
Transformation and Analysis

of Functional Programs

Neil Mitchell

Submitted for the degree of Doctor of Philosophy

Department of Computer Science
University of York

June 2008

Abstract

This thesis describes techniques for transforming and analysing functional
programs. We operate on a core language, to which Haskell programs can
be reduced. We present a range of techniques, all of which have been im-
plemented and evaluated.

We make programs shorter by defining a library which abstracts over com-
mon data traversal patterns, removing boilerplate code. This library only
supports traversals having value-specific behaviour for one type, allowing
a simpler programming model. Our library allows concise expression of
traversals with competitive performance.

We make programs faster by applying a variant of supercompilation. As a
result of practical experiments, we have identified modifications to the stan-
dard supercompilation techniques – particularly with respect to let bindings
and the generalisation technique.

We make programs safer by automatically checking for potential pattern-
match errors. We define a transformation that takes a higher-order program
and produces an equivalent program with fewer functional values, typically
a first-order program. We then define an analysis on a first-order language
which checks statically that, despite the possible use of partial (or non-
exhaustive) pattern matching, no pattern-match failure can occur.

2

Contents

1 Introduction 14

1.1 Motivation and Objectives . 14
1.1.1 Making Programs Safer 14
1.1.2 Making Programs Faster 15
1.1.3 Making Programs Shorter 16

1.2 Implementations . 17
1.3 Chapter Outline . 18

2 Background 19

2.1 Core Language . 19
2.1.1 Operations on Core 21
2.1.2 Simplification Rules 23

2.2 Sharing . 23
2.2.1 Let bindings . 25
2.2.2 Recursive let bindings 26
2.2.3 Constant Applicative Forms 28

2.3 Generating Core . 28
2.3.1 The Dictionary Transformation 29

2.4 Homeomorphic Embedding 30
2.4.1 Homeomorphic Embedding of Core Expressions 31
2.4.2 Fast Homeomorphic Embedding 32

3 Boilerplate Removal 33

3.1 Introductory Example . 33
3.1.1 Contribution . 34

3.2 Queries and Transformations 35
3.2.1 Children . 35
3.2.2 Queries . 36
3.2.3 Bottom-up Transformations 37

3

4 CONTENTS

3.2.4 Top-Down Transformation 37

3.2.5 Transformations to a Normal Form 39

3.2.6 Action Transformations 41

3.2.7 Paramorphisms . 42

3.2.8 Holes and Contexts . 43

3.2.9 Summary . 43

3.3 Implementing the Uniplate class 45

3.3.1 Operations in terms of uniplate 45

3.3.2 Writing Uniplate instances 45

3.3.3 Derivation Rules . 47

3.3.4 Automated Derivation of uniplate 48

3.4 Multi-type Traversals . 50

3.4.1 The UniplateOn Operations 51

3.4.2 The Biplate class . 53

3.5 Implementing Biplate . 54

3.5.1 Direct instances . 55

3.5.2 Typeable based instances 58

3.5.3 Using the Data class 59

3.6 Performance Improvements 60

3.6.1 Optimising the universe function 60

3.6.2 Optimising PlateData 61

3.7 Results and Evaluation . 63

3.7.1 Boilerplate Reduction 63

3.7.2 Runtime Overhead . 69

3.8 Related Work . 71

3.8.1 The SYB library . 71

3.8.2 The Compos library 72

3.8.3 The Stratego tool . 72

3.8.4 The Strafunski library 72

3.8.5 The Applicative library 73

3.8.6 Generic Programming 73

4 Supercompilation 74

4.1 Introductory Example . 74

4.1.1 Contributions . 76

4.2 Supercompilation . 76

4.2.1 Examples of Supercompilation 78

4.2.2 Which function to inline 80

CONTENTS 5

4.2.3 The Termination Criterion 81

4.2.4 Generalisation . 82

4.3 Performance Compared With C Programs 85

4.3.1 Identified Haskell Speedups 86

4.3.2 Potential GHC Speedups 87

4.3.3 The Wordcount Benchmark 88

4.4 Performance Compared With GHC Alone 89

4.4.1 GHC’s optimisations 91

4.4.2 Compile Time . 91

4.5 Related Work . 92

4.5.1 Supercompilation . 92

4.5.2 Partial evaluation . 93

4.5.3 Deforestation . 93

4.5.4 Whole Program Compilation 94

4.5.5 Lower Level Optimisations 94

4.5.6 Other Transformations 94

5 Defunctionalisation 96

5.1 Introductory Example . 96

5.1.1 Contributions . 97

5.2 First-Order Programs . 98

5.3 Our First-Order Reduction Method 99

5.3.1 Simplification . 99

5.3.2 Arity Raising . 100

5.3.3 Inlining . 101

5.3.4 Specialisation . 101

5.3.5 Goals . 102

5.4 Method in Detail . 104

5.4.1 Simplification . 105

5.4.2 Arity Raising . 107

5.4.3 Inlining . 108

5.4.4 Specialisation . 109

5.4.5 Primitive Functions 113

5.4.6 Recovering Input Expressions 114

5.5 Examples . 114

5.6 Restricted Completeness . 115

5.6.1 Notation . 116

5.6.2 A Proposition about Residual Lambdas 116

6 CONTENTS

5.6.3 Proof of the Proposition 117

5.6.4 Example Residual Lambdas 119

5.7 Proof of Termination . 120

5.7.1 Termination of Simplification 121

5.7.2 Termination of Arity Raising 121

5.7.3 Termination of Inlining 122

5.7.4 Termination of Specialisation 122

5.7.5 Termination as a Whole 124

5.8 Results . 125

5.8.1 Benchmark Tests . 125

5.8.2 Higher-Order Residues 126

5.8.3 Termination Bound 127

5.8.4 Creating of Functional Values 127

5.8.5 Uses of Functional Values 128

5.8.6 Execution Time . 128

5.8.7 Program Size . 128

5.9 Related Work . 129

5.9.1 Reynolds style defunctionalisation 129

5.9.2 Removing Functional Values 130

5.9.3 Partial Evaluation and Supercompilation 131

6 Pattern-Match Analysis 132

6.1 Motivation . 132

6.1.1 Contributions . 134

6.2 Overview of the Risers Example 134

6.2.1 Conversion to a Core Language 134

6.2.2 Analysis of risers – a brief sketch 135

6.3 Pattern Match Analysis . 136

6.3.1 Reduced Core language 137

6.3.2 Constraint Essentials and Notation 138

6.3.3 Basic Pattern (BP) Constraints 140

6.3.4 Preconditions for Pattern Safety 140

6.3.5 Manipulating constraints 142

6.3.6 Semantics of Constraints 145

6.3.7 Soundness Theorem 146

6.3.8 Finite Refinement of Constraints 147

6.4 Richer but Finite Constraint Systems 147

6.4.1 Regular Expression (RE) Constraints 147

CONTENTS 7

6.4.2 Multipattern (MP) Constraints & Simplification . . . 153

6.4.3 Comparison of Constraint Systems 156

6.5 Results and Evaluation . 157

6.5.1 Modifications for Verifiable Safety 157

6.5.2 Nofib Benchmark Tests 158

6.5.3 The FiniteMap library 162

6.5.4 The HsColour Program 163

6.5.5 The XMonad Program 164

6.6 Related Work . 165

6.6.1 Mistake Detectors . 165

6.6.2 Proving Incomplete Patterns Safe 165

6.6.3 Eliminating Incomplete Patterns 166

6.6.4 Type System Safety 166

7 Conclusions 169

7.1 Contributions . 169

7.1.1 Shorter Programs . 169

7.1.2 Faster Programs . 169

7.1.3 Safer Programs . 170

7.2 Future Work . 170

7.2.1 Robust and Widely Applicable Tools 170

7.2.2 Uniplate . 171

7.2.3 Supero . 172

7.2.4 Firstify . 172

7.2.5 Catch . 172

7.3 Concluding Remarks . 173

A Soundness of Pattern-Match Analysis 175

A.1 Proof-Style and Notation . 175

A.2 Evaluator . 176

A.3 Soundness Theorem . 178

A.4 Constraint Lemmas . 178

A.4.1 BP-Constraint Lemmas 179

A.4.2 MP-Constraint Lemmas 182

A.5 Auxiliary Lemmas . 192

A.6 The Soundness Theorem . 202

A.6.1 Theorem . 202

A.6.2 Proof . 202

8 CONTENTS

A.7 Summary . 207

B Function Index 208

B.1 Library Functions . 211

Bibliography 217

List of Figures

2.1 Syntax for the Core language. 20

2.2 Operations on Core. 21

2.3 Free variables of an expression. 23

2.4 Simplification rules. 24

2.5 Linear variables within an expression. 25

2.6 Homeomorphic embedding relation. 31

3.1 All Uniplate methods. 44

3.2 Str data type. 44

3.3 Implementation of all Uniplate methods. 46

3.4 The Uniplate class and an instance for Expr. 47

3.5 Derivation rules for Uniplate instances. 48

3.6 The result of applying D to Expr. 49

3.7 Implementation of PlateDirect. 55

3.8 Implementation of PlateTypeable. 57

3.9 Implementation of PlateData. 60

3.10 Data type from Compos. 65

3.11 Paradise Benchmark data structure. 67

4.1 Word counting in C. 75

4.2 The supercompile function. 77

4.3 Additional simplification rules. 77

4.4 Simple Termination function. 82

4.5 Benchmarks with C, Supero+GHC and GHC alone. 86

4.6 The words function from the Haskell standard libraries, and
an improved words′. 87

4.7 Runtime, relative to GHC being 1. 89

5.1 The (‡) fixed point operator. 104

9

10 LIST OF FIGURES

5.2 Additional Simplification rules. 106
5.3 The isBox function, to test if an expression is a boxed lambda. 108
5.4 Template generation function. 111
5.5 Encoding of termination simplification. 120

6.1 risers in the core language. 135
6.2 Operations on Core. 136
6.3 Proposition data type. 138
6.4 Constraint operations. 139
6.5 Operations to generate preconditions and entailments. 139
6.6 Basic pattern constraints. 140
6.7 Precondition of an expression, pre. 141
6.8 Precondition calculation. 142
6.9 Specification of constraint reduction, reduce. 143
6.10 Fixed point calculation for prePost. 144
6.11 Auxiliary definitions for the soundness theorem. 146
6.12 RE-constraints. 148
6.13 MP-constraints. 152
6.14 A safeTail function with Phantom types. 167
6.15 A safeTail function using GADTs. 167

A.1 Evaluator for expressions. 176
A.2 Auxiliary functions. 177
A.3 BP-Constraint operations. 179

List of Tables

3.1 Table of lexeme counts and runtime performance. 70

4.1 Runtime, relative to GHC being 1. 90

5.1 Results of defunctionalisation on the nofib suite. 125

6.1 Results of Catch checking . 158

11

Acknowledgements

Throughout the PhD I have been supported by an EPSRC PhD studentship.
I would like to thank Colin Runciman for his supervision throughout the last
6 years. Colin taught me Haskell, helped me with technical problems, and
helped me to express myself more clearly in my writing. In addition to
Colin’s supervision, all the members of the PLASMA group have provided
interesting discussions, lots of technical debate and answers to LATEX prob-
lems.

Many people in the Haskell community have provided ideas, encouragement,
code and answers. Included in this list are Andres Löh, Björn Bringert,
Brandon Moore, Damien Sereni, Duncan Coutts, Eric Mertens, Jürgen
Doser, Jules Bean, Koen Claessen, Matthew Danish, Peter Jonsson, Si-
mon Marlow, Simon Peyton Jones, Stefan O’Rear, Tim Chevalier and the
whole of the Haskell community, particularly #haskell. The vast number of
people who have helped ensures that I have certainly forgotten many people.

While doing a PhD, I have appreciated the presence of many friends – in-
cluding all the members of the York University Karate Club, and the many
residents of 232 Melrosegate. Thanks to Emily for making the last month of
my PhD a fantastic year. Lastly, thanks to my family, who have given me
the freedom to make my own decisions, and an occasional email to check on
my wellbeing.

12

Declaration

Chapter 2 has some overlap with material published in (Golubovsky et al.
2007). Chapter 3 is based on the paper (Mitchell and Runciman 2007c),
which appeared at the Haskell Workshop 2007. Chapter 4 is based on the
paper (Mitchell and Runciman 2007b) which was presented at IFL 2007, and
the revised paper (Mitchell and Runciman 2008b) from the post proceedings.
Chapter 6 builds on work from the papers (Mitchell and Runciman 2005,
2007a) presented at TFP 2005 and appearing in the post proceedings, and
is based on the paper (Mitchell and Runciman 2008a) from the Haskell
Symposium 2008.

Apart from the above cases and where stated, all of the work contained
within this thesis represents the original contribution of the author.

13

Chapter 1

Introduction

This thesis is concerned with functional programming. Throughout the
thesis all examples and implementations are presented in Haskell (Peyton
Jones 2003). Much of this work takes advantage of the purity of Haskell, and
some requires lazy evaluation, but many of the ideas should be applicable
to other functional languages.

In this chapter, we first discuss the motivation underlying the problems we
have tackled in §1.1. Next we provide details of where to obtain implemen-
tations related to this thesis in §1.2, followed by a description of each of the
following chapters in §1.3.

1.1 Motivation and Objectives

This thesis has three main objectives: making functional programs shorter,
faster and safer. This section explains the particular aims within each area,
and how the areas are related. We present the motivation for the objec-
tives in reverse order, being the order we tackled them, to show how each
motivates the next.

1.1.1 Making Programs Safer

Haskell is a strongly typed language, ensuring that a large class of errors
are caught at compile time. Despite all the guarantees that the type system
provides, programs may still fail in three ways:

14

1.1. MOTIVATION AND OBJECTIVES 15

Wrong Behaviour Detecting incorrect behaviour requires the program-
mer to provide annotations describing the desired behaviour. Manda-
tory annotations increase the effort required to make use of a tool, and
therefore reduce the potential number of users.

Non-termination The issue of non-termination has been investigated ex-
tensively – one particularly impressive tool is the AProVE framework
(Giesl et al. 2006b).

Calling error The final cause of failure is calling error, often as the result
of an incomplete pattern-match. This issue has not received as much
attention, with suggestions that programmers only use exhaustive pat-
terns (Turner 2004), or local analysis to decide which patterns are ex-
haustive (Maranget 2007). The problem of calling error is a practical
one, with such failures being a common occurrence when developing a
Haskell program.

In order to make programs safer, we have developed the Catch tool, which
ensures a program does not call error. We decided to make our analysis
conservative – if it reports that a program will not call error, then the pro-
gram is guaranteed not to call error. We require no annotations from the
programmer.

The Catch tool operates on a first-order language. We attempted to extend
Catch to a higher-order language, but failed. A higher-order program has
more complicated flow-control, which causes problems for Catch. In order
to apply Catch to all Haskell programs, we have investigated defunctional-
isation – converting a higher-order program to a first-order program. Our
defunctionalisation method is called Firstify, and uses well-known transfor-
mations, particularly specialisation and inlining, applied in particular ways.
The defunctionalisation method is designed to be used as a transformation
before analysis, primarily for Catch, but can be used independently.

1.1.2 Making Programs Faster

After making a program first-order, it can often execute faster than before.
As we explored this aspect of defunctionalisation, we were drawn towards
other optimisation techniques – in particular supercompilation (Turchin
1986). Just as defunctionalisation often leads to improved performance, so

16 CHAPTER 1. INTRODUCTION

supercompilation often leads to the removal of higher-order values. We at-
tempted to construct a defunctionalisation method by restricting supercom-
pilation, but the result was not very successful. However, we did enhance our
defunctionalisation method using techniques from supercompilation, partic-
ularly the termination criteria.

We have developed a supercompiler named Supero. Our work on supercom-
pilation aims to allow Haskell programs to be written in a high-level style,
yet perform competitively. Often, to obtain high performance, Haskell pro-
grammers are forced to make use of low-level features such as unboxed types
(Peyton Jones and Launchbury 1991), provide additional annotations such
as rewrite rules (Peyton Jones et al. 2001) and express programs in an un-
natural style, such as using foldr to obtain deforestation (Gill et al. 1993).
Supero can optimise Haskell programs, providing substantial speed-ups in
some cases. Like Catch, Supero requires no annotations from the program-
mer.

1.1.3 Making Programs Shorter

Our final contribution is the Uniplate library. The expression type of the
Core language we work with has over ten constructors. Most of these con-
structors contain embedded subexpressions. For most operations, we wish
to have value-specific behaviour for a handful of constructors, and a default
operation for the others. We started developing a small library of useful
functions to deal with this complexity, and gradually abstracted the ideas.
After refinement, the Uniplate library emerged. The library is particularly
focused on concisely expressing common patterns. Compared to other work
on generic programming patterns, such as SYB (Lämmel and Peyton Jones
2003) and Compos (Bringert and Ranta 2006), the Uniplate library makes
use of fewer language extensions and permits more concise operations.

The Uniplate library stands apart from the rest of the thesis in that it does
not work on a core functional language, but is instead a general purpose
library. However, the Uniplate techniques have been invaluable in imple-
menting the other transformations.

1.2. IMPLEMENTATIONS 17

1.2 Implementations

We have implemented all the ideas presented in this thesis, and include
sample code in the related chapters. Most of our implementations make
use of a monadic framework to deal with issues such as obtaining unique
free variables and tracking termination constraints. But to simplify the
presentation, we ignore these issues – they are mostly tedious engineering
concerns, and do not effect the underlying algorithms.

All the code is available from the author’s homepage1. Additionally, we have
released the following packages on the Hackage website2:

Homeomorphic This is a library for testing for homeomorphic embedding,
used to ensure termination, as described in §2.4.

Uniplate This is the library described in Chapter 3.

Derive This tool can generate Uniplate instances, and is mentioned in
§3.3.4.

Yhc.Core This is a library providing the data type for Yhc’s Core lan-
guage. It requires Uniplate to implement some of the functions.

Supero This is the program described in Chapter 4. It requires Yhc.Core as
the Core language to operate on, Homeomorphic to ensure termination
and Uniplate for various transformations.

Firstify This is the library described in Chapter 5. Like Supero, this library
requires Yhc.Core, Homeomorphic and Uniplate.

Proposition This is the proposition library described in 6, particularly
Figure 6.3.

Catch This is the program described in Chapter 6. This library requires
Proposition, and the Firstify library and all its dependencies.

1http://www.cs.york.ac.uk/~ndm/
2http://hackage.haskell.org/

18 CHAPTER 1. INTRODUCTION

1.3 Chapter Outline

The Background chapter (2) describes a common Core language which is
used in the subsequent chapters. It also describes the homeomorphic em-
bedding relation, used to ensure termination in a number of transformations.

The Boilerplate Removal chapter (3) describes the Uniplate library. In par-
ticular, it describes the interface to the library – both the traversal functions
and the information a data type must provide. It also compares the Uniplate
library to the Scrap Your Boilerplate (SYB) library (Lämmel and Peyton
Jones 2003) and the Compos library (Bringert and Ranta 2006) – both in
terms of speed and conciseness.

The Supercompilation chapter (4) describes the design and implementation
of the Supero tool. The method includes techniques for dealing with let
bindings, and a new method for generalisation. Results are presented com-
paring a combination of Supero and the Glasgow Haskell Compiler (GHC)
(The GHC Team 2007) to C, and comparing Supero and GHC to GHC
alone.

The Defunctionalisation chapter (5) describes how to combine several ex-
isting transformations to produce a defunctionalisation method. The main
focus is how to restrict the existing methods to ensure they terminate and
cooperate to obtain a program with few residual functional values.

The Pattern-Match Analysis chapter (6) describes the implementation of the
Catch tool. It presents a mechanism for reasoning about programs using a
constraint language, along with two alternative constraint languages. The
Catch tool is tested on a number of benchmark programs, and for several
larger programs.

The Conclusions chapter (7) gives directions for future work, and makes
concluding remarks.

The Soundness of Pattern-Match Analysis Appendix (A) provides a sound-
ness proof of the algorithms presented in Chapter 6.

The Function Index Appendix (B) is an index of most of the Haskell func-
tions used in the thesis, both those defined in the thesis and those from the
standard Haskell libraries.

Chapter 2

Background

In this chapter we introduce the background material and general notations
used throughout the rest of this thesis. We start by introducing a Core
language in §2.1, then discuss its sharing properties in §2.2 and how we
generate Core in §2.3. We then cover the homeomorphic embedding relation
in §2.4, particularly applied to the expression type of our Core language.

2.1 Core Language

The syntax of our Core language is given in Figure 2.1. To specify a list
of items of unspecified length we write either x1, . . ., xn or xs. Our Core
language is higher order and lazy, but lacks much of the syntactic sugar
found in Haskell. The language is based upon Yhc.Core, a semantics for
which is given in (Golubovsky et al. 2007).

A program is a list of functions, with a root function named main. A function
definition gives a name, a list of arguments and a body expression. Variables
and lambda abstractions are much as they would be in any Core language.
Pattern matching occurs only in case expressions; alternatives match only
the top level constructor and are exhaustive, including an error alternative
if necessary.

In later chapters it will be necessary to make a distinction between higher-
order and first-order programs, so our Core language has some redundancy
in its representation. Our Core language permits both lambda expressions,
and allows top-level definitions to take arguments. There are three forms

19

20 CHAPTER 2. BACKGROUND

data Prog = [Func] program

data Func = (f vs = x) function

data Expr = v local variable
| c xs constructor application
| f xs function application
| x xs general application
| λv → x lambda abstraction
| let v = x in y let binding, non-recursive
| case x of as case expression

data Alt = c vs → x case alternative

Where v ranges over variables, c ranges over constructors, f ranges over
function names, x and y range over expressions and a ranges over case
alternatives.

Figure 2.1: Syntax for the Core language.

of application, all of which take two values: the first value may be either
a constructor, a top-level named function, or any arbitrary expression; the
second value is a list of arguments, which may be empty. These forms of
application give rise to three equivalences:

(c xs) ys ≡ c xs ys
(f xs) ys ≡ f xs ys
(x xs) ys ≡ x xs ys

We allow a list of variables to appear in a lambda abstraction and a list of
bindings to appear in a let. This syntactic sugar can be translated away
using the following rules:

λv vs → x ⇒ λv → (λvs → x)
let v = x; binds in y ⇒ let v = x in (let binds in y)
let v vs = x xs in y ⇒ let v = x in (let vs = xs in y)

The arity of a top-level function is the number of arguments in its associated
definition. In any application, if the function is given fewer arguments than
its arity we refer to it as partially-applied, matching the arity is fully-applied,
and more than the arity is over-applied.

Some functions are used but lack corresponding definitions in the program.
These are defined to be primitive. They have some meaning to an underly-

2.1. CORE LANGUAGE 21

type CtorName = String
type VarName = String
type FuncName = String

body :: FuncName → Expr
args :: FuncName → [VarName]
rhs :: Alt → Expr
arity :: String → Int
ctors :: CtorName → [CtorName]

Figure 2.2: Operations on Core.

ing runtime system, but are not available for transformation. A primitive
function may perform an action such as outputting a character to the screen,
or may manipulate primitive numbers such as addition.

The largest difference between our Core language and GHC-Core (Tolmach
2001) is that our Core language is untyped. Core is generated from well-
typed Haskell, and is guaranteed not to fail with a type error. All our
algorithms could be implemented equally well in a typed core language, but
we prefer to work in an untyped language for simplicity of implementation.
For describing data types we use the same notation as Haskell 98. One of
the most common data types is the list, which can be defined as:

data List α = Nil | Cons α (List α)

A list is either an empty list, or a cons cell which contains an element of
the list type and the tail of the list. For example the list of 1,2,3 would
be written (Cons 1 (Cons 2 (Cons 3 Nil))). We allow the syntactic sugar of
representing Cons as a right-associative infix application of (:) and Nil as []
– allowing us to write (1 : 2 : 3 : []). We also permit [1, 2, 3].

2.1.1 Operations on Core

There are several operations that can be defined on our Core expressions
type. We present some of those used in later chapters.

22 CHAPTER 2. BACKGROUND

General Operations

Figure 2.2 gives the signatures for helper functions over the core data types.
We use the functions body f and args f to denote the body and arguments
of the function definition for f. We use the function rhs to extract the
expression on the right of a case alternative. Every function and construc-
tor has an arity, which can be obtained with the arity function. To deter-
mine alternative constructors the ctors function can be used; for example
ctors "True" = ["False", "True"] and ctors "[]" = ["[]", ":"].

Substitution

We define e [v / x] to be the capture-free substitution of the variable v by
the expression x within the expression e. We define e [v1, . . ., vn / x1, . . ., xn]
to be the simultaneous substitution of each variable vi for each expression xi

in e.

Example 1

(v + 1) [v / 2] ⇒ 2 + 1
(let v = 3 in v + 1) [v / 2] ⇒ let v = 3 in v + 1

¤

Variable Classification

An occurrence of a variable v is bound in x if it occurs on the right-hand
side of a case alternative whose pattern includes v, as the argument of an
enclosing lambda abstraction or as a binding in an enclosing let expression;
all other variable occurences are free. The set of free variables of an expres-
sion e is denoted by freeVars e, and can be computed using the function in
Figure 2.3.

