric Mertens for
helpful ideas; and Stefan O’Rear for work on DERIVE.

References
Björn Bringert and Aarne Ranta. A pattern for almost compositional

functions. In Proc. ICFP ’06, pages 216–226. ACM Press, 2006.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for
random testing of Haskell programs. In Proc. ICFP ’00, pages 268–279.
ACM Press, 2000.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core - from
Haskell to Core. The Monad.Reader, (7):45–61, April 2007.

Ralf Hinze. Generics for the masses. In Proc. ICFP ’04, pages 236–243.
ACM Press, 2004. ISBN 1-58113-905-5.

8 http://darcs.haskell.org/generics/

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In
Summer School on Generic Programming, volume 2793 of LNCS, pages
1–56. Springer-Verlang, 2003.

Mark P. Jones. Type classes with functional dependencies. In Proc ESOP
’00, volume 1782 of LNCS, pages 230–244. Springer-Verlang, 2000.

R. Lämmel and J. Visser. A Strafunski Application Letter. In Proc.
PADL’03, volume 2562 of LNCS, pages 357–375. Springer-Verlag, Jan-
uary 2003.

Ralf Lämmel. The sketch of a polymorphic symphony. In Proc. of Interna-
tional Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2002), volume 70 of ENTCS. Elsevier Science, 2002.

Ralf Lämmel. Typed generic traversal with term rewriting strategies. Jour-
nal of Logic and Algebraic Programming, 54:1–64, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In Proc. TLDI ’03, volume 38,
pages 26–37. ACM Press, March 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proc. ICFP ’04, pages 244–255. ACM
Press, 2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class:
extensible generic functions. In Proc. ICFP ’05, pages 204–215. ACM
Press, September 2005.

Conor McBride and Ross Paterson. Applicative programming with effects.
JFP, 17(5):1–13, 2007.

Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–424, 1992.

Neil Mitchell and Stefan O’Rear. Derive - project home page. http:
//www.cs.york.ac.uk/~ndm/derive/, March 2007.

Neil Mitchell and Colin Runciman. A static checker for safe pattern
matching in Haskell. In Trends in Functional Programming (2005
Symposium), volume 6, pages 15–30. Intellect, 2007.

Markus Mohnen. Context patterns in Haskell. In Implementation of
Functional Languages, pages 41–57. Springer-Verlag, 1996.

Matthew Naylor and Colin Runciman. Finding inputs that reach a target
expression. In Proc. SCAM ’07. IEEE Computer Society, September
2007. To appear.

Simon Peyton-Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In Proc.
Haskell ’01, pages 203–233. ACM Press, 2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In Proc.
ICFP ’06, pages 50–61. ACM Press, 2006.

Deling Ren and Martin Erwig. A generic recursion toolbox for Haskell or:
scrap your boilerplate systematically. In Proc. Haskell ’06, pages 13–24.
ACM Press, 2006.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proc. Haskell Workshop ’02, pages 1–16. ACM Press, 2002.

Eelco Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Domain-Specific Program
Generation, volume 3016 of LNCS, pages 216–238. Spinger-Verlag,
June 2004.

Philip Wadler. List comprehensions. In Simon Peyton Jones, editor,
Implementation of Functional Programming Languages. Prentice Hall,
1987.

Stephanie Weirich. RepLib: a library for derivable type classes. In Proc.
Haskell ’06, pages 1–12. ACM Press, 2006.

Noel Winstanley. Reflections on instance derivation. In 1997 Glasgow
Workshop on Functional Programming. BCS Workshops in Computer
Science, September 1997.