In order to avoid accidental variable name clashes while performing trans-
formations, we demand that all variables within a program are unique. All
transformations may assume and should preserve this invariant.

2.2. SHARING 23

freeVars :: Expr → [VarName]
freeVars [[v]] = [v]
freeVars [[c xs]] = freeVars′ xs
freeVars [[f xs]] = freeVars′ xs
freeVars [[x xs]] = freeVars x ∪ freeVars′ xs
freeVars [[λv → x]] = freeVars x \ [v]
freeVars [[let v = x in y]] = freeVars x ∪ (freeVars y \ [v])
freeVars [[case x of as]] = freeVars x ∪⋃

(map f as)
where f [[c vs → y]] = freeVars y \ vs

freeVars′ xs =
⋃

(map freeVars xs)

Figure 2.3: Free variables of an expression.

2.1.2 Simplification Rules

We present several simplification rules in Figure 2.4, which can be applied
to our Core language. These rules are standard and would be applied by
any optimising compiler (Peyton Jones and Santos 1994). Some of the rules
duplicate code, but none duplicate work. All the rules preserve both the
semantics and the sharing behaviour of an expression. We believe the rules
are confluent.

The (app-app), (fun-app) and (con-app) rules normalise applications. The
(case-con) and (lam-app) rules simply follow the semantics, using let ex-
pressions to preserve the sharing. The (case-app), (let-case) and (case-case)
rules move outer expressions over an inner case expression, duplicating the
outer expression in each alternative. The (case-lam) rule promotes a lambda
from inside a case alternative outwards. The (let-app) and (let-case) rules
move an expression over an inner let expression. The (let) rule substitutes
let expressions where the bound variable is used only once, and therefore no
loss of sharing is possible.

2.2 Sharing

This section informally discusses the relevant sharing properties of Haskell.
In general, any optimisation must take account of sharing, but semantic
analysis can sometimes ignore the effects of sharing. The sharing present
in Haskell is not specified in the Haskell Report (Peyton Jones 2003), but a

24 CHAPTER 2. BACKGROUND

(x xs) ys
⇒ x (xs ++ ys)

(app-app)

(f xs) ys
⇒ f (xs ++ ys)

(fun-app)

(c xs) ys
⇒ c (xs ++ ys)

(con-app)

case c xs of { . . .; c vs → y; . . .}
⇒ let vs = xs in y

(case-con)

(λv → x) y
⇒ let v = y in x

(lam-app)

(case x of {c1 vs1 → y1; . . .; cn vsn → yn}) z
⇒ case x of {c1 vs1 → y1 z; . . .; cn vsn → yn z}

(case-app)

(let v = x in y) z
⇒ let v = x in y z

(let-app)

let v = x in (case y of {c1 vs1 → y1; . . .; cn vsn → yn})
⇒ case y of {c1 vs1 → let v = x in y1

; . . .
; cn vsn → let v = x in yn}

where v is not used in y

(let-case)

case (let v = x in y) of as
⇒ let v = x in (case y of as)

(case-let)

case (case x of {c1 vs1 → y1; . . .; cn vsn → yn}) of as
⇒ case x of {c1 vs1 → case y1 of as

; . . .
; cn vsn → case yn of as}

(case-case)

case x of {. . .; c vs → λv → y; . . .}
⇒ λz → case x of

{. . .z; c vs → (λv → y) z; . . .z}

(case-lam)

let v = x in y
⇒ y [v / x]
where v occurs once in y, see §2.2

(let)

Figure 2.4: Simplification rules.

2.2. SHARING 25

occurs :: VarName → Expr → Int
occurs v [[v′]] = if v ≡ v′ then 1 else 0
occurs v [[c xs]] = occurss v xs
occurs v [[f xs]] = occurss v xs
occurs v [[x xs]] = occurss v (x : xs)
occurs v [[λv′ → x]] = if v ≡ v′ then 0 else 2 ∗ occurs v x
occurs v [[let v′ = x in y]] = if v ≡ v′ then 0 else occurss v [x, y]
occurs v [[case x of as]] = occurs v x + maximum (map f as)

where f [[c vs → y]] = if v ∈ vs then 0 else occurs v y

occurss v = sum ◦map (occurs v)

linear :: VarName → Expr → Bool
linear v x = occurs v x 6 1

Figure 2.5: Linear variables within an expression.

possible interpretation is defined elsewhere (Bakewell and Runciman 2000).

2.2.1 Let bindings

A let expression introduces sharing of the computational result of expres-
sions.

Example 2

let x = f 1
in x + x

The evaluation of this expression results in:

(x + x) [x / f 1]
(f 1 + f 1)

The expression f 1 is reduced twice. However, a compiler would only evaluate
f 1 once. The first time the value of x is demanded, f 1 evaluates to weak
head normal form, and is bound to x. Any successive examinations of x

return immediately, pointing at the same result. ¤

In general, the substitution of a bound variable by the associated expression
may cause duplicate computation to be formed. However, in some circum-
stances, duplicate computation can be guaranteed not to occur. If a bound

26 CHAPTER 2. BACKGROUND

variable can be used at most once in an expression, it is said to be linear,
and substitution can be performed. A variable is linear if it is used at most
once, i.e. occurs at most once down each possible flow of control according
to the definition in Figure 2.5.

2.2.2 Recursive let bindings

In the Haskell language, let bindings can be recursive. A recursive let binding
is one where the local variable is in scope during the computation of its
associated expression. The repeat function is often defined using a recursive
let binding.

Example 3

repeat x = let xs = x : xs
in xs

Here the variable xs is both defined and referenced in the binding. Given
the application repeat 1, regardless of how much of the list is examined, the
program will only ever create one single cons cell. This construct effectively
ties a loop in the memory. ¤

Our Core language does not allow recursive let bindings, for reasons of sim-
plicity. If there is a recursive binding to a function, it will be removed
by lambda lifting (Johnsson 1985). To remove all recursive let bindings,
we can replace value bindings with lambda expressions applied to dummy
arguments, then lambda lift.

Example 3 (revisited)

Applying this algorithm to our example from before, we first add a lambda
expression and a dummy argument:

repeat x = let xs = λdummy → x : xs dummy
in xs dummy

Then we lambda lift:

2.2. SHARING 27

repeat x = f dummy x

f dummy x = x : f dummy x

Optionally, we can remove the inserted dummy argument:

repeat x = f x

f x = x : f x

¤

In the repeat example we have lost sharing of the (:)-node. If a program
consumes n elements of the list generated by the new repeat function, the
space complexity will be O(n), compared to O(1) for the recursive let defi-
nition. The time complexity remains unchanged at O(n), but the constant
factor will be higher. However, in other examples, the time complexity may
be worse.

Example 4

Consider the following program, where f is an expensive computation:

main x = let y = f x : y
in y

We insert dummy arguments around recursive lets:

main x = let y = λdummy → f x : y dummy
in y dummy

We have now changed the time complexity of the example. Originally f was
performed once per call of main, in the revised code f will be performed
once for each element of main demanded – an unbounded number of times,
changing the complexity. ¤

In practice, only a small number of programs make use of values bound in
recursive lets, and nearly all of them are instances of repeat. However, it
is possible to construct examples where the removal of recursive lets makes
the computation significantly more expensive.

28 CHAPTER 2. BACKGROUND

2.2.3 Constant Applicative Forms

A Constant Applicative Form (CAF) is a top level definition of zero arity.
In Haskell, CAFs are computed at most once per program run, and retained
as long as references to them remain.

Example 5

caf = expensive

main = caf + caf

A compiler will only compute expensive once. ¤

If a function with positive arity is inlined, this will not dramatically change
the runtime behaviour of a program. If a CAF is inlined, this may have
adverse effects on the performance.

2.3 Generating Core

In order to generate our Core language from the full Haskell language, we
use the Yhc compiler (The Yhc Team 2007), a fork of nhc (Röjemo 1995).

The internal Core language of Yhc is PosLambda – a simple variant of
lambda calculus without types, but with source position information. Yhc
works by applying basic desugaring transformations, without optimisation.
This simplicity ensures the generated PosLambda is close to the original
Haskell in its structure. Each top-level function in a source file maps to a
top-level function in the generated PosLambda, retaining the same name.
However, PosLambda has constructs that have no direct representation in
Haskell. For example, there is a FatBar construct (Peyton Jones 1987), used
for compiling pattern matches which require fall through behaviour. We
have therefore introduced a new Core language to Yhc, to which PosLambda
can easily be translated (Golubovsky et al. 2007).

The Yhc compiler can generate the Core for a single source file. Yhc can
also link in all definitions from all necessary libraries, producing a single
Core file representing a whole program. All function and constructor names

2.3. GENERATING CORE 29

are fully qualified, so the linking process simply involves merging the list of
functions from each required Core file.

In the process of generating a Core file, Yhc performs several transforma-
tions. Haskell’s type classes are removed using the dictionary transforma-
tion (see §2.3.1). All local functions are lambda lifted, leaving only top-level
functions – ensuring Yhc generated Core does not contain any lambda ex-
pressions. All constructor applications and primitive applications are fully
applied.

2.3.1 The Dictionary Transformation

Most transformations in Yhc operate within a single function definition. The
only phases which require information about more than one function are type
checking and the transformation used to implement type classes (Wadler
and Blott 1989). The dictionary transformation introduces tuples (or dic-
tionaries) of methods passed as additional arguments to class-polymorphic
functions. Haskell also allows subclassing. For example, Ord requires Eq

for the same type. In such cases the dictionary transformation generates a
nested tuple: the Eq dictionary is a component of the Ord dictionary.

Example 6

f :: Eq α ⇒ α → α → Bool
f x y = x ≡ y ∨ x 6≡ y

is translated by Yhc into

f :: (α → α → Bool, α → α → Bool) → α → α → Bool
f dict x y = (∨) (((≡) dict) x y) (((6≡) dict) x y)

(≡) (a, b) = a
(6≡) (a, b) = b

The Eq class is implemented as two selector functions, (≡) and (6≡), acting
on a method table. For different types of α, different method tables are
provided. ¤

The dictionary transformation is a global transformation. In Example 6 the
Eq context in f not only requires a dictionary to be accepted by f; it requires

30 CHAPTER 2. BACKGROUND

all the callers of f to pass a dictionary as first argument. There are alterna-
tive approaches to implementing type classes, such as Jones (1994), which
does not create a tuple of higher order functions. We use the dictionary
transformation for simplicity, as it is already implemented within Yhc.

2.4 Homeomorphic Embedding

The homeomorphic embedding relation (Leuschel 2002) has been used to
guarantee termination of certain program transformations (Sørensen and
Glück 1995). The relation x E y indicates the expression x is an embedding
of y. We can define E using the following rewrite rule:

emb = {f(x1, . . . , xn) → xi | 1 6 i 6 n}

Now x E y can be defined as x ←∗
emb y (Baader and Nipkow 1998). The

rule emb takes an expression, and replaces it with one of its immediate
subexpressions. If repeated non-deterministic application of this rule to
any subexpression transforms y to x, then x E y. The intuition is that by
removing some parts of y we obtain x, or that x is somehow “contained”
within y.

Some examples:

a E a b(a) 5 a

a E b(a) a 5 b(c)
c(a) E c(b(a)) d(a, a) 5 d(b(a), c)

d(a, a) E d(b(a), c(c(a))) b(a, a) 5 b(a, a, a)

Homeomorphic embedding E is a well-quasi order, meaning that for every
infinite sequence of expressions e1, e2 . . . over a finite alphabet, there exist
indicies i < j such that ei E ej . This result is known as Kruskal’s Tree
Theorem (Kruskal 1960). We can use this result to ensure an algorithm
over expressions performs a bounded number of iterations, by stopping at
iteration n once ∃i • 1 6 i < n ∧ ei E en.

2.4. HOMEOMORPHIC EMBEDDING 31

data Shell α = Shell α [Shell α]

(E) :: Eq α ⇒ Shell α → Shell α → Bool
x E y = dive x y ∨ couple x y

dive x (Shell ys) = any (xE) ys

couple (Shell x xs) (Shell y ys) =
x ≡ y ∧ length xs ≡ length ys ∧ and (zipWith (E) xs ys)

Figure 2.6: Homeomorphic embedding relation.

2.4.1 Homeomorphic Embedding of Core Expressions

Figure 2.6 gives an implementation of homeomorphic embedding in Haskell,
making use of the auxiliary functions dive and couple (Leuschel 2002). The
dive function checks if the first term is contained as a child of the second
term, while the couple function checks if both terms have the same outer
shell.

In order to perform homeomorphic embedding tests on expressions in our
Core language, it is necessary to convert expressions to shells. To generate
shells it is useful to have some sentinel value for expressions, we use the
variable consisting of the empty string, which we represent as •. To convert
an expression x to a Shell, we make the first field of Shell the expression x

with all subexpressions replaced by •, and the second field a list of the shells
of all the immediate subexpressions. Some examples:

shell [[v]] = Shell [[v]] []
shell [[map f xs]] = Shell [[• • •]] [[[map]], [[f]], [[xs]]]
shell [[c xs]] = Shell [[• •]] [[[c]], [[xs]]]
shell [[λv → c xs]] = Shell [[λv → •]] [Shell [[• •]] [[[c]], [[xs]]]]
shell [[let v = x in y]] = Shell [[let v = • in •]] [[[x]], [[y]]]

To ensure that the first field in a Shell is drawn from a finite alphabet, we
can replace any locally bound variables with the empty string. For example,
shell [[v]] would become Shell [[•]] [].

32 CHAPTER 2. BACKGROUND

2.4.2 Fast Homeomorphic Embedding

To compute whether xEy, using the function in Figure 2.6, takes worse than
polynomial time in the size of the expressions. Fortunately, there exists
an algorithm (Stillman 1989; Narendran and Stillman 1987) which takes
O(size(x) · size(y) · a), where a is the maximum arity of any subexpression
in x or y.

The faster algorithm first constructs a size(x) × size(y) table, recording
whether each pair of subexpressions within x and y satisfy the homeomorphic
embedding. By computing the homeomorphic embedding in a bottom-up
manner, making use of the table to cache pre-computed results, much dupli-
cate computation can be eliminated. By first assigning each subexpression
a uniquely identifying number, table access and modification are both O(1)
operations. The result is a polynomial algorithm.

We have implemented the polynomial algorithm in Haskell. Haskell is not
well-suited to the use of mutable arrays, so we have instead used tree data
structures to model the table. In practical experiments, the table-based
algorithm seems to perform around three times faster than the function in
Figure 2.6. Comparing the complexity classes, we may have expected a
greater speed-up, but it appears that the worst-case behaviour of the simple
algorithm occurs infrequently.

Chapter 3

Boilerplate Removal

Generic traversals over recursive data structures are often referred to as
boilerplate code. This chapter describes the Uniplate library, which offers a
way to abstract several common forms of boilerplate code. The Uniplate li-
brary only supports traversals having value-specific behaviour for one type,
and does not operate on functional values contained within a data struc-
ture. §3.1 gives an example problem, and our solution. §3.2 introduces the
traversal combinators that we propose, along with short examples. §3.3 dis-
cusses how these combinators are implemented in terms of a single primitive.
§3.4 extends this approach to multi-type traversals, and §3.5 covers the ex-
tended implementation. §3.6 investigates some performance optimisations.
§3.7 gives comparisons with other approaches, using examples such as the
“paradise” benchmark. §3.8 presents related work.

3.1 Introductory Example

Take a simple example of a recursive data type:

data Expr = Add Expr Expr | Val Int
| Sub Expr Expr | Var String
| Mul Expr Expr | Neg Expr
| Div Expr Expr

The Expr type represents a small language for integer expressions, which
permits free variables. Suppose we need to extract a list of all the variable
occurrences in an expression:

33

34 CHAPTER 3. BOILERPLATE REMOVAL

variables :: Expr → [String]
variables (Var x) = [x]
variables (Val x) = []
variables (Neg x) = variables x
variables (Add x y) = variables x ++ variables y
variables (Sub x y) = variables x ++ variables y
variables (Mul x y) = variables x ++ variables y
variables (Div x y) = variables x ++ variables y

This definition has the following undesirable characteristics: (1) adding a
new constructor would require an additional equation; (2) the code is repet-
itive, the last four right-hand sides are identical; (3) the code cannot be
shared with other similar operations. This problem is referred to as the
boilerplate problem. Using the Uniplate library, the above example can be
rewritten as:

variables :: Expr → [String]
variables x = [y | Var y ← universe x]

The type signature is optional, and would be inferred automatically if left
absent. This example assumes a Uniplate instance for the Expr data type,
given in §3.3.2. This example requires only Haskell 98. For more advanced
examples we require multi-parameter type classes (Jones 2000) – but no
functional dependencies, rank-2 types or generalised algebraic data types
(GADTs).

The central idea is to exploit a common property of many traversals: they
only require value-specific behaviour for a single uniform type. Looking
at the variables example, the only type of interest is Expr. In practical
applications, this pattern is common1. By focusing only on uniform type
traversals, we are able to exploit well-developed techniques in list processing.

3.1.1 Contribution

Ours is far from the first technique for ‘scrapping boilerplate’. The area has
been researched extensively. But there are a number of distinctive features
in our approach:

1Most examples in boilerplate removal papers meet this restriction, even though the
systems being discussed do not depend on it.

3.2. QUERIES AND TRANSFORMATIONS 35

• We require no language extensions for single-type traversals, and only
multi-parameter type classes for multi-type traversals.

• Our choice of operations is new: we shun some traditionally provided
operations, and provide some uncommon ones.

• Our type classes can be defined independently or on top of Typeable

and Data (Lämmel and Peyton Jones 2003), making optional use of
built-in compiler support.

• We make use of list-comprehensions (Wadler 1987) for succinct queries.

• We compare the conciseness of operations using our library, by count-
ing lexemes, showing our approach leads to less boilerplate.

• We compare the performance of traversal mechanisms, something that
has been neglected in previous work.

3.2 Queries and Transformations

We define various traversals, using the Expr type defined in the introduction
as an example throughout. We divide traversals into two categories: queries
and transformations. A query is a function that takes a value, and extracts
some information of a different type. A transformation takes a value, and
returns a modified version of the original value. All the traversals rely on
the class Uniplate, an instance of which is assumed for Expr. The definition
of this class and its instances are covered in §3.3.

For some of the definitions we will make use of the terminology α-parent.
The α-parent of a value

3.2.1 Children

The first function in the Uniplate library serves as both a function, and a
definition of terminology:

children :: Uniplate α ⇒ α → [α]

The function children takes a value x, and returns the substructures of x

with type α, that are not contained by any value of type α apart from x.

36 CHAPTER 3. BOILERPLATE REMOVAL

For example:

children (Add (Neg (Var "x")) (Val 12)) = [Neg (Var "x"), Val 12]

Note that Var "x" is not returned, as it is contained within Neg (Var "x").
The children function is occasionally useful, but is used more commonly as
an auxiliary in the definition of other functions.

3.2.2 Queries

The Uniplate library provides the universe function to support queries.

universe :: Uniplate α ⇒ α → [α]

This function takes a data structure, and returns a list of all structures of
the same type found within it, including the root. For example:

universe (Add (Neg (Var "x")) (Val 12)) =
[Add (Neg (Var "x")) (Val 12)
,Neg (Var "x")
,Var "x"
,Val 12]

One use of this mechanism for querying was given in the introduction. Using
the universe function, queries can be expressed very concisely. Using a list-
comprehension to process the results of universe is common.

Example 7

Consider the task of counting divisions by the literal 0.

countDivZero :: Expr → Int
countDivZero x = length [() | Div (Val 0) ← universe x]

Here we make essential use of a feature of list comprehensions: if a pattern
does not match, then the item is skipped. In other syntactic constructs,
failing to match a pattern results in a pattern-match error. ¤

3.2. QUERIES AND TRANSFORMATIONS 37

3.2.3 Bottom-up Transformations

Another common operation provided by many boilerplate removal systems
(Lämmel and Peyton Jones 2003; Visser 2004; Lämmel and Visser 2003; Ren
and Erwig 2006) applies a given function to every subtree of the argument
type. We define as standard a bottom-up transformation.

transform :: Uniplate α ⇒ (α → α) → α → α

The result of transform f x is f x′ where x′ is obtained by replacing each
α-child xi in x by transform f xi.

Example 8

Suppose we wish to remove the Sub constructor assuming the equivalence:
x−y ≡ x+(−y). To apply this equivalence as a rewriting rule, at all possible
places in an expression, we define:

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f x = x

This code can be read: apply the subtraction rule where you can, and where
you cannot, do nothing. Adding more rules is easy. Take for example:
x + y = 2 ∗ x where x ≡ y. Now we can add this new rule into our existing
transformation:

simplify x = transform f x
where f (Sub x y) = Add x (Neg y)

f (Add x y) | x ≡ y = Mul (Val 2) x
f x = x

Each equation corresponds to the natural Haskell translation of the rule.
The transform function manages all the required boilerplate. ¤

3.2.4 Top-Down Transformation

The Scrap Your Boilerplate approach (Lämmel and Peyton Jones 2003)
(known as SYB) provides a top-down transformation named everywhere′. We

38 CHAPTER 3. BOILERPLATE REMOVAL

describe this traversal, and our reasons for not providing it, even though it
could easily be defined. We instead provide descend, based on the composOp

operator (Bringert and Ranta 2006).

The everywhere′ f transformation applies f to a value, then recursively ap-
plies the transformation on all the children of the freshly generated value.
Typically, the intention in a transformation is to apply f to every node ex-
actly once. Unfortunately, everywhere′ f does not necessarily have this effect.

Example 9

Consider the following transformation:

doubleNeg (Neg (Neg x)) = x
doubleNeg x = x

The intention is clear: remove all instances of double negation. When ap-
plied in a bottom-up manner, this is the result. But when applied top-down
some nodes are missed. Consider the value Neg (Neg (Neg (Neg (Val 1))));
only the outermost double negation will be removed. ¤

Example 10

Consider the following transformation:

reciprocal (Div n m) = Mul n (Div (Val 1) m)
reciprocal x = x

This transformation removes arbitrary division, converting it to divisions
where the numerator is always 1. If applied once to each subtree, this
computation would terminate successfully. Unfortunately, top-down trans-
formation treats the generated Mul as being transformed, but cannot tell
that the generated Div is the result of a transformation, not a fragment of
the original input. This leads to a non-termination error. ¤

As these examples show, when defining top-down transformations using
everywhere′ it is easy to slip up. The problem is that the program can-
not tell the difference between freshly created constructors, and values that
come originally from the input.

3.2. QUERIES AND TRANSFORMATIONS 39

So we do support top-down transformations, but require the programmer to
make the transformation more explicit. We introduce the descend function,
inspired by the Compos paper (Bringert and Ranta 2006).

descend :: Uniplate α ⇒ (α → α) → α → α

The result of descend f x is obtained by replacing each outermost α-child xi

in x by f xi. Unlike everywhere′, there is no recursion within descend.

Example 11

Consider the addition of a constructor Let String Expr Expr. Now let us define
a function subst to replace free variables with given expressions. In order to
determine which variables are free, we need to “remember” variables that are
bound as we descend2. We can define subst using a descend transformation:

subst :: [(String, Expr)] → Expr → Expr
subst rep x =

case x of
Let name bind x → Let name (subst rep bind)

(subst (filter ((6≡ name) ◦ fst) rep) x)
Var x → fromMaybe (Var x) (lookup x rep)
→ descend (subst rep) x

The Var alternative may return an Expr from rep, but no additional transfor-
mation is performed on this value, since all transformation is made explicit.
In the Let alternative we explicitly continue the subst transformation. ¤

3.2.5 Transformations to a Normal Form

In addition to top-down and bottom-up transformations, we also provide
transformations to a normal form. The idea is that a rule is applied exhaus-
tively until a normal form is achieved. Consider a rewrite transformation:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α

A rewrite-rule argument r takes an expression e of type α, and returns either
Nothing to indicate that the rule is not applicable, or Just e′ indicating that

2For simplicity, we ignore issues of hygienic substitution that may arise if substituted
expressions themselves contain free variables.

40 CHAPTER 3. BOILERPLATE REMOVAL

e is rewritten by r to e′. The intuition for rewrite r is that it applies r

exhaustively; a postcondition for rewrite is that there must be no places
where r could be applied. That is, the following property must hold:

propRewrite r x = all (isNothing ◦ r) (universe (rewrite r x))

One possible definition of the rewrite function uses transform:

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rewrite f = transform g

where g x = maybe x (rewrite f) (f x)

This definition tries to apply the rule everywhere in a bottom-up manner. If
at any point it makes a change, then the new value has the rewrite applied
to it. The function only terminates when a normal form is reached.

The rewrite function has two potential problems. The first issue is that dif-
ferent application strategies may given results. Consider the rule replacing
Neg (Neg x) with 1, applied to the value Neg (Neg (Neg (Val 1))). De-
pending on the application strategy, the result will be either Neg (Val 1)
or Val 1. The second issue is that the implementation of rewrite given may
check unchanged sub-expressions repeatedly, causing a performance prob-
lem. Both these issues can be avoided by using an explicit transformation,
and managing the rewriting manually.

Bottom-Up Transformations to a Normal Form

An alternative way of obtaining a transformation to a normal form is to
use the transform function directly. What restrictions on f ensure that
transform f is idempotent, and hence a normal form? It is sufficient that
the constructors on the right-hand side of f do not overlap with the con-
structors on the left-hand side.

Example 8 (revisited)

Recall the simplify transformation:

simplify = transform f

3.2. QUERIES AND TRANSFORMATIONS 41

f (Sub x y) = Add x (Neg y)
f (Add x y) | x ≡ y = Mul (Val 2) x
f x = x

Here Add occurs on the right-hand side of the first line, and on the left-hand
side of the second. From this we can construct a value where transform f is
not idempotent:

let x = Sub (Neg (Var "q")) (Var "q")

transform f x ≡ Add (Neg (Var "q")) (Neg (Var "q"))
transform f (transform f x) ≡ Mul (Val 2) (Neg (Var "q"))

To remedy this situation, whenever the right-hand side of a rule applies a
constructor of type Expr, f can be reapplied:

f (Sub x y) = f $ Add x (f $ Neg y)
f (Add x y) | x ≡ y = f $ Mul (f $ Val 2) x
f x = x

Now we can guarantee that transform f is idempotent. In this particular
example, we can inline the f applications attached to the constructors Neg,
Val and Mul to give the more concise:

f (Sub x y) = f $ Add x (Neg y)
f (Add x y) | x ≡ y = Mul (Val 2) x
f x = x

¤

3.2.6 Action Transformations

Rewrite transformations apply a set of rules repeatedly until a normal form
is found. One alternative is an action transformation, where each node is
visited and transformed once, and state is maintained and updated as the
operation proceeds. The standard technique is to thread a monad through
the operation, which we do using transformM, with a bottom-up transfor-
mation strategy.

42 CHAPTER 3. BOILERPLATE REMOVAL

Example 12

Suppose we wish to rename each variable occurrence to be unique:

uniqueVars :: Expr → Expr
uniqueVars x = evalState (transformM f x) vars

where
vars = [’x’ : show i | i ← [1 . .]]

f (Var i) = do y : ys ← get
put ys
return (Var y)

f x = return x

The function transformM is a monadic variant of transform. Here a state
monad is used to keep track of the list of names not yet used, with evalState

computing the result of the monadic action, given an initial state vars. ¤

3.2.7 Paramorphisms

A paramorphism is a fold in which the recursive step may refer to the re-
cursive components of a value, not just the results of folding over them
(Meertens 1992). We define a similar recursion scheme in our library.

para :: Uniplate α ⇒ (α → [r] → r) → α → r

The para function uses the functional argument to combine a value, and the
results of para on its children, into a new result.

Example 13

Compiler writers might wish to compute the depth of expressions:

depth :: Expr → Int
depth = para (λ cs → 1 + maximum (0 : cs))

¤

3.3. IMPLEMENTING THE UNIPLATE CLASS 43

3.2.8 Holes and Contexts

The final two operations in the library seem to be a novelty – we have not
seen them in any other generics library, even in those which attempt to
include all variations (Ren and Erwig 2006). These operations are similar
to contextual pattern matching (Mohnen 1996), and have some connection
to the zipper pattern (Huet 1997).

holes, contexts :: Uniplate α ⇒ α → [(α, α → α)]

Given a value y, these functions both return lists of pairs (x, f) where x is a
sub-expression of y, and f replaces the hole in y from which x was removed.
In the case of holes, x will be a member of children y, and for contexts, x will
be a member of universe y.

Example 14

Suppose that mutation testing requires all expressions obtained by incre-
menting or decrementing any single literal in an original expression.

mutants :: Expr → [Expr]
mutants x = [c (Val j) | (Val i, c) ← contexts x, j ← [i− 1, i + 1]]

¤

In general, these functions have the following properties:

propChildren x = children x ≡ map fst (holes x)
propId x = all (≡ x) [b a | (a, b) ← holes x]

propUniverse x = universe x ≡ map fst (contexts x)
propId x = all (≡ x) [b a | (a, b) ← contexts x]

3.2.9 Summary

We present signatures for all our methods in Figure 3.1, including several
monadic variants. In our experience, the most commonly used operations
are universe and transform, followed by transformM and descend.

44 CHAPTER 3. BOILERPLATE REMOVAL

module Data.Generics.Uniplate where

children :: Uniplate α ⇒ α → [α]
contexts :: Uniplate α ⇒ α → [(α, α → α)]
descend :: Uniplate α ⇒ (α → α) → α → α
descendM :: (Uniplate α, Monad m) ⇒ (α → m α) → α → m α
holes :: Uniplate α ⇒ α → [(α, α → α)]
para :: Uniplate α ⇒ (α → [r] → r) → α → r
rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rewriteM :: (Uniplate α, Monad m) ⇒ (α → m (Maybe α)) → α → m α
transform :: Uniplate α ⇒ (α → α) → α → α
transformM :: (Uniplate α, Monad m) ⇒ (α → m α) → α → m α
universe :: Uniplate α ⇒ α → [α]

Figure 3.1: All Uniplate methods.

data Str α = Zero | One α | Two (Str α) (Str α)

instance Functor Str where
fmap f (Zero) = Zero
fmap f (One x) = One (f x)
fmap f (Two x y) = Two (fmap f x) (fmap f y)

strList :: Str α → [α]
strList (Zero) = []
strList (One x) = [x]
strList (Two x y) = strList x ++ strList y

listStr :: [α] → Str α
listStr [] = Zero
listStr [x] = One x
listStr (x : xs) = Two (One x) (listStr xs)

Figure 3.2: Str data type.

3.3. IMPLEMENTING THE UNIPLATE CLASS 45

3.3 Implementing the Uniplate class

Requiring each instance of the Uniplate class to implement eleven separate
methods would be an undue imposition. Instead, given a type specific in-
stance for a single auxiliary method with a pair as result, we can define all
eleven operations generically, at the class level. The auxiliary method is
defined as:

uniplate :: Uniplate α ⇒ α → (Str α, Str α → α)
uniplate x = (cs, context)

The original Uniplate paper (Mitchell and Runciman 2007c) used lists of
items, but we instead use the Str data type defined in Figure 3.2 to collect
items. The use of Str simplifies the definition of instances and improves
performance. The value cs contains the same elements as children x; the
context is a function to generate a new value, with a different set of children.
The caller of context must ensure that the value given to context has precisely
the same structure of Str constructors as cs. The result pair splits the
information in the value, but by combining the context with cs the original
value can be recovered:

propId x = x ≡ context cs
where (cs, context) = uniplate x

3.3.1 Operations in terms of uniplate

All eleven operations from §3.2 can be defined in terms of uniplate. We
define all eleven operations in Figure 3.3. The common pattern is to call
uniplate, then operate on the current children, often calling context to create
a modified value. Some of these definitions can be made more efficient – see
§3.6.1.

3.3.2 Writing Uniplate instances

We define a Uniplate instance for the Expr type in Figure 3.4.

The distinguishing feature of our library is that the children are defined in
terms of their type. While this feature keeps the traversals simple, it does

46 CHAPTER 3. BOILERPLATE REMOVAL

children :: Uniplate α ⇒ α → [α]
children = strList ◦ fst ◦ uniplate

universe :: Uniplate α ⇒ α → [α]
universe x = x : concatMap universe (children x)

descend :: Uniplate α ⇒ (α → α) → α → α
descend f x = context $ fmap f children

where (children, context) = uniplate x

transform :: Uniplate α ⇒ (α → α) → α → α
transform f = f ◦ descend (transform f)

rewrite :: Uniplate α ⇒ (α → Maybe α) → α → α
rewrite f = transform g

where g x = maybe x (rewrite f) (f x)

descendM :: (Monad m, Uniplate α) ⇒ (α → m α) → α → m α
descendM f x = liftM context $ mapM f children

where (children, context) = uniplate x

transformM :: (Monad m,Uniplate α) ⇒ (α → m α) → α → m α
transformM f x = f =<< descendM (transformM f) x

rewriteM :: (Monad m,Uniplate α) ⇒ (α → m (Maybe α)) → α → m α
rewriteM f = transformM g

where g x = f x >>= maybe (return x) (rewriteM f)

para :: Uniplate α ⇒ (α → [r] → r) → α → r
para op x = op x $ map (para op) $ children x

holes :: Uniplate α ⇒ α → [(α, α → α)]
holes = f ◦ uniplate

where f (Zero , g) = []
f (One x , g) = [(x, g ◦ One)]
f (Two l r, g) = f (l, g ◦ flip Two r) ++ f (r, g ◦ Two l)

contexts :: Uniplate α ⇒ α → [(α, α → α)]
contexts x = (x, id) : [(x2, g1 ◦ g2)

| (x1, g1) ← holes x, (x2, g2) ← contexts x1]

Figure 3.3: Implementation of all Uniplate methods.

3.3. IMPLEMENTING THE UNIPLATE CLASS 47

class Uniplate α where
uniplate :: α → (Str α, Str α → α)

instance Uniplate Expr where
uniplate (Neg a) = (One a, λ(One a′) → Neg a′)
uniplate (Add a b) = (Two (One a) (One b)

, λ(Two (One a′) (One b′)) → Add a′ b′)
uniplate (Sub a b) = (Two (One a) (One b)

, λ(Two (One a′) (One b′)) → Sub a′ b′)
uniplate (Mul a b) = (Two (One a) (One b)

, λ(Two (One a′) (One b′)) → Mul a′ b′)
uniplate (Div a b) = (Two (One a) (One b)

, λ(Two (One a′) (One b′)) → Div a′ b′)
uniplate x = (Zero, λZero → x)

Figure 3.4: The Uniplate class and an instance for Expr.

mean that rules for deriving instance definitions are not purely syntactic, but
depend on the types of the constructors. We now describe the derivation
rules, followed by information on the Derive tool that performs this task
automatically. (If we are willing to make use of Multi-Parameter Type
Classes, simpler derivation rules can be used: see §3.5.)

3.3.3 Derivation Rules

We model the derivation of an instance by describing a derivation from a
data type to a set of declarations. The derivation rules are given in Figure
3.5. The I rule takes a concrete type, with no type variables, and generates
an instance for the Uniplate class. The D rule takes a data type declara-
tion, and defines a function over that data type. The C rule defines a case
alternative for each constructor. The T rule defines type specific behaviour:
a type is either the target type on which an instance is being defined, or a
primitive such as Char, or an algebraic data type, or a free type variable.

The result of applying these functions to Expr is given in Figure 3.6. By
applying simple transformation steps we can obtain the same instance as
presented in Figure 3.4.

48 CHAPTER 3. BOILERPLATE REMOVAL

I[[d t1. . .tn]] =
instance Uniplate (d t1. . .tn) where

uniplate = N [[d]] T [[t1]] . . . T [[tn]]

D[[data d v1. . .vn = a1. . .am]] =
N [[d]] v1. . .vn x = case x of C[[a1]] . . . C[[am]]

where x is fresh

C[[c t1. . .tn]] =
c y1. . .yn → (Zero `Twò a1 `Twò . . . `Twò an

, λ(Zero `Twò z1 `Twò . . . `Twò zn) → c (b1 z1). . .(bn zn))
where y1. . .yn and z1. . .zn are fresh

(ai, bi) = T [[ti]] yi

T [[TargetType]] = λx → (One x, λ(One x′) → x′)
T [[PrimitiveType]] = λx → (Zero, λZero → x)
T [[d t1. . .tn]] = N [[d]] T [[t1]] . . . T [[tn]]
T [[v]] = v

N is an injection to fresh variables

Figure 3.5: Derivation rules for Uniplate instances.

3.3.4 Automated Derivation of uniplate

Applying these derivation rules is a form of boilerplate coding! The DrIFT
tool (Winstanley 1997) derives instances automatically given rules depend-
ing only on the information contained in a type definition. However DrIFT
is unable to operate with certain Haskell extensions (eg. TEX style literate
Haskell), and requires a separate pre-processing stage.

In collaboration with Stefan O’Rear we have developed the Derive tool
(Mitchell and O’Rear 2007), which is is based on Template Haskell (Sheard
and Peyton Jones 2002). The Derive tool generates Uniplate instances by
applying the rules from Figure 3.5, along with some simplification steps,
replacing values such as Two x Zero with x.

Example 15

data Term = Name String
| Apply Term Term

deriving ({-! Uniplate !-})

3.3. IMPLEMENTING THE UNIPLATE CLASS 49

I[[Expr]] =
instance Uniplate Expr where

uniplate = N [[Expr]]

N [[Expr]] x = case x of
Val y1 → (Zero `Twò a1, λ(Zero `Twò z1) → Val (b1 z1)

where (a1, b1) = (λx → (Zero, λZero → x)) y1

Var y1 → (Zero `Twò a1, λ(Zero `Twò z1) → Var (b1 z1)
where (a1, b1) = N [[List]] y1

Neg y1 → (Zero `Twò a1, λ(Zero `Twò z1) → Neg (b1 z1))
where (a1, b1) = (λx → (One x, λ(One x′) → x′)) y1

Add y1 y2 → (Zero `Twò a1 `Twò a2

, λ(Zero `Twò z1 `Twò z2) → Neg (b1 z1) (b2 z2))
where (a1, b1) = (λx → (One x, λ(One x′) → x′)) y1

(a2, b2) = (λx → (One x, λ(One x′) → x′)) y2

-- other constructors following the same pattern as Add ...

N [[List]] v1 x = case x of
[] → (Zero, λ(Zero) → [])
(:) y1 y2 → (Zero `Twò a1 `Twò a2

, λ(Zero `Twò z1 `Twò z2) → (:) (b1 z1) (b2 z2))
where (a1, b1) = v1 y1

(a2, b2) = N [[List]] v1 y2

Figure 3.6: The result of applying D to Expr.

50 CHAPTER 3. BOILERPLATE REMOVAL

Running the Derive tool over this file, the generated code is:

instance Uniplate Term where
uniplate (Apply x1 x2) = (Two (One x1) (One x2)

, λ(Two (One x1) (One x2)) → Apply x1 x2)
uniplate x = (Zero, λ → x)

¤

3.4 Multi-type Traversals

We have introduced the Uniplate class and an instance of it for type Expr.
Now let us imagine that Expr is merely the expression type in a language
with statements:

data Stmt = Assign String Expr
| Sequence [Stmt]
| If Expr Stmt Stmt
| While Expr Stmt

We could define a Uniplate instance for Stmt, and so perform traversals upon
statements too. However, we may run into limitations. Consider the task of
finding all literals in a Stmt – this requires boilerplate to find not just inner
statements of type Stmt, but inner expressions of type Expr.

The Uniplate class takes a value of type α, and operates on its substructures
of type α. What we now require is something that takes a value of type
β, but operates on the children of type α within it – we call this class
Biplate. Typically the type β will be a container of α. We can extend our
operations by specifying how to find the α’s within the β’s, and then perform
the standard Uniplate operations upon the α type. In the above example,
α = Expr, and β = Stmt.

We first introduce UniplateOn, which requires an explicit function to find the
occurrences of type α within type β. We then make use of Multi-parameter
type classes (MPTC’s) to generalise this function into a type class, named
Biplate.

3.4. MULTI-TYPE TRAVERSALS 51

3.4.1 The UniplateOn Operations

We define operations, including universeOn and transformOn, which take an
extra argument relative to the standard Uniplate operators. We call this
extra argument biplate: it is a function from the containing type (β) to the
contained type (α).

type BiplateType β α = β → (Str α, Str α → β)
biplate :: BiplateType β α

The intuition for biplate is that given a structure of type β, the function
should return the largest substructures in it of type α. Unlike uniplate, if
α ≡ β the original value should be returned:

biplateSelf :: BiplateType α α
biplateSelf x = (One x, λ(One x′) → x′)

Unlike Uniplate, Biplate does not always descend. The idea is that Biplate is
used once at the beginning of a traversal to find the values of type α, then
Uniplate operates recursively descending through the data structure.

We can now define a selection of the On functions – the remaining functions
from Figure 3.3 can be implemented in a similar way. Each takes a biplate

function as an argument:

childrenOn :: Uniplate α ⇒ BiplateType β α → β → [α]
childrenOn biplate x = concatMap children $ strList $ fst $ biplate x

universeOn :: Uniplate α ⇒ BiplateType β α → β → [α]
universeOn biplate x = concatMap universe $ strList $ fst $ biplate x

descendOn :: Uniplate α ⇒ BiplateType β α → (α → α) → β → β
descendOn biplate f x = context $ fmap (descend f) cs

where (cs, context) = biplate x

transformOn :: Uniplate α ⇒ BiplateType β α → (α → α) → β → β
transformOn biplate f x = context $ fmap (transform f) cs

where (cs, context) = biplate x

These operations are similar to the original functions. They unwrap β val-
ues to find the α values within them, operate using the standard Uniplate

operations for type α, then rewrap if necessary. If α is constant, there is
another way to abstract away the biplate argument, as the following example
shows.

52 CHAPTER 3. BOILERPLATE REMOVAL

Example 16

The Yhc.Core library (Golubovsky et al. 2007), part of the York Haskell
Compiler (Yhc), makes extensive use of Uniplate. In this library, the central
types include:

data Core = Core String [String] [CoreData] [CoreFunc]

data CoreFunc = CoreFunc String String CoreExpr

data CoreExpr = CoreVar String
| CoreApp CoreExpr [CoreExpr]
| CoreCase CoreExpr [(CoreExpr, CoreExpr)]
| CoreLet [(String, CoreExpr)] CoreExpr

-- other constructors

Most traversals are performed on the CoreExpr type. However, it is often
convenient to start from one of the other types. For example, coreSimplify ::
CoreExpr → CoreExpr may be applied not just to an individual expression,
but to all expressions in a function definition, or a complete program. If we
are willing to freeze the type of the second argument to biplate as CoreExpr

we can write a class UniplateExpr β corresponding to Biplate β CoreExpr:

class UniplateExpr β where
uniplateExpr :: BiplateType β CoreExpr

We then need to write instances for the types we are interested in, mainly
those which are likely to contain a CoreExpr within them. These instances
must follow the same rules as for the Biplate class.

instance UniplateExpr Core where
uniplateExpr (Core a b c d) = (cs, λcs → Core a b c (gen cs))

where (cs, gen) = uniplateExpr d

instance UniplateExpr CoreFunc where
uniplateExpr (CoreFunc a b c) = (cs, λcs → CoreFunc a b (gen cs))

where (cs, gen) = uniplateExpr c

instance UniplateExpr CoreExpr where
uniplateExpr = biplateSelf

instance UniplateExpr a ⇒ UniplateExpr [a] where
uniplateExpr [] = (Zero, λZero → [])
uniplateExpr (x : xs) = (Two a as, λ(Two n ns) → b n : bs ns)

where (a, b) = uniplateExpr x
(as, bs) = uniplateExpr xs

3.4. MULTI-TYPE TRAVERSALS 53

We can then implement traversal functions specific to CoreExpr in terms of
the On functions:

childrenExpr x = childrenOn uniplateExpr x
universeExpr x = universeOn uniplateExpr x
descendExpr x = descendOn uniplateExpr x
transformExpr x = transformOn uniplateExpr x

-- Similarly for all 11 functions in Figure 3.1

¤

This technique has been used in the Yhc compiler. The Yhc compiler is
written in Haskell 98 to allow for bootstrapping, so only the standard single-
parameter type classes are available.

3.4.2 The Biplate class

If we are willing to make use of multi-parameter type classes (Jones 2000)
we can define a class Biplate with biplate as its sole method. We do not
require functional dependencies.

class Uniplate α ⇒ Biplate β α where
biplate :: BiplateType β α

We can now implement universeBi and transformBi in terms of their On

counterparts:

universeBi :: Biplate β α ⇒ β → [α]
universeBi = universeOn biplate

transformBi :: Biplate β α ⇒ (α → α) → β → β
transformBi = transformOn biplate

In general the move to Biplate requires few code changes, merely the use
of the new set of Bi functions. To illustrate we give generalisations of two
examples from previous sections, implemented using Biplate. We extend the
variables and simplify functions to work on Expr, Stmt or many other types.

Example from §1 (revisited)

variables :: Biplate β Expr ⇒ β → [String]
variables x = [y | Var y ← universeBi x]

54 CHAPTER 3. BOILERPLATE REMOVAL

The equation requires only one change: the addition of the Bi suffix to
universe. In the type signature we replace Expr with Biplate β Expr ⇒ β.
Instead of requiring the input to be an Expr, we merely require that from
the input we know how to reach an Expr. ¤

Example 8 (revisited)

simplify :: Biplate β Expr ⇒ β → β
simplify x = transformBi f x

where f (Sub x y) = Add x (Neg y)
f x = x

In this redefinition we have again made a single change to the equation: the
addition of Bi at the end of transform. ¤

3.5 Implementing Biplate

The complicating feature of biplate is that when defining Biplate where α ≡
β the function does not descend to the children, but simply returns its
argument – requiring a check for type equality between values. This check
can be captured either using the type system, or using the Typeable class
(Lämmel and Peyton Jones 2003). We present three methods for defining
a Biplate instance – offering a trade-off between performance, compatibility
and volume of code.

1. Direct definition requires O(n2) instances, but offers the highest per-
formance with the fewest extensions. See §3.5.1.

2. The Typeable class can be used, requiring O(n) instances and no fur-
ther Haskell extensions, but giving worse performance. See §3.5.2.

3. The Data class can be used, providing fully automatic instances with
GHC, but requiring the use of rank-2 types, and giving the worst
performance. See §3.5.3.

All three methods can be fully automated using the Derive tool, and all
provide a simplified method for writing Uniplate instances. The Biplate

class definition itself is independent of the method used to implement its

3.5. IMPLEMENTING BIPLATE 55

module Data.Generics.PlateDirect where

type Type β α = (Str α, Str α → β)

plate :: β → Type β α
plate f = (Zero, λ → f)

(|∗) :: Type (α → β) α → α → Type β α
(|∗) (xs, x′) y = (Two xs (One y), λ(Two xs (One y)) → x′ xs y)

(|+) :: Biplate τ α ⇒ Type (τ → β) α → τ → Type β α
(|+) (xs, x′) y = (Two xs ys, λ(Two xs ys) → x′ xs (y′ ys))

where (ys, y′) = biplate y

(|--) :: Type (τ → β) α → τ → Type β α
(|--) (xs, x′) y = (xs, λxs → x′ xs y)

(||∗) :: Type ([α] → β) α → [α] → Type β α
(||∗) (xs, x′) y = (Two xs (listStr y), λ(Two xs ys) → x′ xs (strList ys))

(||+) :: Biplate τ α ⇒ Type ([τ] → β) α → [τ] → Type β α
(||+) (xs, x′) y = (Two xs ys, λ(Two xs ys) → x′ xs (y′ ys))

where (ys, y′) = plateListDiff y
plateListDiff [] = plate []
plateListDiff (x : xs) = plate (:) |+ x ||+ xs

Figure 3.7: Implementation of PlateDirect.

instances. This abstraction allows the user to start with the simplest in-
stance scheme available to them, then move to alternative schemes to gain
increased performance or compatibility.

3.5.1 Direct instances

Writing direct instances requires the Data.Generics.PlateDirect module to be
imported, whose implementation is given in Figure 3.7. This style requires
a maximum of n2 instance definitions, where n is the number of concrete
types which contain each other, but gives the highest performance and most
type-safety. The instances still depend on the type of each field, but are
easier to define than the Uniplate instance discussed in §3.3.2. Here is a
possible instance for the Expr type:

instance Uniplate Expr where
uniplate (Neg a) = plate Neg |∗ a

56 CHAPTER 3. BOILERPLATE REMOVAL

uniplate (Add a b) = plate Add |∗ a |∗ b
uniplate (Sub a b) = plate Sub |∗ a |∗ b
uniplate (Mul a b) = plate Mul |∗ a |∗ b
uniplate (Div a b) = plate Div |∗ a |∗ b
uniplate x = plate x

Five infix combinators (|∗, |+, |--, ||∗ and ||+) indicate the structure of the
field to the right. The |∗ combinator says that the value on the right is of
the target type, |+ says that a value of the target type may occur in the
right operand, |-- says that values of the target type cannot occur in the
right operand. ||∗ and ||+ are versions of |∗ and |+ used when the value to the
right is a list either of the target type, or of a type that may contain target
values. The law plate f |-- x ≡ plate (f x) justifies the definition presented
above.

This style of definition naturally expands to the multi-type traversal. For
example:

instance Biplate Stmt Expr where
biplate (Assign a b) = plate Assign |-- a |∗ b
biplate (Sequence a) = plate Sequence ||+ a
biplate (If a b c) = plate If |∗ a |+ b |+ c
biplate (While a b) = plate While |∗ a |+ b

The information provided by uses of |-- and |+ avoids redundant exploration
down branches that do not have the target type. The use of ||∗ and ||+ avoid
the definition of additional instances. The combinators are implemented in
Figure 3.7, and work by building up the instance from left to right, adding
successive fields.

Instances are given only on concrete types, containing no type variables.
In the worst case, this approach requires a Biplate instance for each con-
tainer/contained pair. In reality few traversal pairs are actually needed.
The restricted pairing of types in Biplate instances also gives increased type
safety; instances such as Biplate Expr Stmt do not exist.

In our experience definitions using these combinators offer similar perfor-
mance to hand-tuned instances; see §3.7.2 for measurements.

3.5. IMPLEMENTING BIPLATE 57

module Data.Generics.PlateTypeable where

class PlateAll β α where
plateAll :: β → Type β α

type Type β α = (Str α, Str α → β)

plate :: β → Type β α
plate x = (Zero, λ → x)

(|+) :: (Typeable τ, Typeable α, PlateAll τ α)
⇒ Type (τ → β) α → τ → Type β α

(|+) (xs, x′) y = (Two xs ys, λ(Two xs ys) → x′ xs (y′ ys))
where (ys, y′) = plateSome y

instance (Typeable α, Typeable β, Uniplate α,PlateAll β α) ⇒
Biplate β α where

biplate = plateSome

plateSome :: (Typeable β, Typeable α, PlateAll β α) ⇒ β → Type β α
plateSome x = res

where
res = case asTypeOf (cast x) (Just $ head $ strList $ fst res) of

Nothing → plateAll x
Just y → (One y, λ(One y) → fromJust $ cast y)

Figure 3.8: Implementation of PlateTypeable.

58 CHAPTER 3. BOILERPLATE REMOVAL

3.5.2 Typeable based instances

Instead of writing O(n2) class instances to locate values of the target type,
we can use the Typeable class to test at runtime whether we have reached the
target type. This strategy is implemented in the Data.Generics.PlateTypeable

module, whose implementation is given in Figure 3.8. The user is required
to define an instance of the auxiliary class PlateAll, separating the fields of
a constructor with |+:

instance (Typeable α, Uniplate α) ⇒ PlateAll Expr α where
plateAll (Neg a) = plate Neg |+ a
plateAll (Add a b) = plate Add |+ a |+ b
plateAll (Sub a b) = plate Sub |+ a |+ b
plateAll (Mul a b) = plate Mul |+ a |+ b
plateAll (Div a b) = plate Div |+ a |+ b
plateAll x = plate x

instance (Typeable α, Uniplate α) ⇒ PlateAll Stmt α where
plateAll (Assign a b) = plate Assign |+ a |+ b
plateAll (Sequence a) = plate Sequence |+ a
plateAll (If a b c) = plate If |+ a |+ b |+ c
plateAll (While a b) = plate While |+ a |+ b

To give an instance of PlateAll β α, for a concrete type β, we require the
context Typeable α and Uniplate α. To give an instance where β has type
variables of kind ∗, we require the context Typeable τ and PlateAll τ α for
all the type variables τ in β. We do not permit β to have any higher-kinded
type variables. To give an example instance with type variables, the instance
for lists is:

instance (PlateAll τ α,Typeable τ, Typeable α, Uniplate α) ⇒
PlateAll [τ] α where

plateAll [] = plate []
plateAll (x : xs) = plate (:) |+ x |+ xs

From a PlateAll instance, a Biplate is inferred, using the code from Figure
3.8. The function plateAll always descends at least one level, then looks
for values of the target type, corresponding to the functionality of uniplate.
The function plateSome looks for the first values of the target type, corre-
sponding to biplate. Unfortunately, we cannot infer an instance for Uniplate

automatically, and must explicitly declare:

3.5. IMPLEMENTING BIPLATE 59

instance Uniplate Expr where
uniplate = plateAll

instance Uniplate Stmt where
uniplate = plateAll

The reader may wonder why we cannot define:

instance PlateAll α α ⇒ Uniplate α where
uniplate = plateAll

Consider the Expr type. To infer Uniplate Expr we require an instance for
PlateAll Expr Expr. But to infer this instance we require Uniplate Expr –
which we are in the process of inferring! 3

3.5.3 Using the Data class

The existing Data and Typeable instances provided by the SYB approach
can also be used to define Uniplate instances:

import Data.Generics
import Data.Generics.PlateData

data Expr = . . . deriving (Typeable, Data)
data Stmt = . . . deriving (Typeable, Data)

The disadvantages of this approach are (1) lack of type safety – there are
now Biplate instances for many pairs of types where one is not a container of
the other; (2) compiler dependence – it will only work where Data.Generics

is supported, namely GHC at the time of writing.4 The clear advantage is
that there is almost no work required to create instances.

How do we implement the Uniplate class instances? The implementation is
given in Figure 3.9, making use of the class PlateAll from PlateTypeable in
Figure 3.8. The operation to get the children can be done using gmapQ. The
operation to replace the children is more complex, requiring a state monad
to keep track of the items to insert.

3GHC has co-inductive or recursive dictionaries, but Hugs does not. To allow continu-
ing compatibility with Hugs, and the use of fewer extensions, we require the user to write
these explicitly for each type.

4Hugs supports the required rank-2 types for Data.Generics, but the work to port the
library has not been done yet.

60 CHAPTER 3. BOILERPLATE REMOVAL

module Data.Generics.PlateData where

import Data.Generics.PlateTypeable

instance (Typeable α, Data α, Typeable β, Data β) ⇒ PlateAll β α where
plateAll x = (children, context)

where
children = listStr $ concat $ gmapQ (strList ◦ fst ◦ plateSome) x

context xs = evalState (gmapM f x) $ strList xs
f y = do let (cs, con) = plateSome y

(as, bs) ← liftM (splitAt $ length $ strList cs) get
put bs
return $ con $ listStr as

instance (Typeable α, Data α) ⇒ Uniplate α where
uniplate = plateAll

Figure 3.9: Implementation of PlateData.

The code in Figure 3.9 is not optimised for speed. Uses of splitAt and length

require the list of children to be traversed multiple times. Transforming
between Str α and [α] is also inefficient. We discuss improvements in §3.6.2.

3.6 Performance Improvements

This section describes some of the performance improvements we have been
able to make. First we focus on our optimisation of universe, using foldr/build

fusion properties (Peyton Jones et al. 2001). Next we turn to our Data class
based instances, improving them enough to outperform SYB itself.

3.6.1 Optimising the universe function

Our initial universe implementation was presented in §3.3.1 as:

universe :: Uniplate on ⇒ on → [on]
universe x = x : concatMap universe (children x)

A disadvantage is that concatMap produces and consumes a list at every
level in the data structure. We can fix this by calling the uniplate method
directly, and building the list with a tail:

3.6. PERFORMANCE IMPROVEMENTS 61

universe :: Uniplate on ⇒ on → [on]
universe x = f (One x) []

where f (Zero) res = res
f (One x) res = x : f (fst $ uniplate x) res
f (Two x y) res = f x (f y res)

Now we only perform one reconstruction. We can do even better using
GHC’s list fusion (Peyton Jones et al. 2001). The user of universe is often
a list comprehension, which is a good consumer. We can make f a good
producer :

universe :: Uniplate on ⇒ on → [on]
universe x = build f

where f cons nil = g cons nil (One x) nil
g cons nil (Zero) res = res
g cons nil (One x) res = x `cons̀ g cons nil (fst $ uniplate x) res
g cons nil (Two x y) res = g cons nil x (g cons nil y res)

3.6.2 Optimising PlateData

Surprisingly, it is possible to layer Uniplate over the Data instances of SYB,
with better performance than SYB itself. The first optimisation is to gen-
erate the two members of the uniplate pair with only one pass over the data
value. We cannot use SYB’s gmapM or gmapQ – we must instead use gfoldl

directly. With this first improvement in place we perform much the same
operations as SYB. But the overhead of structure creation in uniplate makes
traversals about 10% slower than SYB.

The next optimisation relies on the extra information present in the Uniplate

operations – namely the target type. A boilerplate operation walks over a
data structure, looking for target values to process. In SYB, the target
values may be of any type. For Uniplate the target is a single uniform
type. If a value is reached which is not a container for the target type,
no further exploration is required of the values children. Computing which
types are containers for the target type can be done relatively easily in the
SYB framework (Lämmel and Peyton Jones 2004):

62 CHAPTER 3. BOILERPLATE REMOVAL

data TypeBox = ∀ α ◦ (Typeable α, Data α) ⇒ TypeBox α

contains :: TypeBox → [TypeBox]
contains (TypeBox x) = if isAlgType dtyp then concatMap f ctrs else []

where
f c = gmapQ TypeBox (asTypeOf (fromConstr c) x)
ctrs = dataTypeConstrs dtyp
dtyp = dataTypeOf x

A TypeBox can be thought of as storing a type, rather than a value. The
TypeBox constructor stores the Data and Typeable instance information for
a particular type, along with the value undefined of that type. The contains

function takes a TypeBox and returns a TypeBox representing the type of
each field for each possible constructor. For example, the type [Int] has two
constructors, [] which has no fields, and (:) which has fields of type Int and
[Int]:

contains (undefined :: [Int]) =
[TypeBox (undefined :: Int), TypeBox (undefined :: [Int])]

The contains function determines the types directly contained by a data type.
By taking the transitive closure we can determine all the types reachable
from a particular type. Hence all types can be divided into three sets:

1. The singleton set containing the type of the target.

2. The set of other types which may contain the target type.

3. The set of other types which do not contain the target type.

We compute these sets for each type only once, and the cost of computing
them is small. When examining a value, if its type is a member of set 3 we
can prune the search. This trick is surprisingly effective. Take for example
an operation over Bool on the value (True, "Haskell"). The SYB approach
finds 16 subcomponents, Uniplate touches only 3 subcomponents.

With all these optimisations we can usually perform both queries and trans-
formations faster than SYB. In the benchmarks we improve on SYB by
between 30% and 225%, with an average of 145% faster. Full details are
presented in §3.7.2.

3.7. RESULTS AND EVALUATION 63

3.7 Results and Evaluation

We evaluate our boilerplate reduction scheme in two ways: firstly by the
conciseness of traversals using it (i.e. the amount of boilerplate it removes),
and secondly by its runtime performance. We measure conciseness by count-
ing lexemes – although we concede that some aspects of concise expression
may still be down to personal preference. We give a set of nine exam-
ple programs, written using Uniplate, SYB and Compos operations. We
then compare both the conciseness and the performance of these programs.
Other aspects, such as the clarity of expression, are not so easily measured.
Readers can make their own assessment based on the full sources we give.

3.7.1 Boilerplate Reduction

As test operations we have taken the first three examples from this chapter,
three from the Compos paper (Bringert and Ranta 2006), and the three given
in the SYB paper (Lämmel and Peyton Jones 2003) termed the “Paradise
Benchmark”. In all cases the Compos, SYB and Uniplate functions are
given an appropriately prefixed name. In some cases, a helper function can
be defined in the same way in both SYB and Uniplate; where this is possible
we have done so. Type signatures are omitted where the compiler is capable
of inferring them. For SYB and Compos we have used definitions from the
original authors where available, otherwise we have followed the guidelines
and style presented in the corresponding paper.

Examples from this Chapter

Example from §3.1 (revisited)

uni variables x = [y | Var y ← universe x]

syb variables = everything (++) ([] `mkQ̀ f)
where f (Var y) = [y]

f = []

com variables :: Expr a → [String]
com variables x = case x of

Var y → [y]
→ composOpFold [] (++) com variables x

64 CHAPTER 3. BOILERPLATE REMOVAL

Only Compos needs a type signature, due to the use of GADTs. List com-
prehensions allow for succinct queries in Uniplate. ¤

Example 7 (revisited)

uni zeroCount x = length [() | Div (Val 0) ← universe x]

syb zeroCount = everything (+) (0 `mkQ̀ f)
where f (Div (Val 0)) = 1

f = 0

com zeroCount :: Expr a → Int
com zeroCount x = case x of

Div y (Val 0) → 1 + com zeroCount y
→ composOpFold 0 (+) com zeroCount x

In the Uniplate solution the list of () is perhaps inelegant. However, Uniplate
is the only scheme that is able to use the standard length function: the other
two express the operation as a fold. Compos requires additional boilerplate
to continue the operation on Div y. ¤

Example 8 (revisited)

simp (Sub x y) = simp $ Add x (Neg y)
simp (Add x y) | x ≡ y = Mul (Val 2) x
simp x = x

uni simplify = transform simp

syb simplify = everywhere (mkT simp)

com simplify :: Expr a → Expr a
com simplify x = case x of

Sub a b → com simplify $ Add (com simplify a) (Neg (com simplify b))
Add a b → case (com simplify a, com simplify b) of

(a′, b′) | a′ ≡ b′ → Mul (Val 2) a′

| otherwise → Add a′ b′

→ composOp com simplify x

This is a modified version of simplify discussed in §3.2.5. The two rules
are applied everywhere possible. Compos does not provide a bottom-up
transformation, so needs extra boilerplate. ¤

3.7. RESULTS AND EVALUATION 65

data Stm = SDecl Typ Var | SAss Var Exp
| SBlock [Stm] | SReturn Exp

data Exp = EStm Stm | EAdd Exp Exp
| EVar Var | EInt Int

data Var = V String
data Typ = T int | T float

Figure 3.10: Data type from Compos.

Multi-type examples from the Compos paper

The statement type manipulated by the Compos paper is given in Figure
3.10. The Compos paper translates this type into a GADT, while Uniplate
and SYB both accept the definition as supplied.

As the warnAssign function from the Compos paper could be implemented
much more neatly as a query, rather than a monadic fold, we choose to
ignore it. We cover the remaining three functions.

Example 17 (rename)

ren (V x) = V ("_" ++ x)

uni rename = transformBi ren

syb rename = everywhere (mkT ren)

com rename :: Tree c → Tree c
com rename t = case t of

V x → V ("_" ++ x)
→ composOp com rename t

The Uniplate definition is the shortest, as there is only one constructor in
type Var. As Compos redefines all constructors in one GADT, it cannot
benefit from this knowledge. ¤

Example 18 (symbols)

uni symbols x = [(v, t) | SDecl t v ← universeBi x]

66 CHAPTER 3. BOILERPLATE REMOVAL

syb symbols = everything (++) ([] `mkQ̀ f)
where f (SDecl t v) = [(v, t)]

f = []

com symbols :: Tree c → [(Tree Var, Tree Typ)]
com symbols x = case x of

SDecl t v → [(v, t)]
→ composOpMonoid com symbols x

Whereas the Compos solution explicitly manages the traversal, the Uniplate
solution is able to use the built-in universeBi function. The use of lists again
benefits Uniplate over SYB. ¤

Example 19 (constFold)

optimise (EAdd (EInt n) (EInt m)) = EInt (n + m)
optimise x = x

uni constFold = transformBi optimise

syb constFold = everywhere (mkT optimise)

com constFold :: Tree c → Tree c
com constFold e = case e of

EAdd x y → case (com constFold x, com constFold y) of
(EInt n,EInt m) → EInt (n + m)
(x′, y′) → EAdd x′ y′

→ composOp com constFold e

The constant-folding operation is a bottom-up transformation, requiring
all subexpressions to have been transformed before an enclosing expression
is examined. Compos only supports top-down transformations, requiring
a small explicit traversal in the middle. Uniplate and SYB both support
bottom-up transformations. ¤

The Paradise Benchmark from SYB

The Paradise benchmark was introduced in the SYB paper (Lämmel and
Peyton Jones 2003). The data type is shown in Figure 3.11. The idea is
that this data type represents an XML file, and a Haskell program is being

3.7. RESULTS AND EVALUATION 67

type Manager = Employee
type Name = String
type Address = String
data Company = C [Dept]
data Dept = D Name Manager [Unit]
data Unit = PU Employee | DU Dept
data Employee = E Person Salary
data Person = P Name Address
data Salary = S Integer

Figure 3.11: Paradise Benchmark data structure.

written to perform various operations over it. The Compos paper includes
an encoding into a GADT, with tag types for each of the different types.

We have made one alteration to the data type: Salary is no longer of type
Float but of type Integer. In various experiments we found that the rounding
errors for floating point numbers made different definitions return different
results.5 This change is of no consequence to the boilerplate code.

Example 20 (increase)

The first function discussed in the SYB paper is increase. This function
increases every item of type Salary by a given percentage. In order to fit
with our modified Salary data type, we have chosen to increase all salaries
by k.

incS k (S s) = S (s + k)

uni increase k = transformBi (incS k)

syb increase k = everywhere (mkT (incS k))

com increase :: Integer → Tree c → Tree c
com increase k c = case c of

S s → S (s + k)
→ composOp (com increase k) c

In the Compos solution all constructors belong to the same GADT, so in-
stead of just matching on S, all constructors must be examined. ¤

5Storing your salary in a non-exact manner is probably not a great idea!

68 CHAPTER 3. BOILERPLATE REMOVAL

Example 21 (incrOne)

The incrOne function performs the same operation as increase, but only
within a named department. The one subtlety is that if the named depart-
ment has a sub-department with the same name, then the salaries of the
sub-department should only be increased once. We are able to reuse the
increase function from the previous section in all cases.

uni incrOne d k = descendBi f
where f x@(D n) | n ≡ d = uni increase k x

| otherwise = descend f x

syb incrOne :: Data a ⇒ Name → Integer → a → a
syb incrOne d k x | isDept d x = syb increase k x

| otherwise = gmapT (syb incrOne d k) x
where isDept d = False `mkQ̀ isDeptD d

isDeptD d (D n) = n ≡ d

com incrOne :: Name → Integer → Tree c → Tree c
com incrOne d k x = case x of

D n | n ≡ d → com increase k x
→ composOp (com incrOne d k) x

The SYB solution has grown substantially more complex, requiring two
different utility functions. In addition syb incrOne now requires a type sig-
nature. Compos retains the same structure as before, requiring a case to
distinguish between the types of constructor. For Uniplate we use descend

rather than transform, to ensure no salaries are incremented twice. ¤

Example 22 (salaryBill)

The final function is one which sums all the salaries.

uni salaryBill x = sum [s | S s ← universeBi x]

syb salaryBill = everything (+) (0 `mkQ̀ billS)
where billS (S s) = s

com salaryBill :: Tree c → Integer
com salaryBill x = case x of

S s → s
→ composOpFold 0 (+) com salaryBill x

3.7. RESULTS AND EVALUATION 69

Here the Uniplate solution wins by being able to use a list comprehension to
select the salary value out of a Salary object. The Uniplate class is the only
one that is able to use the standard Haskell sum function, not requiring an
explicit fold. ¤

Uniplate compared to SYB and Compos

In order to measure conciseness of expression, we have taken the code for
all solutions and counted the number of lexemes – using the lex function
provided by Haskell. A table of results is given in Table 3.1. The defini-
tions of functions shared between SYB and Uniplate are included in both
measurements. For the incrOne function we have not included the code for
increase as well.

The Compos approach requires much more residual boilerplate than Uni-
plate, particularly for queries, bottom-up transformations and in type sig-
natures. The Compos approach also requires a GADT representation.

Compared with SYB, Uniplate seems much more similar. For queries, Uni-
plate is able to make use of list comprehensions, which produces shorter
code and does not require encoding a manual fold over the items of inter-
est. For transformations, typically both are able to use the same underlying
operation, and the difference often boils down to the mkT wrappers in SYB.

All the Uniplate functions could be implemented in the SYB framework, us-
ing the Data and Typeable classes instead of Uniplate and Biplate. If this was
done, then the SYB examples would be identical to the Uniplate examples,
and consequently have identical lexeme counts.

3.7.2 Runtime Overhead

This section compares the speed of solutions for the nine examples given in
the previous section, along with hand-optimised versions, using no boiler-
plate removal library. We use four Uniplate instances, provided by:

Manual: These are Uniplate and Biplate instances written by hand.

Direct: These instances use the direct combinators from §3.5.1.

Typeable: These instances use the Typeable combinators from §3.5.2.

70 CHAPTER 3. BOILERPLATE REMOVAL

simp var zero const ren syms bill incr incr1
Lexemes
Uniplate 40 12 18 27 16 17 13 21 30
SYB 43 29 29 30 19 34 21 24 56
Compos 71 30 32 54 27 36 25 33 40

Performance
Uniplate Manual 1.26 1.31 1.89 1.25 1.25 1.33 2.18 1.28 1.15
Uniplate Direct 1.30 1.37 2.17 1.34 1.36 1.28 2.89 1.40 1.24
Compos 1.50 1.17 1.65 1.50 1.38 1.46 3.70 1.65 1.60
Uniplate Typeable 1.50 1.72 2.86 2.09 2.00 3.10 9.49 1.74 1.81
Uniplate Data 2.35 3.76 7.52 2.31 2.50 4.10 16.72 2.08 2.03
SYB 3.24 7.28 16.33 3.69 3.33 9.75 54.70 4.09 3.70

Query Transform All
Lexemes
Uniplate 60 134 194
SYB 113 172 285
Compos 123 225 348

Performance
Uniplate Manual 1.68 1.24 1.43
Uniplate Direct 1.93 1.33 1.59
Compos 2.00 1.53 1.73
Uniplate Typeable 4.29 1.83 2.92
Uniplate Data 8.03 2.25 4.81
SYB 22.02 3.61 11.79

Lexemes are the number of lexemes for each of the solutions to the test
problems using each of Uniplate, SYB and Compos. Performance is
expressed as multiples of the run-time for a hand-optimised version not
using any traversal library, with lower being better.

Table 3.1: Table of lexeme counts and runtime performance.

3.8. RELATED WORK 71

Data: These instances use the SYB Data instances directly, as described in
§3.5.3.

For all data types we generate 100 values at random using QuickCheck
(Claessen and Hughes 2000). In order to ensure a fair comparison, we define
one data type which is the same as the original, and one which is a GADT
encoding. All operations take these original data types, transform them
into the appropriate structure, apply the operation and then unwrap them.
We measure all results as multiples of the time taken for a hand-optimised
version. We compiled all programs with GHC 6.8.2 and -O2 on Windows
XP.

The results are presented in Table 3.1. Using Manual or Direct instances,
Uniplate is slightly faster than Compos – but about 50% slower than hand-
optimised versions. Using the Data instances provided by SYB, we are able
to substantially outperform SYB itself! See §3.6 for details of some of the
optimisations used.

3.8 Related Work

The Uniplate library is intended to be a way to remove the boilerplate of
traversals from Haskell programs. It is far from the first library to attempt
boilerplate removal.

3.8.1 The SYB library

The SYB library (Lämmel and Peyton Jones 2003) is perhaps the most
popular boilerplate removal system in Haskell. One of the reasons for its
success is tight integration with the GHC compiler, lowering the barrier
to use. We have compared directly against traversals written in SYB in
§3.7.1, and have also covered how to implement Uniplate in terms of SYB
in §3.5.3. In our experience most operations are shorter and simpler than
the equivalents in SYB, and we are able to operate without the extension
of rank-2 types. Most of these benefits stem directly from our definition of
children as being the children of the same uniform type, contrasting with
the SYB approach of all direct children.

The SYB library is, however, more powerful than Uniplate. If you wish to

72 CHAPTER 3. BOILERPLATE REMOVAL

visit values of different type in a single traversal, Uniplate is unsuitable.
The Data and Typeable classes have also been pushed further in successive
papers (Lämmel and Peyton Jones 2004, 2005), allowing operations such as
runtime reflection on values, which Uniplate cannot provide.

3.8.2 The Compos library

The Compos library (Bringert and Ranta 2006) is another approach to the
removal of boilerplate, requiring GADTs (Peyton Jones et al. 2006) along
with rank-2 types. The Compos library requires an existing data type to
be rewritten as a GADT. The conversion from standard Haskell data struc-
tures to GADTs currently presents several problems: they are GHC specific,
deriving is not supported on GADTs, and GADTs require explicit type sig-
natures. The Compos approach is also harder to write instances for, having
no simple instance generation framework, and no automatic derivation tool
(although one could be written). The inner composOp operator is very pow-
erful, and indeed we have chosen to replicate it in our library as descend.
But the Compos library is unable to replicate either universe or transform

from our library.

3.8.3 The Stratego tool

The Stratego tool (Visser 2004) provides support for generic operations, fo-
cusing on both the operations and the strategies for applying them. This
approach is performed in an untyped language, although a typed representa-
tion can be modelled (Lämmel 2003). Rather than being a Haskell library,
Stratego implements a domain specific language that can be integrated with
Haskell.

3.8.4 The Strafunski library

The Strafunski library (Lämmel and Visser 2003; Lämmel 2002) has two
aspects: generic transformations and queries for trees of any type; and fea-
tures to integrate components into a larger programming system. Generic
operations are performed using strategy combinators which can define spe-
cial case behaviour for particular types, along with a default to perform in
other situations. The Strafunski library is integrated with Haskell, primarily

3.8. RELATED WORK 73

providing support for generic programming in application areas that involve
traversals over large abstract syntax trees.

3.8.5 The Applicative library

The Applicative library (McBride and Paterson 2007) works by threading an
Applicative operation through a data structure, in a similar way to threading
a Monad through the structure. There is additionally a notion of Traversable

functor, which can be used to provide generic programming. While the Ap-
plicative library can be used for generic programming, this task was not its
original purpose, and the authors note they have “barely begun to explore”
its power as a generic toolkit.

3.8.6 Generic Programming

There are a number of other libraries which deal with generic programming,
aimed more at writing type generic (or polytypic) functions, but which can be
used for boilerplate removal. The Haskell generics suite6 showcases several
approaches (Weirich 2006; Hinze 2004; Hinze and Jeuring 2003).

6http://darcs.haskell.org/generics/

Chapter 4

Supercompilation

This chapter deals with developing a supercompiler for Haskell, which we
have called Supero. We start with an introductory example in §4.1, then
describe our supercompilation method in §4.2. We then give a number of
benchmarks, comparing both against C (compiled with GCC) in §4.3 and
Haskell (compiled with GHC) in §4.4. Finally, we review related work in
§4.5.

4.1 Introductory Example

Haskell (Peyton Jones 2003) can be used in a highly declarative manner, to
express specifications which are themselves executable. Take for example
the task of counting the number of words in a file read from the standard
input. In Haskell, one could write:

main = print ◦ length ◦ words =<< getContents

From right to left, the getContents function reads the input as a list of
characters, words splits this list into a list of words, length counts the number
of words, and finally print writes the value to the screen.

An equivalent C program is given in Figure 4.1. Compared to the C pro-
gram, the Haskell version is more concise and more easily seen to be correct.
Unfortunately, the Haskell program (compiled with GHC (The GHC Team
2007)) is also three times slower than the C version (compiled with GCC).
This slowdown is caused by several factors:

74

4.1. INTRODUCTORY EXAMPLE 75

int main()
{

int i = 0;
int c, last_space = 1, this_space;
while ((c = getchar()) != EOF) {

this_space = isspace(c);
if (last_space && !this_space)

i++;
last_space = this_space;

}
printf("%i\n", i);
return 0;

}

Figure 4.1: Word counting in C.

Intermediate Lists The Haskell program produces and consumes many
intermediate lists as it computes the result. The getContents function
produces a list of characters, words consumes this list and produces a
list of lists of characters, length then consumes the outermost list. The
C version uses no intermediate data structures.

Functional Arguments The words function is defined using the dropWhile

function, which takes a predicate and discards elements from the input
list until the predicate becomes true. The predicate is passed as an
invariant function argument in all applications of dropWhile.

Laziness and Thunks The Haskell program proceeds in a lazy manner,
first demanding one character from getContents, then processing it
with each of the functions in the pipeline. At each stage, a lazy thunk
for the remainder of each function is created.

Using Supero, we can eliminate all these overheads. We obtain a program
that performs faster than the C version. The optimiser is based around the
techniques of supercompilation (Turchin 1986), where some of the program
is evaluated at compile time, leaving an optimised residual program.

Our goal is an automatic optimisation that makes high-level Haskell pro-
grams run as fast as low-level equivalents, eliminating the current need for
hand-tuning and low-level techniques to obtain competitive performance.
We require no annotations on any part of the program, including the library
functions.

76 CHAPTER 4. SUPERCOMPILATION

4.1.1 Contributions

• To our knowledge, this is the first time supercompilation has been
applied to Haskell.

• We make careful study of the let expression, something absent from
the core language of many other papers on supercompilation.

• We present an alternative generalisation step, based on a homeomor-
phic embedding (Leuschel 2002).

4.2 Supercompilation

Our supercompiler takes a Core program as input, in the format described
in §2.1, and produces an equivalent Core program as output. To improve
the program we do not make small local changes to the original, but instead
evaluate it at compile time so far as possible, leaving a residual program to
be run.

The general method of supercompilation is shown in Figure 4.2. Each func-
tion in the output program is an optimised version of some associated ex-
pression in the input program. Supercompilation starts at the main function,
and supercompiles the expression associated with main. Once the expression
has been supercompiled, the outermost shell of the expression becomes part
of the residual program – making use of a Uniplate instance for our Core
language (see Chapter 3). All the subexpressions are assigned names, and
will be given definitions in the residual program. If any expression (up to
α-renaming) already has a name in the residual program, then the same
name is used. Each of these named inner expressions is then supercompiled
as before.

The supercompilation of an expression proceeds by repeatedly inlining a
function application until some termination criterion is met. Once the termi-
nation criterion holds, the expression is generalised before the outer shell of
the expression becomes part of the residual program and all subexpressions
are assigned names. After each inlining step, the expression is simplified
using the standard simplification rules from §2.1.2, along with additional
simplification rules from Figure 4.3. The additional simplification rules all
reduce the sharing in an expression, but by small constant amounts, and

4.2. SUPERCOMPILATION 77

supercompile ()
seen := { }
bind := { }
tie ({ }, main)

tie (ρ, x)
if x /∈ seen then

seen := seen ∪ {x}
bind := bind ∪ {ψ(x) = λfreeVars(x) → drive(ρ, x)}

endif
return (ψ(x) freeVars(x))

drive (ρ, x)
if terminate(ρ, x) then

(cs, gen) = uniplate(generalise(ρ, x))
return gen(fmap (tie ρ) cs)

else
return drive(ρ ∪ {x}, simplify(unfold(x)))

Where ψ is a mapping from expressions to function names, ρ is the ter-
mination context and freeVars(x) returns the free variables in x. This code
is parameterised by: terminate which decides whether to stop supercompi-
lation of this expression; generalise which generalises an expression before
residuation; unfold which chooses a function application and unfolds it. The
simplify function is the application of the simplification rules given in Figures
2.4 and 4.3.

Figure 4.2: The supercompile function.

case v of {. . .; c vs → x; . . .}
⇒ case v of {. . .; c vs → x [v / c vs]; . . .}

let v = x in y
⇒ y [v / x]
where x is a lambda or a variable

let v = c x1. . .xn in y
⇒ let v1 = x1 in

. . .
let vn = xn in
y [v / c v1. . .vn]

where v1. . .vn are fresh

Figure 4.3: Additional simplification rules.

78 CHAPTER 4. SUPERCOMPILATION

permit additional transformations. For example, the first rule will cause
a fresh constructor application to be created inside a case alternative, in-
stead of sharing the case scrutinee. There are three key decisions in the
supercompilation of an expression:

1. Which function to inline.

2. What termination criterion to use.

3. What generalisation to use.

The original Supero work (Mitchell and Runciman 2007b) inlined following
evaluation order (with the exception of let expressions), used a bound on
the size of the expression to ensure termination, and performed no general-
isation. First we give examples of our supercompiler in use, then we return
to examine each of the three choices we have made.

4.2.1 Examples of Supercompilation

Example 23 (Supercompiling and Specialisation)

main as = map (λb → b + 1) as

map f cs = case cs of
[] → []
d : ds → f d : map f ds

There are two primary inefficiencies in this example: (1) the map function
passes the f argument invariantly in every call; (2) the application of f is
more expensive than if the function was known in advance.

In order to simplify the example, we begin supercompilation from the ex-
pression map (λb → b+1) as, rather than main. Supercompilation proceeds
by first applying ψ(map (λb → b + 1) as), to generate a fresh name, which
we choose to be h0. This new function h0 then has the free variables of
the original expression as arguments, namely as. We then apply drive to
the RHS, first inlining the map application, then applying the simplification
rules:

h0 as = map (λb → b + 1) as

= case as of

4.2. SUPERCOMPILATION 79

[] → []
d : ds → d + 1 : map (λb → b + 1) ds

We now have a case with a variable as the scrutinee at the root of the
expression, which terminate determines cannot be reduced further, so we
residuate the outer shell of the expression. When processing the expression
map (λb → b + 1) ds the tie function spots this to be an α-renaming of the
body of an existing generated function already in the seen set, namely h0,
so h0 is used without applying drive:

h0 as = case as of
[] → []
d : ds → d + 1 : h0 ds

We have now specialised the higher-order argument, passing less data at
runtime. ¤

Example 24 (Supercompiling and Deforestation)

The deforestation transformation (Wadler 1988) removes intermediate lists
from a traversal. A similar result is obtained by applying supercompilation,
as shown here. Consider the operation of mapping (∗2) over a list and then
mapping (+1) over the result. The first map deconstructs one list, and
constructs another. The second does the same.

main as = map (λb → b + 1) (map (λc → c ∗ 2) as)

We first assign a new name for the body of main, then choose to expand the
outer call to map:

h0 as = case map (λc → c ∗ 2) as of
[] → []
d : ds → d + 1 : map (λb → b + 1) ds

Next the unfold function chooses to inline the map scrutinised by the case,
then perform the case/case simplification, and finally residuate:

h0 as = case (case as of
[] → []
e : es → e ∗ 2 : map (λc → c ∗ 2) es) of

[] → []

80 CHAPTER 4. SUPERCOMPILATION

d : ds → d + 1 : map (λb → b + 1) ds

= case as of
[] → []
d : ds → (d ∗ 2) + 1 : map (λb → b + 1) (map (λc → c ∗ 2) ds)

= case as of
[] → []
d : ds → (d ∗ 2) + 1 : h0 ds

Both intermediate lists have been removed, and the functional arguments
to map have both been specialised. ¤

4.2.2 Which function to inline

During the supercompilation of an expression, at each step some function
needs to be inlined. Which to choose? In most supercompilation work the
choice is made following the runtime semantics of the program. But in
a language with let expressions this may be inappropriate. If a function
applied in a let binding is inlined, its application when reduced may be a
constructor or lambda, which would then be substituted in the let body.
However, if a function applied in a let body is inlined, the let body may now
only refer to the let binding once, allowing the binding to be substituted.
Let us take two expressions, based on intermediate steps obtained from real
programs (word counting and prime number calculation respectively):

let x = (≡) $ 1
in x 1 : map x ys

let x = repeat 1
in const 0 x : map f x

In the first example, inlining ($) in the let binding gives (λx → 1 ≡ x),
which is now a lambda and can be substituted for x, resulting in ((1 ≡
1) : map (λx → 1 ≡ x) ys) after simplification. Now map can be specialised
appropriately. Alternatively, expanding the map repeatedly would keep in-
creasing the size of expression until the termination criterion was met, abort-
ing the supercompilation of this expression without achieving specialisation.

Taking the second example, repeat can be inlined indefinitely. However, by
unfolding the const we produce let x = repeat 1 in 0 :map f x. Since x is only

4.2. SUPERCOMPILATION 81

used once we substitute it to produce (0 : map f (repeat 1)), which can have
an intermediate list removed.

Unfortunately these two examples seem to suggest different strategies for
unfolding – unfold in the let binding or unfold in the let body. However,
they do have a common theme – unfold the function that cannot be unfolded
infinitely often. Our strategy can be defined by the unfold function:

unfold :: Expr → Expr
unfold x = head (filter (not ◦ terminate) xs ++ xs ++ [x])

where xs = unfolds x

unfolds :: Expr → [Expr]
unfolds [[f xs]] = [[[(inline f) xs]]]
unfolds x = [gen y | (c, gen) ← holes x, y ← unfolds c]

The unfolds function computes all possible one-step inlinings, using an in-
order traversal of the abstract syntax tree, making use of the holes function
defined by Uniplate in §3.2.8. The unfold function chooses the first unfold-
ing which does not cause the supercompilation to terminate. If no such
expression exists, the first unfolding is chosen.

4.2.3 The Termination Criterion

The original Supero program used a size bound on the expression to deter-
mine when to stop. The problem with a size bound is that different programs
require different bounds to ensure both timely completion at compile-time
and efficient residual programs. Indeed, within a single program, there may
be different elements requiring different size bounds – a problem exacerbated
as the size and complexity of a program increases.

Our solution is to use the homeomorphic embedding relation (described in
§2.4). We terminate the supercompilation of an expression y if on the chain
of reductions from main to y (represented by ρ) we have encountered an
expression x such that x E y.

In addition to using the homeomorphic embedding, we also terminate if
further unfolding cannot yield any improvement to the root of the expression,
as calculated by simpleTerminate in Figure 4.4. For example, if the root of
an expression is a constructor application, no further unfolding will change

82 CHAPTER 4. SUPERCOMPILATION

simpleTerminate [[c]] = True
simpleTerminate [[case [[v]] of]] = True
simpleTerminate [[λ →]] = True
simpleTerminate [[v]] = True
simpleTerminate = False

Figure 4.4: Simple Termination function.

the root constructor. When terminating for this reason, we always residuate
the outer shell of the expression, without applying any generalisation.

4.2.4 Generalisation

When the termination criterion has been met, it is necessary to reduce the
size of the current expression, so that the supercompilation terminates. We
always residuate the outer shell of the expression, but first we attempt to
generalise the expression to improve subsequent optimisation. The simplest
generalisation strategy is to do nothing, and always residuate the outer shell.
We now introduce and compare two additional strategies, the first based on
the most specific generalisation, and a second of our own creation.

The additional strategies work by using both the current expression x, and
the expression y which caused the termination criteria to apply, where y ∈ ρ

and y E x. The generalisation must return an expression equivalent to x,
but aims to have similarities with y after residuation of the outer shell. By
being similar to y, the parts of the expression that occur repeatedly are not
split apart by residuation and can be optimised well.

Most Specific Generalisation

The paper by Sørensen and Glück (1995) provides a method for generalisa-
tion, which works by taking the most specific generalisation of the current
expression and an expression which is a homeomorphic embedding of it.

The most specific generalisation of two expressions s and t, msg(s, t), is pro-
duced by applying the following rewrite rule to the initial triple
(v, {v = s}, {v = t}), resulting in a common expression and two sets of
bindings.

4.2. SUPERCOMPILATION 83

tg

{v = σ(s1, . . . , sn)} ∪ θ1

{v = σ(t1, . . . , tn)} ∪ θ2

 →

tg[v/σ(y1, . . . , yn)]
{y1 = s1, . . . , yn = sn} ∪ θ1

{y1 = t1, . . . , yn = tn} ∪ θ2

We can now write generalise as follows:

generalise ρ x = [[let bind in x′]]
where (x′, bind,) = msg x (head [y | y ← ρ, y E x])

The generalise function applies msg and creates a let expression contain-
ing the binding produced. For example, given Just (1 : []) as the current
expression, and Just [] as the expression from ρ which is a homeomorphic
embedding of it, we would obtain let v = 1:[] in Just v. This method factors
out similar parts of the two expressions, starting from the root.

Our Generalisation

Our generalisation is characterised by x ./ y, which produces an expression
equivalent to y, but similar in structure to x.

x ./ σ∗(y), if dive(x, σ∗(y)) ∧ couple(x, y)
let f = λvs → x in σ∗(f vs)
where vs = freeVars(y)\freeVars(σ∗(y))

x ./ y, if couple(x, y)
let θ2 in tg
where (tg, θ1, θ2) = msg(x, y)

We use σ∗(y) to denote a subexpression y within a containing context σ∗.
The first rule applies if the homeomorphic embedding first applied the dive
rule. The idea is to descend to the element which matched, and then promote
this to the top-level using a lambda. The second rule applies the most
specific generalisation operation if the coupling rule was applied first.

We can now write generalise as:

generalise ρ x = head [y | y ← ρ, y E x] ./ x

Compared the to generalisation using msg alone, our method is able to
factor out similar expressions which are not at the root of the expression.

84 CHAPTER 4. SUPERCOMPILATION

For example, given Just (1 : []) as the current expression, and [] as the
expression from ρ which is a homeomorphic embedding of it, we would obtain
let v = [] in Just (1 : v).

Comparison of Generalisations

Some examples of the msg function, and our ./ operator, are:

Embedding msg ./

a E b(a) (x , {x = a} , {x = b(a)}) let f = b(a) in f

c(b) E c(a(b)) (c(x), {x = b} , {x = a(b))}) let x = a(b) in c(x)
b(a) E c(b(a)) (x , {x = b(a)}, {x = c(b(a))}) let f = b(a) in c(f)

We now show an example where most specific generalisation fails to produce
the ideal generalised version.

Example 25

case putStr (repeat ’1’) r of
(r,) → (r, ())

This expression (which we name x) prints an infinite stream of 1’s. The pairs
and r’s correspond to the implementation of GHC’s IO Monad (Peyton Jones
2002). After several unrollings, we obtain the expression (named x′):

case putChar ’1’ r of
(r,) → case putStr (repeat ’1’) r of

(r,) → (r, ())

The homeomorphic embedding x E x′ matches, detecting an occurrence of
the case putStr . . . expression, and the supercompilation of x′ is stopped.
The most specific generalisation rule is applied as msg(x, x′) and produces:

let a = putChar
b = ’1’
c = λr → case putStr (repeat ’1’) r of

(r,) → (r, ())
in case a b r of

(r,) → c r

4.3. PERFORMANCE COMPARED WITH C PROGRAMS 85

The problem is that msg works from the top, looking for a common root of
both expression trees. However, if the first rule applied by E was dive, the
roots may be unrelated. Using our generalisation, x ./ x′:

let x = λr → case putStr (repeat ’1’) r of
(r,) → (r, ())

in case putChar ’1’ r of
(r,) → x r

Our generalisation is superior because it has split out the putStr application
without lifting the putChar application or the constant ’1’. The putChar

application can now be supercompiled further in the context of the case
expression. ¤

4.3 Performance Compared With C Programs

The benchmarks we have used as motivating examples are inspired by the
Unix wc command – namely character, word and line counting. We require
the program to read from the standard input, and write out the number
of elements in the file. To ensure that we test computation speed, not IO
speed (which is usually determined by the buffering strategy, rather than
optimisation) we demand that all input is read using the standard C getchar

function only. Any buffering improvements, such as reading in blocks or
memory mapping of files, could be performed equally in all compilers.

All the C versions are implemented following a similar pattern to Figure 4.1.
Characters are read in a loop, with an accumulator recording the current
value. Depending on the program, the body of the loop decides when to
increment the accumulator. The Haskell versions all follow the same pattern
as in the Introduction, merely replacing words with lines, or removing the
words function for character counting.

We performed all benchmarks on a machine running Windows XP, with a
3GHz processor and 1Gb RAM. All benchmarks were run over a 50Mb log
file, repeated 10 times, and the lowest value was taken. The C versions used
GCC1 version 3.4.2 with -O3. The Haskell version used GHC 6.8.1 with
-O2. The Supero version was compiled using our optimiser, then written
back as a Haskell file, and compiled once more with GHC 6.8.1 and -O2.

1http://gcc.gnu.org/

86 CHAPTER 4. SUPERCOMPILATION

0

5

10

15

20

25

charcount linecount wordcount

S
ec

o
n

d
s C

Supero+GHC

GHC

Figure 4.5: Benchmarks with C, Supero+GHC and GHC alone.

The results are given in Figure 4.5. In all the benchmarks C and Su-
pero+GHC are within 10% of each other, while GHC trails further behind.

4.3.1 Identified Haskell Speedups

During initial trials using these benchmarks, we identified two unnecessary
bottlenecks in the Haskell version of word counting. Both were remedied
before the presented results were obtained.

Slow isSpace function The first issue is that isSpace in Haskell is much
more expensive than isspace in C. The simplest solution is to use a FFI
(Foreign Function Interface) (Peyton Jones 2002) call to the C isspace

function in all cases, removing this factor from the benchmark. A GHC bug
(number 1473) has been filed about the slow performance of isSpace.

Inefficient words function The second issue is that the standard defi-
nition of the words function (given in Figure 4.6) performs two additional
isSpace tests per word. By appealing to the definitions of dropWhile and
break it is possible to show that in words the first character of x is not a
space, and that if y is non-empty then the first character is a space. The
revised words′ function uses these facts to avoid the redundant isSpace tests.

4.3. PERFORMANCE COMPARED WITH C PROGRAMS 87

words :: String → [String]
words s = case dropWhile isSpace s of

[] → []
x → w : words y

where (w, y) = break isSpace x

words′ s = case dropWhile isSpace s of
[] → []
x : xs → (x : w) : words′ (drop1 z)

where (w, z) = break isSpace xs

drop1 [] = []
drop1 (x : xs) = xs

Figure 4.6: The words function from the Haskell standard libraries, and an
improved words′.

4.3.2 Potential GHC Speedups

We have identified three factors limiting the performance of residual pro-
grams when compiled by GHC. These problems cannot be solved at the
level of Core transformations. We suspect that by fixing these problems,
the Supero execution time would improve by between 5% and 15%.

Strictness inference The GHC compiler is overly conservative when de-
termining strictness for functions which use the FFI (GHC bug 1592). The
getchar function is treated as though it may raise an exception, and ter-
minate the program, so strict arguments are not determined to be strict.
If GHC provided some way to mark an FFI function as not generating ex-
ceptions, this problem could be solved. The lack of strictness information
means that in the line and word counting programs, every time the accumu-
lator is incremented, the number is first unboxed and then reboxed (Peyton
Jones and Launchbury 1991).

Heap checks The GHC compiler follows the standard STG machine (Pey-
ton Jones 1992) design, and inserts heap checks before allocating memory.
The purpose of a heap check is to ensure that there is sufficient memory on
the heap, so that allocation of memory is a cheap operation guaranteed to
succeed. GHC also attempts to lift heap checks: if two branches of a case

88 CHAPTER 4. SUPERCOMPILATION

expression both have heap checks, they are replaced with one shared heap
check before the case expression. Unfortunately, with lifted heap checks, a
tail-recursive function that allocates memory only upon exit can have the
heap test executed on every iteration (GHC bug 1498). This problem affects
the character counting example, but if the strictness problems were solved,
it would apply equally to all the benchmarks.

Stack checks The final source of extra computation relative to the C
version are stack checks. Before using the stack to store arguments to a
function call, a test is performed to check that there is sufficient space on
the stack. Unlike the heap checks, it is necessary to analyse a large part of
the flow of control to determine when these checks are unnecessary. It is not
clear how to reduce stack checks in GHC.

4.3.3 The Wordcount Benchmark

The most curious result is that Supero outperforms C on wordcounting, by
about 6% – even with the problems discussed! The C program presented in
Figure 4.1 is not optimal. The variable last_space is a boolean, indicating
whether the previous character was a space, or not. Each time round the
loop a test is performed on last_space, even though its value was deter-
mined and tested on the previous iteration. The way to optimise this code
is to have two specialised variants of the loop, one for when last_space is
true, and one for when it is false. When the value of last_space changes,
the program would transition to the other loop. This pattern effectively en-
codes the boolean variable in the program counter, and is what the Haskell
program has managed to generate from the high-level code.

However, in C it is quite challenging to capture the required control flow.
The program needs two loops, where both loops can transition to the other.
Using goto turns off many critical optimisations in the C compiler. Tail
recursion is neither required by the C standard, nor supported by most
compilers. The only way to express the necessary pattern is using nested
while loops, but unlike newer imperative languages such as Java, C does
not have named loops – so the inner loop cannot break from the outer
loop if it reaches the end of the file. The only solution is to place the
nested while loops in a function, and use return to break from the inner

4.4. PERFORMANCE COMPARED WITH GHC ALONE 89

0

1

2

be
rn

ou
ill

i

di
gi

ts
-o

f-
e1

di
gi

ts
-o

f-
e2

ex
p3

_8

in
te

gr
at

e

pr
im

es

qu
ee

ns rf
ib ta
k

w
he

el
-s

ie
ve

1

w
he

el
-s

ie
ve

2

x2
n1

R
u

n
ti

m
e

(G
H

C
 =

 1
)

Supero
msg
spine
none

Supero uses the ./ generalisation method; msg uses the msg function
for generalisation; spine applies no generalisation operation; none never
performs any inlining.

Figure 4.7: Runtime, relative to GHC being 1.

loop. This solution would not scale to a three-valued control structure, and
substantially increases the complexity of the code.

4.4 Performance Compared With GHC Alone

The standard set of Haskell benchmarks is the nofib suite (Partain et al.
2008). It is divided into three categories of increasing size: imaginary, spec-
tral and real. Even small Haskell programs increase in size substantially
once libraries are included, so we have limited our attention to the bench-
marks in the imaginary section. All benchmarks were run with parameters
that require runtimes of between 3 and 5 seconds for GHC.

We exclude two benchmarks, paraffins and gen regexps. The paraffins bench-
mark makes substantial use of arrays, and we have not yet mapped the array
primitives of Yhc onto those of GHC, which is necessary to run the trans-
formed result. The gen regexps benchmark tests character processing: for
some reason (as yet unknown) the supercompiled executable fails.

The results of these benchmarks are given in Figure 4.7, along with detailed
breakdowns in Table 4.1. All results are relative to the runtime of a pro-
gram compiled with GHC -O2, lower numbers being better. The first three
variants (Supero, msg, spine) all use homeomorphic embedding as the ter-

90 CHAPTER 4. SUPERCOMPILATION

Program Supero msg spine none Size Memory
bernouilli 1.41 1.53 1.58 1.18 1.10 0.97
digits-of-e1 1.03 1.16 1.03 1.06 1.01 1.11
digits-of-e2 0.72 0.72 0.72 1.86 1.00 0.84
exp3 8 1.00 1.00 1.00 1.01 0.99 1.00
integrate 0.46 0.47 0.46 4.01 1.02 0.08
primes 0.57 0.57 0.88 0.96 1.00 0.98
queens 0.79 0.96 0.83 1.21 1.01 0.85
rfib 0.97 0.97 0.97 1.00 1.00 1.08
tak 0.72 1.39 1.39 1.39 1.00 1.00
wheel-sieve1 0.98 1.11 1.42 5.23 1.19 2.79
wheel-sieve2 0.87 0.63 0.89 0.63 1.49 2.30
x2n1 0.58 0.64 1.61 3.04 1.09 0.33

Program is the name of the program; Supero uses the ./ generalisation
method; msg uses the msg function for generalisation; spine applies no
generalisation operation; none never performs any inlining; Size is the size
of the Supero generated executable; Memory is the amount of memory
allocated on the heap by the Supero executable.

Table 4.1: Runtime, relative to GHC being 1.

mination criterion, and ./, msg or nothing respectively as the generalisation
function. The final variant, none, uses a termination test that always causes
a residuation. The ‘none’ variant is useful as a control to determine which
improvements are due to bringing all definitions into one module scope, and
which are a result of supercompilation. Compilation times ranged from a
few seconds to twelve minutes.

The Bernouilli benchmark is the only one where Supero is slower than GHC
by more than 3%. The reason for this anomaly is that a dictionary is referred
to in an inner loop which is specialised away by GHC, but not by Supero.

With the exception of the wheel-sieve2 benchmark, our ./ generalisation
strategy performs as well as, or better than, the alternatives. While the msg
generalisation performs better than the empty generalisation on average, the
difference is not as dramatic.

4.4. PERFORMANCE COMPARED WITH GHC ALONE 91

4.4.1 GHC’s optimisations

For these benchmarks it is important to clarify which optimisations are
performed by GHC, and which are performed by Supero. The ‘none’ results
show that, on average, taking the Core output from Yhc and compiling
with GHC does not perform as well as the original program compiled using
GHC. GHC has two special optimisations that work in a restricted number
of cases, but which Supero-produced Core is unable to take advantage of.

Dictionary Removal Functions which make use of type classes are given
an additional dictionary argument. In practice, GHC specialises many such
functions by creating code with a particular dictionary frozen in. This op-
timisation is specific to type classes – a tuple of higher order functions is
not similarly specialised. After compilation with Yhc, the type classes have
already been converted to tuples, so Supero must be able to remove the
dictionaries itself. One benchmark where dictionary removal is critical is
digits-of-e2.

List Fusion GHC relies on names of functions, particularly foldr/build

(Peyton Jones et al. 2001), to apply special optimisation rules such as list
fusion. Many of GHC’s library functions, for example iterate, are defined in
terms of foldr to take advantage of these special properties. After transfor-
mation with Yhc, these names are destroyed, so no rule based optimisation
can be performed. One example where list fusion is critical is primes, al-
though it occurs in most of the benchmarks to some extent.

4.4.2 Compile Time

The compile times for some of the benchmarks presented in Table 4.1 were
as high as twelve minutes. These compile times are unsuitable for general
development. Profiling shows that 25% of the time is spent applying sim-
plification rules, and 65% is spent testing for a homeomorphic embedding.
We suspect both these costs can be reduced, although we have not yet tried
to do so.

92 CHAPTER 4. SUPERCOMPILATION

Simplification Time The rules from §2.1.2 are applied using the Uni-
plate library, in particular using the bottom-up rewrite strategy described in
§3.2.5. After each function inlining, the rules are applied everywhere within
the expression – despite much of the expression remaining unchanged. By
targeting the application of rules more precisely, compile times would de-
crease.

Homeomorphic Embedding We use homeomorphic embedding to test
a single element against a set of elements. The cost of homeomorphic em-
bedding is related to the number of tests performed, and the size of the set
at the time of each test. We perform many tests because of the unfolding
strategy described in §4.2.2. The set is large because we maintain one set
from the root function, including every inlining to the current point.

We have a solution – split the homeomorphic embedding set in two. One set
can be global and used for residuation, the other set can be local and used
for inlining. Each expression is optimised within the context of a fresh local
set, then for residuation the global set is used. The local set will be bounded
by the number of inlinings since the last residuation, while the global set
will be the number of residuations from the root function. These restrictions
still ensure termination, and will decrease the size of the sets substantially.
This scheme would permit more inlining steps to be performed, so would
change the runtime performance, but we expect the effect to be positive.

4.5 Related Work

4.5.1 Supercompilation

Supercompilation (Turchin 1986; Turchin et al. 1982) was introduced by
Turchin for the Refal language (Turchin 1989). Since this original work,
there have been various suggestions of both termination strategies and gen-
eralisation strategies (Turchin 1988; Sørensen and Glück 1995; Leuschel
2002). The original supercompiler maintained both positive and negative
knowledge, but our implementation is a simplified version maintaining only
positive information (Secher and Sørensen 2000).

The issue of let expressions in supercompilation has not previously been a

4.5. RELATED WORK 93

primary focus. If lets are mentioned, the usual strategy is to substitute all
linear lets and residuate all others. Lets have been considered in a strict
setting (Jonsson and Nordlander 2007), where they are used to preserve
termination semantics, but in this work all strict lets are inlined without
regard to loss of sharing. Movement of lets can have a dramatic impact on
performance: carefully designed let-shifting transformations give an average
speedup of 15% in GHC (Peyton Jones et al. 1996), suggesting let expressions
are critical to the performance of real programs.

4.5.2 Partial evaluation

There has been a lot of work on partial evaluation (Jones et al. 1993), where
a program is specialised with respect to some static data. Partial evaluation
works by marking all variable bindings within a program as either static
or dynamic, using binding time analysis, then specialises the program with
respect to the static bindings. Partial evaluation is particularly appropriate
for optimising an interpreter to the expression tree of a particular program,
automatically generating a compiler, and removing interpretation overhead.
The translation of an interpreter into a compiler is known as the First Futa-
mura Projection (Futamura 1999), and can often give an order of magnitude
speedup.

Supercompilation and partial evaluation both remove overhead within a
program. Partial evaluation is more suited to completely removing static
data, such as an expression tree which is interpreted. Supercompilation is
able to remove intermediate data structures, similar to deforestation, which
partial evaluation cannot.

4.5.3 Deforestation

The deforestation technique (Wadler 1988) removes intermediate lists in
computations. This technique has been extended in many ways to encom-
pass higher order deforestation (Marlow 1996) and work on other data types
(Coutts et al. 2007b). Probably the most practically motivated work has
come from those attempting to restrict deforestation, in particular shortcut
deforestation (Gill et al. 1993), and newer approaches such as stream fusion
(Coutts et al. 2007a). In this work certain named functions are automati-

94 CHAPTER 4. SUPERCOMPILATION

cally fused together. By rewriting library functions in terms of these special
functions, fusion occurs.

4.5.4 Whole Program Compilation

The GRIN approach (Boquist and Johnsson 1996) uses whole program com-
pilation for Haskell. It is currently being implemented in the jhc compiler
(Meacham 2008), with promising initial results. GRIN works by first re-
moving all functional values, turning them into case expressions, allowing
subsequent optimisations. The intermediate language for jhc is at a much
lower level than our Core language, so jhc is able to perform detailed opti-
misations that we are unable to express.

4.5.5 Lower Level Optimisations

Our optimisation works at the Core level, but even once efficient Core has
been generated there is still some work before efficient machine code can
be produced. Key optimisations include strictness analysis and unboxing
(Peyton Jones and Launchbury 1991). In GHC both of these optimisations
are done at the core level, using a core language extended with unboxed
types. After this lower level core has been generated, it is then compiled to
STG machine instructions (Peyton Jones 1992), from which assembly code
is generated. There is still work being done to modify the lowest levels to
take advantage of the current generation of microprocessors (Marlow et al.
2007). We rely on GHC to perform all these optimisations after Supero
generates a residual program.

4.5.6 Other Transformations

One of the central operations within our optimisation is inlining, a tech-
nique that has been used extensively within GHC (Peyton Jones and Mar-
low 2002). We generalise the constructor specialisation technique (Peyton
Jones 2007), by allowing specialisation on any arbitrary expression, includ-
ing constructors.

One optimisation we do not currently support is the use of user provided
transformation rules (Peyton Jones et al. 2001), which can be used to au-

4.5. RELATED WORK 95

tomatically replace certain expressions with others – for example sort ◦ nub

removes duplicates then sorts a list, but can be done asymptotically faster
in a single operation.

Chapter 5

Defunctionalisation

This chapter details a method to reduce the number of functional values in
a higher-order program, typically resulting in a first-order program. Unlike
Reynolds style defunctionalisation, it does not introduce any new data types,
and the results are more amenable to subsequent analysis operations. Our
motivation is that the Catch analysis tool (see Chapter 6) is designed to
work only upon a first-order language, but our method may have wider
applicability such as termination checking (Sereni 2007).

The sections begin with an introductory example (§5.1), followed by a defini-
tion of what we consider to be a first-order program (§5.2). Next we present
an overview of our method (§5.3), followed by a more detailed account (§5.4),
along with a number of examples (§5.5). We classify where functional val-
ues may remain in a resultant program (§5.6) and show how to modify our
method to guarantee termination (§5.7). Finally we give results (§5.8) and
review related work (§5.9).

5.1 Introductory Example

Higher-order functions are widely used in functional programming languages.
Having functions as first-class values leads to more concise code, but it often
complicates analysis methods.

96

5.1. INTRODUCTORY EXAMPLE 97

Example 26

Consider this definition of incList:

incList :: [Int] → [Int]
incList = map (+1)

map :: (α → β) → [α] → [β]
map f [] = []
map f (x : xs) = f x : map f xs

The definition of incList has higher-order features. The function (+1) is
passed as a functional argument to map. The incList definition contains a
partial application of map. The use of first-class functions has led to short
code, but we could equally have written:

incList :: [Int] → [Int]
incList [] = []
incList (x : xs) = x + 1 : incList xs

Although this first-order variant of incList is longer (excluding the library
function map), it is also more amenable to certain types of analysis. The
method presented in this chapter transforms the higher-order definition into
the first-order one automatically. ¤

Our defunctionalisation method processes the whole program to remove
functional values, without changing the semantics of the program. This
idea is not new. As far back as 1972 Reynolds gave a solution, now known
as Reynolds style defunctionalisation (Reynolds 1972). Unfortunately, this
method effectively introduces a mini-interpreter, which causes problems for
analysis tools. Our method produces a program closer to what a human
might have written, if denied the use of functional values.

5.1.1 Contributions

This chapter makes the following contributions:

• We define a defunctionalisation method which, unlike some previous
work, does not introduce new data types.

• Our method can deal with the complexities of a language like Haskell,
including type classes, continuations and monads.

98 CHAPTER 5. DEFUNCTIONALISATION

• Our method makes use of standard transformation steps, but combined
in a novel way.

• We identify restrictions which guarantee termination, but are not
overly limiting.

• We have implemented our method, and present measured results for
much of the nofib benchmark suite.

There are a number of limitations to our approach, most importantly:

• Our algorithm is not complete – it does not always succeed in removing
all functional values. However, in practice, it is remarkably successful.

• The transformation can reduce sharing, causing the resulting program
to be less efficient and duplicate an arbitrary amount of work. For
certain types of analysis the duplication of work is not a problem, for
other uses it is a severe problem.

5.2 First-Order Programs

Informally, if a program creates functional values at runtime it is higher-
order, otherwise it is first-order. Functional values can only be created
in two ways: (1) a lambda expression; or (2) a partially-applied function
application. We therefore make the following definition:

A program which contains no lambda expressions and no partially-applied
top-level functions is first-order.

Example 26 (revisited)

The original definition of incList is higher-order because of the partial appli-
cations of both map and (+). The original definition of map is first-order.
In the defunctionalised version, the program is first-order. ¤

We may expect the map definition to be higher-order, as map has the f x

subexpression, where f is a variable, and therefore an instance of general ap-
plication. We do not consider instances of general application to be higher-
order, but expect that usually they will be accompanied by the creation of
a functional value elsewhere within the program.

5.3. OUR FIRST-ORDER REDUCTION METHOD 99

5.3 Our First-Order Reduction Method

Our method works by combining three separate and well-known transforma-
tions. Each transformation on its own is correct, and none introduces any
additional data types. Our method also applies simplification rules before
each transformation, most of which may be found in any optimising compiler
(Peyton Jones and Santos 1994).

Arity Raising: A function can be arity raised if the body of the function
is a lambda expression. In this situation, the variables bound by the
lambda can be added instead as arguments of the function definition.

Inlining: Inlining is a standard technique in optimising compilers (Peyton
Jones and Marlow 2002), and has been studied in depth.

Specialisation: Specialisation is another standard technique, used to re-
move type classes (Jones 1994) and more recently to specialise func-
tions to a given constructor (Peyton Jones 2007).

Each transformation has the possibility of removing some functional values,
but the key contribution of this chapter is how they can be used together.
Using the fixed point operator (‡) introduced in §5.4, their combination is:

firstify = simplify ‡ arity ‡ inline ‡ specialise

We proceed by first giving a brief flavour of how these transformations may
be used in isolation to remove functional values. We then discuss the trans-
formations in detail in §5.4, including how they can be combined.

5.3.1 Simplification

Simplification serves to group several simple transformations that most op-
timising compilers apply. Some of these steps have the ability to remove
functional values; others simply ensure a normal form for future transfor-
mations.

Example 27

one = (λx → x) 1

100 CHAPTER 5. DEFUNCTIONALISATION

The simplification rule (lam-app) from §2.1.2 transforms this function to:

one = let x = 1 in x

¤

Other rules do not eliminate lambda expressions, but put them into a form
that other stages can remove.

Example 28

even = let one = 1
in λx → not (odd x)

The simplification rule (let-lam) from §5.4.1 lifts the lambda outside of the
let expression.

even = λx → let one = 1
in not (odd x)

In general this transformation may cause duplicate computation to be per-
formed, an issue we return to in §5.4.1. ¤

5.3.2 Arity Raising

The arity raising transformation increases the definition arity of functions
with lambdas as bodies.

Example 29

even = λx → not (odd x)

Here the arity raising transformation lifts the argument to the lambda into
a definition-level argument, increasing the arity.

even x = not (odd x)

¤

5.3. OUR FIRST-ORDER REDUCTION METHOD 101

5.3.3 Inlining

We use inlining to remove functions which return data constructors con-
taining functional values. A frequent source of data constructors containing
functional values is the dictionary implementation of type classes (Wadler
and Blott 1989).

Example 30

main = case eqInt of
(a, b) → a 1 2

eqInt = (primEqInt, primNeqInt)

Both components of the eqInt tuple, primEqInt and primNeqInt, are functional
values. We can start to remove these functional values by inlining eqInt:

main = case (primEqInt, primNeqInt) of
(a, b) → a 1 2

The simplification stage can now turn the program into a first-order variant,
using rule (case-con) from §2.1.2.

main = primEqInt 1 2

¤

5.3.4 Specialisation

Specialisation works by replacing a function application with a specialised
variant. In effect, at least one argument is passed at transformation time.

Example 31

notList xs = map not xs

Here the map function takes the functional value not as its first argument.
We can create a variant of map specialised to this argument:

102 CHAPTER 5. DEFUNCTIONALISATION

map not x = case x of
[] → []
y : ys → not y : map not ys

notList xs = map not xs

The recursive call in map is replaced by a recursive call to the specialised
variant. We have eliminated all functional values. ¤

5.3.5 Goals

We define a number of goals: some are essential, and others are desirable. If
essential goals make desirable goals unachievable in full, we still aim to do
the best we can.

Essential

Preserve the result computed by the program. By making use of
three established transformations, total correctness is relatively easy to
show.

Ensure the transformation terminates. The issue of termination is
much harder. Both inlining and specialisation could be applied in ways that
diverge. In §5.7 we develop a set of criteria to ensure termination.

Recover the original program. Our transformation is designed to be
performed before analysis. It is important that the results of the analysis can
be presented in terms of the original program. We need a method for trans-
forming expressions in the resultant program into equivalent expressions in
the original program.

Introduce no data types. Reynolds method introduces a new data type
that serves as a representation of functions, then embeds an interpreter for
this data type into the program. We aim to eliminate the higher-order
aspects of a program without introducing any new data types. By not intro-
ducing any data types we avoid introducing an interpreter, which is often a
bottleneck for subsequent analysis. By composing our transformation out of

5.3. OUR FIRST-ORDER REDUCTION METHOD 103

existing transformations, none of which introduces data types, we can easily
ensure that our resultant transformation does not introduce data types.

Desirable

Remove all functional values. We aim to remove as many functional
values as possible. In §5.6 we make precise where functional values may
appear in the resultant programs. If a totally first-order program is required,
Reynolds’ method can always be applied after our transformation. Applying
our method first will cause Reynolds’ method to introduce fewer additional
data types and generate a smaller interpreter.

Preserve the space/sharing behaviour of the program. In the ex-
pression let y = f x in y + y, according to the rules of lazy evaluation, f x

will be evaluated at most once. It is possible to inline the let binding to give
f x+ f x, but this expression evaluates f x twice. This transformation is valid
in Haskell due to referential transparency, and will preserve both semantics
and termination, but may increase the amount of work performed. In an im-
pure or strict language, such as ML (Milner et al. 1997), this transformation
may change the semantics of the program.

Our goals are primarily for analysis of the resultant code, not to compile
and execute the result. Because we are not interested in performance, we
permit the loss of sharing in computations if to do so will remove functional
values. However, we will avoid the loss of sharing where possible, so the
program remains closer to the original.

Minimize the size of the program. Previous defunctionalisation meth-
ods have reflected a concern to avoid undue code-size increase (Chin and
Darlington 1996). A smaller resultant program would be desirable, but not
at the cost of clarity.

Make the transformation fast. The implementation must be sufficiently
fast to permit proper evaluation. Ideally, when combined with a subsequent
analysis phase, the defunctionalisation should not take an excessive propor-
tion of the runtime.

104 CHAPTER 5. DEFUNCTIONALISATION

infixl ‡
(‡) :: Eq α ⇒ (α → α) → (α → α) → α → α
(‡) f g = fix (g ◦ fix f)

fix :: Eq α ⇒ (α → α) → α → α
fix f x = if x ≡ x′ then x else fix f x′

where x′ = f x

Figure 5.1: The (‡) fixed point operator.

5.4 Method in Detail

Our method proceeds in four iteratively nested steps, simplification (simplify),
arity raising (arity), inlining (inline) and specialisation (specialise). Our goal
is to combine these steps to remove as many functional values as possible.
For example, the initial incList example requires simplification, arity raising
and specialisation.

We have implemented our steps in a monadic framework to deal with is-
sues such as obtaining unique free variables and tracking termination con-
straints. But to simplify the presentation here, we ignore these issues – they
are mostly tedious engineering concerns, and do not effect the underlying
algorithm.

Our method is written as:

firstify = simplify ‡ arity ‡ inline ‡ specialise

Each stage will be described separately. The overall control of the algorithm
is given by the (‡) operator, defined in Figure 5.1. The expression f‡g applies
f to an input until it reaches a fixed point, then applies g. If g changes the
value, then the whole process is repeated until a fixed point of both f and g

is achieved. This formulation has several important properties:

Joint fixpoint If the operation completes, applying either f or g does not
change the value.

propFix f g x = let r = (‡) f g x in (f r ≡ r) ∧ (g r ≡ r)

Idempotence The operation as a whole is idempotent.

5.4. METHOD IN DETAIL 105

propIdempotent f g x = let op = f ‡ g in op (op x) ≡ op x

Function ordering The function f reaches a fixed point before the function
g is applied. If a postcondition of f implies a precondition of g, then
we can guarantee g’s precondition is always met.

These properties allow us to separate the individual transformations from
the overall application strategy. The first two properties ensure that the
method terminates only when no transformation is applicable. The function
ordering allows us to overlap the application sites of two stages, but prefer
one stage over another.

The (‡) operator is left associative, meaning that the code can be rewritten
with explicit bracketing as:

firstify = ((simplify ‡ arity) ‡ inline) ‡ specialise

Within this chain we can guarantee that the end result will be a fixed point of
every component transformation. Additionally, before each transformation
is applied, those to the left will have reached fixed points.

The definition of operator (‡) in Figure 5.1 is written for clarity, not for
speed. If the first argument is idempotent, then additional unnecessary
work is performed. In the case of chaining operators, the left function is
guaranteed to be idempotent if it is the result of (‡), so much computation
is duplicated. We describe further optimisations in §5.8.6.

We describe each of the stages in the algorithm separately. In all subsequent
stages, we assume that all the simplification rules have been applied.

5.4.1 Simplification

The simplification stage has the goal of moving lambda expressions upwards,
and introducing lambdas for partially applied functions. This stage makes
use of standard simplification rules from §2.1.2 plus additional rules which
deal specifically with lambda expressions, given in Figure 5.2. All of the
simplification rules are correct individually. The rules are applied to any
subexpression, as long as any rule matches. We believe that the combination
of rules from §2.1.2 and Figure 5.2 are confluent.

106 CHAPTER 5. DEFUNCTIONALISATION

f xs
⇒ λv → f xs v
where arity f > length xs

(eta)

let v = (λw → x) in y
⇒ y [v / λw → x]

(bind-lam)

let v = x in y
⇒ y [v / x]
where x is a boxed lambda (see §5.4.3)

(bind-box)

let v = x inλw → y
⇒ λw → let v = x in y

(let-lam)

Figure 5.2: Additional Simplification rules.

Lambda Introduction

The (eta) rule inserts lambdas in preference to partial applications, using
η-expansion. For each partially applied function, a lambda expression is
inserted to ensure that the function is given at least as many arguments as
its associated arity.

Example 32

(◦) f g x = f (g x)

even = (◦) not odd

Here the functions (◦), not and odd are all unsaturated. Lambda expressions
can be inserted to saturate these applications.

even = λx → (◦) (λy → not y) (λz → odd z) x

Here the even function, which previously had three instances of partial ap-
plication, has three lambda expressions inserted. Now each function is fully-
applied. This transformation enables the arity raising transformation, re-
sulting in:

even x = (◦) (λy → not y) (λz → odd z) x

¤

5.4. METHOD IN DETAIL 107

This replaces partial application with lambda expressions, and has the ad-
vantage of making functional values more explicit, permitting arity raising.

Lambda Movement

The (bind-lam) rule inlines a lambda bound in a let expression. The (bind-
box) rule will be discussed as part of the inlining stage, see §5.4.3. The
(let-lam) rule can be responsible for a reduction in sharing:

Example 33

f x = let i = expensive x
in λj → i + j

main xs = map (f 1) xs

Here (expensive 1) is computed once and saved. Every application of the
functional argument within map performs a single (+) operation. After
applying the (let-lam) rule we get:

f x = λj → let i = expensive x
in i + j

Now expensive is recomputed for every element in xs. We include this rule
in our simplifier, focusing on functional value removal at the expense of
sharing. ¤

5.4.2 Arity Raising

The arity raising step is:

function vs = λv → x
⇒ function vs v = x

Given a body which is a lambda expression, the arguments to the lambda
expression can be lifted into the definition-level arguments for the function.
If a function has its arity increased, fully-applied uses become partially-
applied, causing the (eta) simplification rule to fire.

108 CHAPTER 5. DEFUNCTIONALISATION

isBox [[c xs]] = any isLambda xs ∨ any isBox xs
isBox [[let v = x in y]] = isBox y

isBox [[case x of alts]] = any (isBox ◦ rhs) alts
isBox [[f xs]] = isBox (body f)
isBox = False

isLambda [[λv → x]] = True
isLambda = False

The isBox function as presented may not terminate, but by simply keeping
a list of followed functions, we can assume the result is False in any dupli-
cate call. This modification does not change the result of any previously
terminating evaluations.

Figure 5.3: The isBox function, to test if an expression is a boxed lambda.

5.4.3 Inlining

We use inlining of top-level functions as the first stage in the removal of
functional values stored within a data value – for example Just (λx → x). We
refer to expressions that evaluate to functional values inside data values as
boxed lambdas. If a boxed lambda is bound in a let expression, we substitute
the let binding, using the (bind-box) rule from Figure 5.2. We only inline
a function if two conditions both hold: (1) the function’s body is a boxed
lambda; (2) the function application occurs within a case scrutinee.

An expression e is a boxed lambda if isBox e ≡ True, where isBox is defined
as in Figure 5.3.

Example 34

Recalling that [e] is shorthand for (:) e [], where (:) is the cons constructor,
the following expressions are boxed lambdas:

[λx → x]
(Just [λx → x])
(let y = 1 in [λx → x])
[Nothing, Just (λx → x)]

The following are not boxed lambdas:

λx → id x

5.4. METHOD IN DETAIL 109

[id (λx → x)]
id [λx → x]

The final expression evaluates to a boxed lambda, but this information is
hidden by the id function. We rely on specialisation to remove any boxed
lambdas passed to functions. ¤

The inlining transformation is specified by:

case (f xs) of alts

⇒ case (let vs = xs in y) alts
where

vs = args f
y = body f
If isBox y evaluates to True

As with the simplification stage, there may be some loss of sharing if the
definition being inlined has arity 0 – a constant applicative form (CAF). A
Haskell implementation computes these expressions only once, and reuses
their value as necessary. If they are inlined, this sharing will be lost.

5.4.4 Specialisation

For each application of a top-level function in which at least on argument has
a subexpression which is a lambda, a specialised variant is created, and used
where applicable. The process follows the same pattern as constructor spe-
cialisation (Peyton Jones 2007), but applies where function arguments are
lambda expressions, rather than known constructors. Examples of common
functions whose applications can usually be made first-order by specialisa-
tion include map, filter, foldr and foldl.

The specialisation transformation makes use of templates. A template is an
expression where some sub-expressions are omitted, denoted by an under-
score. The process of specialisation proceeds as follows:

1. Find all function applications in which at least one argument contains
a lambda, and generate templates, omitting first-order components
(see Generating Templates).

2. For each template, generate a function specialised to that template
(see Generating Functions).

110 CHAPTER 5. DEFUNCTIONALISATION

3. For each subexpression matching a template, replace it with the gen-
erated function (see Using Templates).

Example 35

main xs = map (λx → x) xs

map f xs = case xs of
[] → []
y : ys → f y : map f ys

Specialisation first finds the application of map in main, and generates the
template map (λx → x) . It then generates a unique name for the template
(we choose map id), and generates an appropriate function body. Next all
calls matching the template are replaced with calls to map id, including the
call to map within the freshly generated map id.

main xs = map id xs

map id xs = case xs of
[] → []
y : ys → y : map id ys

The resulting code is first-order. ¤

Generating Templates

A template is generated if an expression is a function application, whose
arguments include a sub-expression which is either a lambda or a boxed
lambda – as calculated by the shouldTemplate function in Figure 5.4. Be-
fore generating a template, the abstractTemplate function is applied to make
the template more widely applicable, while ensuring that the revised tem-
plate requires no additional functional arguments. For example, given the
expression f (λv → v) True, shouldTemplate would return True as one of
the arguments is a lambda expression. The abstractTemplate function would
abstract True, and generate the template f (λv → v) . If the expression
f (λv → x) False was encountered, the abstraction would ensure that no new
template was required.

5.4. METHOD IN DETAIL 111

shouldTemplate :: Expr → Bool
shouldTemplate [[f xs]] = any (λx → isLambda x ∨ isBox x) (universe [[f xs]])
shouldTemplate = False

abstractTemplate :: Expr → Expr
abstractTemplate x =

transform (λx → if abstract x then else x) $
abstractVars (freeVars x) x

abstract :: Expr → Bool
abstract [[c xs]] = all abstract xs
abstract [[f xs]] = all abstract xs
abstract [[x xs]] = all abstract xs
abstract [[let v = x in y]] = abstract x ∧ abstract (abstractVars [v] y)
abstract [[case x of alts]] = abstract x ∧ all alt alts

where alt [[c vs → x]] = abstract (abstractVars vs x)
abstract x = (x ≡)

abstractVars :: [VarName] → Expr → Expr
abstractVars vs x = . . .

-- replace the variables vs in x with
-- respecting variables rebound locally

Figure 5.4: Template generation function.

112 CHAPTER 5. DEFUNCTIONALISATION

Example 36

Expression Template after abstraction
id (λx → x) id (λx → x)
id (Just (λx → x)) id (Just (λx → x))
id (λx → let y = 12 in 4) id (λx →)
id (λx → let y = 12 in x) id (λx → let y = in x)

In all these examples, the id function has an argument which has a lambda
expression as a subexpression. In the final two cases, there are subexpres-
sions which do not depend on variables bound within the lambda – these
have been removed and replaced with underscores. The Just constructor is
also not dependent on the bound variables, but its removal would require a
functional argument as a parameter, so it is left as part of the template. ¤

Generating Functions

Given a template, to generate an associated function, a unique function
name is allocated to the template. For each occurrence of in a template a
fresh argument variable is assigned. The body is produced by unfolding the
outer function symbol in the template once.

Example 35 (revisited)

Consider the template map (λx → x) . Let v1 be the fresh argument
variable for the single placeholder, and map id be the function name:

map id v1 = map (λx → x) v1

We unfold the definition of map once:

map id v1 = let f = λx → x
xs = v1

in case xs of
[] → []
y : ys → f y : map f ys

After the simplification rules from Figure 5.2, we obtain:

5.4. METHOD IN DETAIL 113

map id v1 = let xs = v1

in case xs of
[] → []
y : ys → y : map (λx → x) ys

¤

Using Templates

After a function has been generated for each template, every expression
matching a template can be replaced by a call to the new function. Every
subexpression corresponding to an is passed as an argument.

Example 35 (continued)

map id v1 = let xs = v1

in case xs of
[] → []
y : ys → y : map id ys

We now have a first-order definition. ¤

5.4.5 Primitive Functions

Primitive functions do not have an associated body, and therefore cannot be
examined or inlined. We make just two simple changes to support primitives.

1. We define that a primitive application is not a boxed lambda.

2. We restrict specialisation so that if a function to be specialised is
actually a primitive, no template is generated. The reason for this
restriction is that the generation of code associated with a template
requires a one-step unfolding of the function, something which cannot
be done for a primitive.

Example 37

main = (λx → x) `seq̀ 42

114 CHAPTER 5. DEFUNCTIONALISATION

Here a functional value is passed as the first argument to the primitive
seq. As we are not able to peer inside the primitive, and must preserve
its interface, we cannot remove this functional value. For most primitives,
such as arithmetic operations, the types ensure that no functional values
are passed as arguments. However, the seq primitive is of type α → β →
β, allowing any type to be passed as either of the arguments, including
functional values.

Some primitives not only permit functional values, but actually require them.
For example, the primCatch function within the Yhc standard libraries imple-
ments the Haskell exception handling function catch. The type of primCatch

is α → (IOError → α) → α, taking an exception handler as one of the
arguments. ¤

5.4.6 Recovering Input Expressions

Specialisation is the only stage which introduces new function names. In
order to translate an expression in the result program to an equivalent ex-
pression in the input program, it is sufficient to replace all generated function
names with their associated template, supplying all the necessary variables.

5.5 Examples

We now give two examples. Our method can convert the first example to a
first-order equivalent, but not the second.

Example 38 (Inlining Boxed Lambdas)

An earlier version of our defunctionaliser inlined boxed lambdas everywhere
they occurred. Inlining boxed lambdas means the isBox function does not
have to examine the body of applied functions, and is therefore simpler.
However, it was unable to cope with programs like this one:

main = map ($1) gen
gen = (λx → x) : gen

The gen function is both a boxed lambda and recursive. If we inlined gen

initially the method would not be able to remove all lambda expressions.

5.6. RESTRICTED COMPLETENESS 115

By first specialising map with respect to gen, and waiting until gen is the
subject of a case, we are able to remove the functional values. This operation
is effectively deforestation (Wadler 1988), which also only performs inlining
within the subject of a case. ¤

Example 39 (Functional Lists)

Sometimes lambda expressions are used to build up lists which can have
elements concatenated onto the end. Using Hughes lists (Hughes 1986), we
can define:

nil = id
snoc x xs = λys → xs (x : ys)
list xs = xs []

This list representation provides nil as the empty list, but instead of provid-
ing a (:) or “cons” operation, it provides snoc which adds a single element
on to the end of the list. The function list is provided to create a standard
list. We are unable to defunctionalise such a construction, as it stores un-
bounded information within closures. We have seen such constructions in
both the lines function of the HsColour program, and the sort function of
Yhc. However, there is an alternative implementation of these functions:

nil = []
snoc = (:)
list = reverse

We have benchmarked these operations in a variety of settings and the list
based version appears to use approximately 75% of the memory, and 65%
of the time required by the function-based solution. We suggest that people
using continuations for snoc-lists move instead to a list type! ¤

5.6 Restricted Completeness

Our method would be complete if it removed all lambda expressions and
partially-applied functions from a program. All partially-applied functions
are translated to lambda expressions using the (eta) rule. We therefore need
to determine where a lambda expression may occur in a program after the
application of our defunctionalisation method.

116 CHAPTER 5. DEFUNCTIONALISATION

5.6.1 Notation

To examine where lambda expressions may occur, we model expressions in
our Core language as a set of syntax trees. We define the following rules,
which generate sets of expressions:

lam x = {λv′ → x′ | v′ ∈ v, x′ ∈ x}
fun x y = {f ′ ys′ | f ′ ∈ f, x′ ∈ x, ys′∈y, body f ′ ≡ x′}
con x = {c′ xs′ | xs′∈x}
app x y = {x′ ys′ | x′ ∈ x, ys′∈y}
var = {v′ | v′ ∈ v}
let x y = { let v′ = x′ in y′ | x′ ∈ x, y′ ∈ y}
case x y = {case x′ of alts

′ | x′ ∈ x,

alts
′∈{c′ vs′ → y′ | c′ ∈ c, vs′∈v, y′ ∈ y}}

Here v is the set of all variables, f the set of function names, and c the set
of constructors. We use xs∈e to denote that xs is a sequence of any length,
whose elements are drawn from e. In the definition of fun x y, the expression
set x represents the possible bodies of the function, while y represents the
arguments. We can now define an upper bound on the set of unrestricted
expressions in our Core language as the smallest solution to the equation s0:

s0 = lam s0 ∪ fun s0 s0 ∪ con s0 ∪ app s0 s0 ∪ var ∪
case s0 s0 ∪ let s0 s0

5.6.2 A Proposition about Residual Lambdas

We classify the location of lambdas within the residual program, assuming
the following two conditions are satisfied:

1. The termination criteria do not curtail defunctionalisation (see §5.7).

2. No primitive function receives a functional argument, or returns a
functional result.

Given these assumptions, a lambda or boxed lambda may only occur in the
following places: (1) the body of the main function; (2) passed as an argu-
ment to a variable of functional type; (3) the body of a lambda expression.
In §5.6.4 we give examples of these residual forms.

5.6. RESTRICTED COMPLETENESS 117

5.6.3 Proof of the Proposition

First we show that residual definition bodies belong to a proper subset of s0,
by defining successively smaller subsets, where sn ⊃ sn+1. We use the joint
fixpoint property of the (‡) operator to calculate the restrictions imposed by
each stage of defunctionalisation. Secondly we describe which expressions
may be the parents of residual lambda expressions, using our refined set of
possible expressions.

Restriction 1: Type Safety We know our original program is type safe.
Each of our stages preserves semantics, and therefore type safety. So the
scrutinee of a case cannot be a functional value. Also, all constructor ex-
pressions are saturated, so they must evaluate to a data value, and cannot
be applied to arguments. Refining our bounding set to take account of these
observations, we have:

s1 = lam s1 ∪ fun s1 s1 ∪ con s1 ∪ app (s1 − con s1) s1 ∪ var ∪
case (s1 − lam s1) s1 ∪ let s1 s1

Restriction 2: Standard Simplification Rules Our simplification rules
from §2.1.2 are applied until a fixed point is found, meaning that no expres-
sion matching the left-hand side of a rule can occur in the output. For
example, the left-hand side of the (case-con) rule is case (con s) s, so this
pattern cannot remain in a residual program. By similarly examining left-
hand sides of all the standard simplification rules we can further reduce the
bounding set of residual expressions:

s2 = lam s2 ∪ fun s2 s2 ∪ con s2 ∪ app var s2 ∪ var ∪
case (fun s2 s2 ∪ app var s2 ∪ var) s2 ∪ let s2 s2

Restriction 3: Lambda Simplification Rules We apply the lambda
rules from Figure 5.2. As (e− lam e) occurs repeatedly we have factored it
out as l′. To allow reuse of l′ in future definitions, we parameterise by n to
obtain l′n.

s3 = e3

e3 = lam e3 ∪ fun e3 e3 ∪ con e3 ∪ app var e3 ∪ var ∪
case (fun e3 e3 ∪ app var e3 ∪ var) l′3 ∪ let l′3 l′3

l′n = en − lam en

118 CHAPTER 5. DEFUNCTIONALISATION

Restriction 4: Arity Raising Arity raising guarantees that no function
body is a lambda expression.

s4 = l′4
e4 = lam e4 ∪ fun l′4 e4 ∪ con e4 ∪ app var e4 ∪ var ∪

case (fun l′4 e4 ∪ app var e4 ∪ var) l′4 ∪ let l′4 l′4

Restriction 5: Inlining and (bind-box) To deal with inlining, we need
to work with lambda boxes, as defined by the function isBox, from Figure
5.3. We define b′n to be the expressions with children drawn from en which
are not lambda boxes:

b′n = lam en ∪ fun b′n en ∪ con (b′n − lam en) ∪ app en en ∪ var ∪
case en b′n ∪ let en b′n

As an example of how the component subsets of b′n are obtained, take
fun b′n en. A function application is a lambda box if the function’s body
is a lambda box. Therefore, provided the body of the function is not a
lambda box, the function application will not be. The arguments to a func-
tion application do not affect whether the application is a lambda box, and
are left unrestricted as en.

The inlining stage and the (bind-box) simplification rule match expressions
which are lambda boxes, therefore these expressions can be eliminated from
the residual program:

s5 = l′5
e5 = lam e5 ∪ fun l′5 e5 ∪ con e5 ∪ app var e5 ∪ var ∪

case (fun (l′5 ∩ b′5) e5 ∪ app var e5 ∪ var) l′5 ∪
let (l′5 ∩ b′5) l′5

Restriction 6: Specialisation As specialisation removes all lambdas
and boxed lambdas from the arguments of function applications we define:

s6 = l′6
e6 = lam e6 ∪ fun l′6 (l′6 ∩ b′6) ∪ con e6 ∪ app var e6 ∪ var ∪

case (fun (l′6 ∩ b′6) (l′6 ∩ b′6) ∪ app var e6 ∪ var) l′6 ∪
let (l′6 ∩ b′6) l′6

5.6. RESTRICTED COMPLETENESS 119

Residual Forms Having applied all the rules, we now classify what the
parent expressions of a lambda may be. Since l′n by definition excludes
lambda expressions, no residual function body can be a lambda. We can
define lp, the lambda parents, consisting of the expressions drawn from e6

which permit a lambda expression as a direct child. We have denoted the
possible presence of a lambda with l, and their absence with an underscore:

lp = lam l ∪ con l ∪ app l

That is, a lambda may occur as the child of a lambda expression, as an
argument to a constructor, or as an argument to an application. However,
a constructor containing a lambda is a boxed lambda, and therefore is not
permitted anywhere b′ is intersected with the expression. Similarly to lp,
we can define bp, the boxed parents, consisting of expressions drawn from
e6 which permit a boxed lambda as a direct child:

bp = lam b ∪ fun b ∪ con b ∪ app b ∪ case b ∪ let b

Either the body of the main function is a boxed lambda, or a boxed lambda
must have a parent expression which is not a boxed lambda. We can re-
state bp to exclude expressions which are themselves boxed lambdas, and
determine the ultimate parent of a boxed lambda:

bp = lam b ∪ app b

The con l expression is itself a boxed lambda, and is only permitted where
bp permits. Therefore, the ultimate parent of either a lambda or a boxed
lambda can be expressed as:

p = lam (b ∪ l) ∪ app (b ∪ l)

In view of the restrictions imposed on e6, we also know that the first argu-
ment of any general application must be a variable. So we have shown, as
required, that a lambda or boxed lambda may only occur as the body of a
lambda, passed as an argument to a variable in a general application, or as
the body of the main function.

5.6.4 Example Residual Lambdas

The most interesting residual lambdas occur as arguments in an application
of a variable – for example v (λx → x). In this example, the lambda (λx → x)

120 CHAPTER 5. DEFUNCTIONALISATION

[x,y,z]
app(lam(x),y) -> let(y,x)
app(case(x,y),z) -> case(x,app(y,z))
app(let(x,y),z) -> let(x,app(y,z))
case(let(x,y),z) -> let(x,case(y,z))
case(con(x),y) -> let(x,y)
case(x,lam(y)) -> lam(case(x,app(lam(y),var)))
let(lam(x),y) -> lam(let(x,y))

Figure 5.5: Encoding of termination simplification.

cannot be bound to the variable v. This leaves three possibilities: (1) either
v is bound to ⊥; or (2) v is never bound to anything; or (3) v is bound
outside the program. For example:

bottom = bottom
main1 = bottom (λx → x)

nothing = Nothing
main2 = case nothing of

Nothing → 1
Just f → f (λx → x)

main3 f = f (λx → x)

The residual lambda in main1 is a result of the non-termination of the bottom

function, and the lambda in main2 is part of dead code. In both cases the
lambda expression is never evaluated and no functional value is created at
runtime. The final main3 example could be eliminated by requiring a first-
order main function.

5.7 Proof of Termination

Our algorithm, as it stands, may not terminate. In order to ensure termina-
tion, it is necessary to bound both the inlining and specialisation stages. In
this section we develop a mechanism to ensure termination, by first looking
at how non-termination may arise.

5.7. PROOF OF TERMINATION 121

5.7.1 Termination of Simplification

In order to check the termination of the simplifier we have used the AProVE
system (Giesl et al. 2006a) to model our rules as a term rewriting system,
and check its termination. An encoding of a simplified version of the rules
from Figures 2.4 and 5.2 is given in Figure 5.5. We have encoded rules by
considering what type of expression is transformed by a rule. For example,
the rule replacing (λv → x) y with let v = y in x is expressed as a rewrite
replacing app (lam (x), y) with let (y, x). The names of binding variables
with expressions have been ignored. To simplify the encoding, we have
only considered applications with one argument. The rules are applied non-
deterministically at any suitable location, so faithfully model the behaviour
of the original rules.

The encoding of the (bind-box) and (bind-lam) rules is excluded. Given
these rules, there are non terminating sequences. For example:

(λx → x x) (λx → x x)
⇒ -- (lam-app) rule

let x = λx → x x in x x
⇒ -- (bind-lam) rule

(λx → x x) (λx → x x)

Such expressions are a problem for GHC, and can cause the compiler to non-
terminate if encoded as data structures (Peyton Jones and Marlow 2002).
Other transformation systems (Chin and Darlington 1996) are able to make
use of type annotations to ensure these reductions terminate. To guarantee
termination, we apply (bind-lam) or (bind-box) at most n times in any
definition body. If the body is altered by either inlining or specialisation,
we reset the count. Currently we have set n to 1000, and have never had
this limit reached. This limited is intended to give a strong guarantee of
termination, and will only be necessary rarely – hence the high bound.

5.7.2 Termination of Arity Raising

Functions may only ever increase in arity, and in a well-typed program,
provided the function bodies do not grow without bound, the increase in
arity may only occur a finite number of times. The untyped program f x = f

causes arity-raising to non-terminate, and can be mitigated by a bound in
a similar manner to §5.7.1.

122 CHAPTER 5. DEFUNCTIONALISATION

5.7.3 Termination of Inlining

A standard technique to ensure termination of inlining is to refuse to inline
recursive functions (Peyton Jones and Marlow 2002). For our purposes, this
non-recursive restriction is too cautious as it would leave residual lambda
expressions in cases such as Example 38. We first present a program which
causes our method to fail to terminate, then our means of ensuring termi-
nation.

Example 40

data B x = B x
f = case f of

B → B (λx → x)

The f inside the case is a candidate for inlining:

case f of B → B (λx → x)
⇒ -- inlining rule

case (case f of B → B (λx → x)) of B → B (λx → x)
⇒ -- (case-case) rule

case f of B → case B (λx → x) of B → B (λx → x)
⇒ -- (case-con) rule

case f of B → B (λx → x)

So this expression would cause non-termination. ¤

To avoid such problems, we permit inlining a function f, at all use sites
within the definition of a function g, but only once per pair (f, g). In the
previous example we would inline f within its own body, but only once.
Any future attempts to inline f within this function would be disallowed,
although f could still be inlined within other function bodies. This restriction
is sufficient to ensure termination of inlining. Given n functions, there can
only be n2 possible inlining steps, each for possibly many application sites.

5.7.4 Termination of Specialisation

The specialisation method, left unrestricted, also may not terminate.

5.7. PROOF OF TERMINATION 123

Example 41

data Wrap a = Wrap (Wrap a)
| Value a

f x = f (Wrap x)
main = f (Value head)

In the first iteration, the specialiser generates a version of f specialised for
the argument Value head. In the second iteration it would specialise for
Wrap (Value head), then in the third with Wrap (Wrap (Value head)). Spe-
cialisation would generate an infinite number of specialisations of f. ¤

To ensure we only specialise a finite number of times we use a homeomorphic
embedding, from §2.4. We associate a set S with each function. After
specialising with a template we add that template to the set S of the function
associated with that expression. When we create a new function based
on a template, we copy the S associated with the function in which the
specialisation is performed. If a function wants to specialise using a template
that is a homeomorphic embedding of the S associated with that function,
the specialisation is not permformed.

One of the conditions for termination of homeomorphic embedding is that
there is only a finite alphabet. During the process of specialisation we create
new functions, and these new functions are new symbols in our language.
So we only use function names from the original input program. Every
template has a correspondence with an expression in the original program.
We perform the homeomorphic embedding test only after transforming all
templates into their original equivalent expression.

Example 41 (revisited)

Using homeomorphic embedding, we again generate the specialised variant
of f (Value head). Next we generate the template f (Wrap (Value head)).
However, f (Value head) E f (Wrap (Value head)), so the new template
would not be used. ¤

Forbidding homeomorphic embeddings in specialisation still allows full de-
functionalisation in most simple examples, but there are examples where it
terminates prematurely.

124 CHAPTER 5. DEFUNCTIONALISATION

Example 42

main y = f (λx → x) y
f x y = fst (x, f x y) y

Here we first generate a specialised variant of f (λx → x) y. If we call the
specialised variant f ′, we have:

f ′ y = fst (λx → x, f ′ y) y

Note that the recursive call to f has also been specialised. We now attempt
to generate a specialised variant of fst, using the template fst (λx → x, f ′ y) y.
Unfortunately, this template is an embedding of the template we used for f ′,
so we do not specialise and the program remains higher-order. But if we did
permit a further specialisation, we would obtain the first-order equivalent:

f ′ y = fst′ y y
fst′ y1 y2 = y2

¤

This example may look slightly obscure, but similar situations occur com-
monly with the standard translation of dictionaries. Often, classes have
default methods, which call other methods in the same class. These recur-
sive class calls often pass dictionaries, embedding the original caller even
though no recursion actually happens.

To alleviate this problem, instead of storing one set S, we store a sequence
of sets, S1 . . . Sn – where n is a small positive number, constant for the
duration of the program. Instead of adding to the set S, we now add to
the lowest set Si where adding the element will not violate the admissible
sequence. Each of the sets Si is still finite, and there are a finite number (n)
of them, so termination is maintained.

By default our defunctionalisation program uses 8 sets. In the results table
given in §5.8, we have given the minimum possible value of n to remove all
lambda expressions within each program.

5.7.5 Termination as a Whole

Given an initial program, the arity raising, inlining and specialisation stages
will each apply a finite number of times. The simplification stage is termi-

5.8. RESULTS 125

Name Bound HO Create HO Use Time Size

Programs curtailed by a termination bound:
cacheprof 8 611 44 686 40 1.8 2%
grep 8 129 9 108 22 0.8 40%
lift 8 187 123 175 125 1.2 -6%
prolog 8 308 301 203 137 1.1 -5%

All other programs:
ansi 4 239 0 187 2 0.5 -29%
bernouilli 4 240 0 190 2 0.3 -32%
bspt 4 262 0 264 1 0.7 -22%

. . . plus 56 additional programs . . .
sphere 4 343 0 366 2 0.7 -45%
symalg 5 402 0 453 64 1.0 -32%
x2n1 4 345 0 385 2 0.8 -57%

Summary of all other programs:
Minimum 2 60 0 46 0 0.1 -78%
Maximum 14 580 1 581 100 1.2 27%
Average 5 260 0 232 5 0.5 -30%

Name is the name of the program; Bound is the numeric bound used for
termination (see §5.7.4); HO Create the static number of lambda expres-
sions and under-applied functions, first in the input program and then in
the output program; HO Use the number of application expressions and
over-applied functions; Time the execution time of our method in seconds;
Size the change in the program size measured as the number of lines of
Core.

Table 5.1: Results of defunctionalisation on the nofib suite.

nating on its own, and will be invoked a finite number of times, so will also
terminate. Therefore, when combined, the stages will terminate.

5.8 Results

5.8.1 Benchmark Tests

We have tested our method with programs drawn from the nofib benchmark
suite (Partain et al. 2008), and the results are given in Table 5.1. Looking
at the input Core programs, we see many sources of functional values.

126 CHAPTER 5. DEFUNCTIONALISATION

• Type classes create dictionaries which are implemented as tuples of
functions.

• The monadic bind operation is higher-order.

• The IO data type is implemented as a function.

• The Haskell Show type class uses continuation-passing style exten-
sively.

• List comprehensions in Yhc are desugared to continuations. There are
other translations which require less functional value manipulations
(Coutts et al. 2007a).

We have tested all 14 programs from the imaginary section of the nofib
suite, 35 of the 47 spectral programs, and 17 of the 30 real programs. The
remaining 25 programs do not compile using the Yhc compiler, mainly due
to missing or incomplete libraries. Upon applying our defunctionalisation
method, 4 programs are curtailed by the termination bound, and 5 addi-
tional programs remain higher-order. We first discuss the residual higher-
order programs, then make some observations about each of the columns in
the table.

5.8.2 Higher-Order Residues

All four programs curtailed by the termination bound are listed in Table
5.1. The lift program uses pretty-printing combinators, while the other
three programs use parser combinators. In all programs, the combinators
are used to build up a functional value representing the action to perform,
storing an unbounded amount of information inside the functional value,
which therefore cannot be removed.

The five programs that are not curtailed by the termination bound, but still
contain residual higher-order expressions, are as follows:

Example 43

The integer and maillist programs pass functional values to primitive func-
tions. The maillist program calls the catch function (see §5.4.5). The integer

5.8. RESULTS 127

program passes functional values to the seq primitive, using the following
function:

seqlist [] = return ()
seqlist (x : xs) = x `seq̀ seqlist xs

This function is invoked with the IO monad, so the return () expression is
a functional value. It is impossible to remove this functional value without
having access to the implementation of the seq primitive. ¤

Example 44

The pretty, constraints and mkhprog programs pass functional values to ex-
pressions that evaluate to ⊥. The case in pretty comes from the fragment:

type Pretty = Int → Bool → PrettyRep

ppBesides :: [Pretty] → Pretty
ppBesides = foldr1 ppBeside

Here ppBesides xs evaluates to ⊥ if xs ≡ []. The ⊥ value will be of type
Pretty, and will be given further arguments, which can be functional argu-
ments. In reality, the code ensures that the input list is never [], so the
program will never fail with this error. ¤

5.8.3 Termination Bound

The termination bound used varies from 2 to 11 for the sample programs (see
Bound in Table 5.1). If we exclude the integer program, which is complicated
by the primitive operations on functional values, the highest bound is 8.
Most programs have a termination bound of 4. There is no apparent relation
between the size of a program and the termination bound.

5.8.4 Creating of Functional Values

We use Yhc generated programs as input, which have been lambda lifted
(Johnsson 1985), so contain no lambda expressions. The residual program
has no partial application, only lambda expressions. Most programs in our

128 CHAPTER 5. DEFUNCTIONALISATION

test suite start with hundreds of partial applications, but only 5 residual
programs contain lambda expressions (see HO Create in Table 5.1).

For the purposes of testing defunctionalisation, we have worked on unmod-
ified Yhc libraries, including all the low-level detail. For example, readFile

in Yhc is implemented in terms of file handles and pointer operations. Most
analysis operations work on an abstracted view of the program, which re-
duces the number and complexity of functional values.

5.8.5 Uses of Functional Values

While very few programs have residual functional values, a substantial num-
ber make use of general application, and use over-application of functions
(see HO Use in Table 5.1). In most cases these result from supplying error

calls with additional arguments, typically related to the desugaring of do

notation and pattern matching within Yhc.

5.8.6 Execution Time

The timing results were all measured on a 1.2GHz laptop, running GHC
6.8.2 (The GHC Team 2007). The longest execution time was just over
one second, with the average time being half a second (see Time in Table
5.1). The programs requiring most time made use of floating point num-
bers, suggesting that library code requires most effort to defunctionalise. If
abstractions were given for library methods, the execution time would drop
substantially.

In order to gain acceptable speed, we perform a number of optimisations
over the algorithm presented in §5.4. (1) We transform functions in an
order determined by a topological sort with respect to the call-graph. (2)
We delay the transformation of dictionary components, as these will often be
eliminated. (3) We fuse the inlining, arity raising and simplification stages.
(4) We track the arity and boxed lambda status of each function.

5.8.7 Program Size

We measure program size by counting the number of lines of Core code.
On average the size of the resultant program is smaller by 30% (see Size in

5.9. RELATED WORK 129

Table 5.1). The decrease in program size is mainly due to the elimination
of dictionaries holding references to unnecessary code. An optimising com-
piler will perform dictionary specialisation, and therefore is likely to also
reduce program size. We do not claim that defunctionalisation reduces code
size, merely hope to alleviate concerns raised by previous papers (Chin and
Darlington 1996) that doing so might cause an explosion in code size.

5.9 Related Work

5.9.1 Reynolds style defunctionalisation

Reynolds style defunctionalisation (Reynolds 1972) is the seminal method
for generating a first-order equivalent of a higher-order program.

Example 45

map f [] = []
map f (x : xs) = f x : map f xs

Reynolds’ method works by creating a data type to represent all values that
f may take anywhere in the whole program. For instance, it might be:

data Function = Head | Tail

apply Head x = head x
apply Tail x = tail x

map f [] = []
map f (x : xs) = apply f x : map f xs

Now all calls to map head are replaced by map Head. ¤

Reynolds’ method works on all programs. Defunctionalised code is still
type safe, but type checking would require a dependently typed language.
Others have proposed variants of Reynolds’ method that are type safe in the
simply typed lambda calculus (Bell et al. 1997), and within a polymorphic
type system (Pottier and Gauthier 2004).

The method is complete, removing all possible higher-order functions, and
preserves space and time behaviour. The disadvantage is that the transfor-
mation essentially embeds a mini-interpreter for the original program into

130 CHAPTER 5. DEFUNCTIONALISATION

the new program. The control flow is complicated by the extra level of in-
direction and in practice the apply interpreter is a bottleneck for analysis.
Various analysis methods have been proposed to reduce the size of the apply

function, by statically determining a safe subset of the possible functional
values at a call site (Cejtin et al. 2000; Boquist and Johnsson 1996).

Reynolds’ method has been used as a tool in program calculation (Danvy
and Nielsen 2001; Hutton and Wright 2006), often as a mechanism for re-
moving introduced continuations. Another use of Reynolds’ method is for
optimisation (Meacham 2008), allowing flow control information to be re-
covered without the complexity of higher-order transformation.

5.9.2 Removing Functional Values

The closest work to ours is by Chin and Darlington (1996), which itself is
similar to that of Nelan (1991). They define a higher-order removal method,
with similar goals of removing functional values from a program. Their work
shares some of the simplification rules, the arity raising and function spe-
cialisation. Despite these commonalities, there are big differences between
their method and ours.

• Their method makes use of the types of expressions, information that
must be maintained and extended to work with additional type sys-
tems.

• Their method has no inlining step, or any notion of boxed lambdas.
Functional values within constructors are ignored. The authors sug-
gest the use of deforestation (Wadler 1988) to help remove them, but
deforestation transforms the program more than necessary, and still
fails to eliminate many functional values.

• Their specialisation step only applies to outermost lambda expressions,
not lambdas within constructors.

• To ensure termination of the specialisation step, they never specialise
a recursive function unless it has all functional arguments passed iden-
tically in all recursive calls. This restriction is satisfied by higher-order
functions such as map, but fails in many other cases.

5.9. RELATED WORK 131

In addition, functional programs now use monads, IO continuations and type
classes as a matter of course. Such features were still experimental when
Chin and Darlington developed their method and it did not handle them.
Our work can be seen as a successor to theirs, indeed we achieve most of the
aims set out in their future work section. We have tried their examples, and
can confirm that all of them are successfully handled by our system. Some
of their observations and extensions apply equally to our work: for example,
they suggest possible methods of removing accumulating functions such as
in Example 39.

5.9.3 Partial Evaluation and Supercompilation

The specialisation and inlining steps are taken from existing program opti-
misers, as is the termination strategy of homeomorphic embedding. A lot of
program optimisers include some form of specialisation and so remove some
higher-order functions, such as partial evaluation (Jones et al. 1993) and
supercompilation (Turchin 1986). We have certainly benefited from ideas
in both these areas in developing our algorithms. Our initial attempt at re-
moving functional values involved modifying the supercompiler described in
Chapter 4. But the optimiser is not attempting to preserve correspondence
to the original program, so will optimise all aspects of the program equally,
instead of focusing on the higher-order elements. Overall, the results were
poor.

Chapter 6

Pattern-Match Analysis

This chapter describes an automated analysis to check for pattern match
errors, which we have called Catch. If Catch reports that a program has
no pattern-match errors, then the program is guaranteed not to fail with a
pattern-match error at runtime. A proof of the soundness of the analysis
is given in Appendix A. §6.1 gives a small example, and §6.2 gives an
overview of the checking process for this example. §6.3 introduces a small
core functional language and a mechanism for reasoning about this language,
§6.4 describes two constraint languages. §6.5 evaluates Catch on programs
from the Nofib suite, on a widely-used library and on a larger application
program. §6.6 offers comparisons with related work.

6.1 Motivation

Many functional languages support case-by-case definition of functions over
algebraic data types, matching arguments against alternative constructor
patterns. In the most widely used languages, such as Haskell and ML, alter-
native patterns need not exhaust all possible values of the relevant datatype;
it is often more convenient for pattern matching to be partial. Common
simple examples include functions that select components from specific con-
structions — in Haskell tail applies to (:)-constructed lists and fromJust to
Just-constructed values of a Maybe-type.

Partial matching does have a disadvantage. Programs may fail at run-time
because a case arises that matches none of the available alternatives. Such

132

6.1. MOTIVATION 133

pattern-match failures are clearly undesirable, and the motivation for this
chapter is to avoid them without denying the convenience of partial match-
ing. Our goal is an automated analysis of Haskell 98 programs to check
statically that, despite the possible use of partial pattern matching, no
pattern-match failure can occur.

The problem of pattern-match failures is a serious one. The darcs project
(Roundy 2005) is one of the most successful large scale programs written
in Haskell. Taking a look at the darcs bug tracker, 13 problems are errors
related to the selector function fromJust and 19 are direct pattern-match
failures.

Example 46

risers :: Ord α ⇒ [α] → [[α]]
risers [] = []
risers [x] = [[x]]
risers (x : y : etc) = if x 6 y then (x : s) : ss else [x] : (s : ss)

where (s : ss) = risers (y : etc)

A sample application of this function is:

> risers [1, 2, 3, 1, 2]
[[1, 2, 3], [1, 2]]

In the last line of the definition, (s : ss) is matched against the result of
risers (y : etc). If the result is in fact an empty list, a pattern-match error
will occur. It takes a few moments to check manually that no pattern-match
failure is possible – and a few more to be sure one has not made a mistake!
Turning the risers function over to our analysis tool (which we call Catch),
the output is:

Checking “Incomplete pattern on line 5”
Program is Safe

¤

In other examples, where Catch cannot verify pattern-match safety, it can
provide information such as sufficient conditions on arguments for safe ap-
plication of a function.

134 CHAPTER 6. PATTERN-MATCH ANALYSIS

The problem of checking if a program will terminate with an error is un-
decidable, because the halting problem (Turing 1937) can be reduced to
it.

main = case computation of
() → error "failure"

If computation terminates there will be an error, otherwise there will not.
Therefore, it will be necessary to make conservative approximations in order
to obtain a powerful but correct analysis.

6.1.1 Contributions

The contributions of this chapter include:

• A method for reasoning about pattern-match failures, in terms of a
parameterisable constraint language. The method calculates precon-
ditions of functions.

• Two separate constraint languages that can be used with our method.

• Details of the Catch implementation which supports the full Haskell 98
language (Peyton Jones 2003), by transforming Haskell 98 programs
to a first-order language.

• Results showing success on a number of small examples drawn from
the Nofib suite (Partain et al. 2008), and for three larger examples,
investigating the scalability of the checker.

6.2 Overview of the Risers Example

This section sketches the process of checking that the risers function from
Example 46 does not crash with a pattern-match error.

6.2.1 Conversion to a Core Language

Rather than analyse full Haskell, Catch analyses a first-order core language,
without lambda expressions, partial application or let bindings. The result

6.2. OVERVIEW OF THE RISERS EXAMPLE 135

risers x = case x of
[] → []
(y : ys) → case ys of

[] → (y : []) : []
(z : zs) → risers2 (risers3 z zs) (y 6 z) y

risers2 x y z = case y of
True → (z : snd x) : (fst x)
False → (z : []) : (snd x : fst x)

risers3 x y = risers4 (risers (x : y))

risers4 x = case x of
(y : ys) → (ys, y)
[] → error "Pattern Match Failure, 11:12."

Figure 6.1: risers in the core language.

of converting the risers program to Core Haskell, with identifiers renamed
for ease of human reading, is shown in Figure 6.1.

The type of risers is polymorphic over types in the Ord class. Catch can
check risers assuming that Ord methods do not raise pattern-match errors,
and may return any value. Or a type instance such as Int can be specified
with a type signature. To keep the example simple, we have chosen the
latter.

6.2.2 Analysis of risers – a brief sketch

In the Core language every pattern match covers all possible constructors of
the appropriate type. The alternatives for constructor cases not originally
given are calls to error. The analysis starts by finding calls to error, then
tries to prove that these calls will not be reached. The one error call in risers4

is avoided under the precondition (see §6.3.4):

risers4, x<−(:)

That is, all callers of risers4 must supply an argument x which is a (:)-
constructed value. For the proof that this precondition holds, two entail-
ments are required (see §6.3.5):

x<−(:) ⇒ (risers x)<−(:)
True ⇒ (risers2 x y z)<−(:)

136 CHAPTER 6. PATTERN-MATCH ANALYSIS

type Selector = (CtorName, Int)

var :: VarName → Maybe (Expr, Selector)
isRec :: Selector → Bool

Figure 6.2: Operations on Core.

The first line says that if the argument to risers is a (:)-constructed value,
the result will be. The second states that the result from risers2 is always
(:)-constructed.

6.3 Pattern Match Analysis

This section describes the method used to calculate preconditions for func-
tions. Our method is composed of two parts – an analysis algorithm and
a constraint language. The analysis works on a Core functional language,
and requires only a small number of constraint operations, none of which
work with the Core language. By changing the constraint language, we can
change the accuracy and execution time of the tool.

We first give the core language for the analysis in §6.3.1, then the opera-
tions that constraints must provide in §6.3.2. We then introduce a simple
constraint language in §6.3.3, which we use to illustrate our analysis. First
we define three terms:

• A constraint describes a (possibly infinite) set of values. We say a
value satisfies a constraint if the value is within the set.

• A precondition is a proposition combining constraints on the argu-
ments to a function, to ensure the result does not contain ⊥, where
⊥ is the result of evaluating error. For example, the precondition on
tail xs is that xs is (:)-constructed.

• An entailment is a proposition combining constraints on the argu-
ments to a function, to ensure the result satisfies a further constraint.
For example, xs is (:)-constructed ensures null xs evaluates to False.

6.3. PATTERN MATCH ANALYSIS 137

6.3.1 Reduced Core language

We use a first-order core language, a subset of the Core language presented in
§2.1. In order to eliminate all constructs which either create or make use of
functional values we eliminate lambda expressions and general application,
and require all function and constructor applications to be fully-applied.

Figure 6.2 gives the signatures for two helper functions over the core data
types. The var function returns Nothing for a variable bound as the argu-
ment of a top-level function, and Just (e, (c, i)) for a variable bound as the
ith component in the c-constructed alternative of a case-expression whose
scrutinee is e. We assume unique variable names throughout the program.

Example 47

Given the definition:

map f xs = case xs of
[] → []
y : ys → f y : map f ys

We would obtain the following results:

var "f" = Nothing
var "xs" = Nothing
var "y" = Just ([["xs"]], (":", 0))
var "ys" = Just ([["xs"]], (":", 1))

¤

The isRec (c, i) function returns true if the constructor c has a recursive ith
component. For example, let hd = (":", 0) and tl = (":", 1) then isRec hd =
False but isRec tl = True. We require that for any value of a particular type,
a non-recursive selector must only occur some maximum number of times.

Algebraic Abstractions of Primitive Types

Our Core language only has algebraic data types. Catch allows for primitive
types such as characters and integers by abstracting them into algebraic
types. Two abstractions used in Catch are:

138 CHAPTER 6. PATTERN-MATCH ANALYSIS

data Prop α

(∧), (∨) :: Prop α → Prop α → Prop α
andP, orP :: [Prop α] → Prop α
mapP :: (α → Prop β) → Prop α → Prop β
true, false :: Prop α
lit :: α → Prop α

bool :: Bool → Prop α
bool b = if b then true else false

isTrue :: Prop () → Bool
isTrue = (≡) true

tautP :: (α → Bool) → Prop α → Bool
tautP f = isTrue ◦mapP (bool ◦ f)

Figure 6.3: Proposition data type.

data Int = Neg | Zero | One | Pos
data Char = Char

Knowledge about values is encoded as a set of possible constructions. In
our experience, integers are most often constrained to be a natural, or to
be non-zero. Addition or subtraction of one is the most common operation.
Though very simple, the Int abstraction models the common properties and
operations quite well. For characters, we have found little benefit in any
refinement other than considering all characters to be abstracted to the
same value.

The final issue of abstraction relates to primitive functions in the IO monad,
such as getArgs (which returns the command-line arguments), or readFile

(which reads from the file-system). In most cases an IO function is modelled
as returning any value of the correct type, using a function primitive to the
checker.

6.3.2 Constraint Essentials and Notation

We write Sat x c to assert that the value of expression x must be a member of
the set described by the constraint c, i.e. that x satisfies c. If any component
of x evaluates to ⊥, the constraint is automatically satisfied: in our method,

6.3. PATTERN MATCH ANALYSIS 139

data Sat α = Sat α Constraint

(<−) :: α → [CtorName] → Prop (Sat α)
(B) :: Selector → Constraint → Constraint
(C) :: CtorName → Constraint → Prop (Sat Int)

Figure 6.4: Constraint operations.

precond :: FuncName → Prop (Sat VarName)
prePost :: FuncName → Constraint → Prop (Sat VarName)
reduce :: Prop (Sat Expr) → Prop (Sat VarName)

substP :: Eq α ⇒ [(α, β)] → Prop (Sat α) → Prop (Sat β)
substP xs = mapP (λ(Sat i k) → lit $ Sat (fromJust $ lookup i xs) k)

Figure 6.5: Operations to generate preconditions and entailments.

for a component of x to evaluate to ⊥, some other constraint must have been
violated, so an error is still reported. Atomic constraints can be combined
into propositions, using the proposition data type and operations in Figure
6.3.

Several underlying constraint models are possible. To keep the introduc-
tion of the algorithms simple we first use basic pattern constraints (§6.3.3),
which are unsuitable for reasons given in §6.3.8. We then describe regular
expression constraints in §6.4.1 – a variant of the constraints used in earlier
versions of Catch. Finally we present multi-pattern constraints in §6.4.2 –
used in the current Catch tool to enable scaling to much larger problems.

Three operations must be provided by every constraint model, whose signa-
tures are given in Figure 6.4. The lifting and splitting operators (B) and (C)
are discussed in §6.3.5. The expression x<−cs generates a predicate ensuring
that the value x must be constructed by one of the constructors in cs.

The type signatures for the functions calculating preconditions and entail-
ments are given in Figure 6.5. The precond function takes a function name,
and gives a proposition imposing constraints on the arguments to that func-
tion, denoted by argument position. The prePost function takes a function
name and a postcondition, and gives a precondition sufficient to ensure the
postcondition. During the manipulation of constraints, we often need to
talk about constraints on expressions, rather than argument positions: the

140 CHAPTER 6. PATTERN-MATCH ANALYSIS

data Constraint = Any
| Con CtorName [Constraint]

Figure 6.6: Basic pattern constraints.

reduce function converts propositions of constraints on expressions to equiv-
alent propositions of constraints on arguments. The substP function goes in
the opposite direction, replacing constraints on argument positions with the
substituted argument expressions.

6.3.3 Basic Pattern (BP) Constraints

For simplicity, our analysis framework will be introduced using basic pat-
tern constraints (BP-constraints). BP-constraints are defined in Figure 6.6,
and correspond to Haskell pattern matching, where Any represents an un-
restricted match. A data structure satisfies a BP-constraint if it matches
the pattern. For example, the requirement for a value to be (:)-constructed
would be expressed as (Con ":" [Any,Any]). The BP-constraint language
is limited in expressivity, for example it is impossible to state that all the
elements of a boolean list are True.

As an example of an operator definition for the BP-constraint language, (<−)
can be defined:

a<−xs = orP [lit (a `Sat̀ anys x) | x ← xs]
where anys x = Con x (replicate (arity x) Any)

So, for example:

e<−["True"] = lit (e `Sat̀ Con "True" [])
e<−[":"] = lit (e `Sat̀ Con ":" [Any, Any])
e<−[":", "[]"] = lit (e `Sat̀ Con ":" [Any, Any]) ∨

lit (e `Sat̀ Con "[]" [])

6.3.4 Preconditions for Pattern Safety

Our intention is that for every function, a proposition combining constraints
on the arguments forms a precondition to ensure the result does not contain

6.3. PATTERN MATCH ANALYSIS 141

pre :: Expr → Prop (Sat Expr)
pre [[v]] = true
pre [[c xs]] = andP (map pre xs)
pre [[f xs]] = pre′ f xs ∧ andP (map pre xs)

where pre′ f xs = substP (zip (args f) xs) (precond f)
pre [[case x of as]] = pre x ∧ andP (map alt as)

where alt [[c vs → y]] = x<−(ctors c \ [c]) ∨ pre y

Figure 6.7: Precondition of an expression, pre.

⊥. The precondition for error is False. A program is safe if the precondition
on main is True. Our analysis method derives these preconditions. Given
precond which returns the precondition of a function, we can determine the
precondition of an expression using the pre function in Figure 6.7. The
intuition behind pre is that in all subexpressions f xs, the arguments xs must
satisfy the precondition for f. The only exception is that a case expression
is safe if the scrutinee is safe, and each alternative is either safe, or never
taken.

Example 48

safeTail xs = case null xs of
True → []
False → tail xs

The precondition for safeTail is computed as:

pre′ null [xs] ∧ (null xs<−["True"] ∨ pre′ tail [xs])

This predicate states that the invocation of null xs must be safe, and either
null xs is True or tail xs must be safe. ¤

Stable Preconditions

The iterative algorithm for calculating preconditions is given in Figure 6.8.
Initially all preconditions are assumed to be true, apart from the error pre-
condition, which is false. In each iteration we calculate the precondition
using the pre function from Figure 6.7, using the previous value of precond.

142 CHAPTER 6. PATTERN-MATCH ANALYSIS

precond :: FuncName → Prop (Sat VarName)
precond0 f = if f ≡ "error" then false else true
precondn+1 f = precondn f ∧ reduce (pre{precondn}(body f))

Figure 6.8: Precondition calculation.

Each successive precondition is conjoined with the previous one, and is there-
fore more restrictive. So if all chains of increasingly restrictive propositions
of constraints are finite, termination is guaranteed – a topic we return to in
§6.3.8.

We can improve the efficiency of the algorithm by tracking dependencies
between preconditions, and performing the minimum amount of recalcula-
tion. Finding strongly connected components in the static call graph of a
program allows parts of the program to be checked separately.

Preconditions and Laziness

The pre function defined in Figure 6.7 does not exploit laziness. The function
application equation demands that preconditions hold on all arguments –
which is unnecessarily restrictive unless a function is strict in all arguments.
For example, the precondition on False && error "here" is False, when it
should be True. In general, preconditions may be more restrictive than nec-
essary. However, investigation of a range of examples suggests that inlining
(&&) and (||) captures many of the common cases where laziness would be
required.

6.3.5 Manipulating constraints

The pre function generates constraints in terms of expressions, which the
precond function transforms into constraints on function arguments, using
reduce. The reduce function is defined in Figure 6.9. We will first give
an example of how reduce works, followed by a description of each rule
corresponding to an equation in the definition of red.

6.3. PATTERN MATCH ANALYSIS 143

reduce :: Prop (Sat Expr) → Prop (Sat VarName)
reduce = mapP (λ(Sat x k) → red x k)

red :: Expr → Constraint → Prop (Sat VarName)
red [[v]] k = case var v of

Nothing → lit (v `Sat̀ k)
Just (x, s) → red x (s B k)

red [[c xs]] k = reduce $ substP (zip [0 . .] xs) (c C k)
red [[f xs]] k = reduce $ substP (zip (args f) xs) (prePost f k)
red [[case x of as]] k = andP (map alt as)

where alt [[c vs → y]] = reduce (x<−(ctors c \ [c])) ∨ red y k

Figure 6.9: Specification of constraint reduction, reduce.

Example 48 (revisited)

The precondition for the safeTail function is:

pre′ null [xs] ∧ (null xs<−["True"] ∨ pre′ tail [xs])

We can use the preconditions computed for tail and null to rewrite the pre-
condition as:

null xs<−["True"] ∨ xs<−[":"]

Now we use an entailment calculated by prePost to turn the constraint on
null’s result into a constraint on its argument:

xs<−["[]"] ∨ xs<−[":"]

Which can be shown to be a tautology. ¤

The variable rule has two alternatives. The first alternative deals with
top-level bound arguments, which are already in the correct form. The other
alternative applies to variables bound by patterns in case alternatives. It
lifts conditions on a bound variable to the scrutinee of the case expression
in which they occur. The B operator lifts a constraint on one part of a data
structure to a constraint on the entire data structure. For BP-constraints,
B can be defined as:

(c, i) B k = Con c [if i ≡ j then k else Any
| j ← [0 . . arity c− 1]]

144 CHAPTER 6. PATTERN-MATCH ANALYSIS

prePost :: FuncName → Constraint → Prop (Sat VarName)
prePost0 f k = true
prePostn+1 f k = prePostn f k ∧ reducen (lit $ body f `Sat̀ k)

where reducen = reduce using prePostn

Figure 6.10: Fixed point calculation for prePost.

Example 49

case xs of
[] → []
y : ys → tail y

Here the initial precondition will be y<−[":"], which evaluates to the result
y `Sat̀ Con ":" [Any, Any]. The var function on y gives Right (xs, (":", 0)).
After the application of B the revised constraint refers to xs instead of y,
and will be xs `Sat̀ Con ":" [Con ":" [Any,Any], Any]. We have gone from
a constraint on y, using the knowledge that y is bound to a portion of xs, to
a constraint on xs. ¤

The constructor application rule deals with an application of a con-
structor. The C operator splits a constraint on an entire structure into a
proposition combining constraints on each part.

c C Any = true
c C Con c2 xs = bool (c2 ≡ c) ∧ andP (map lit (zipWith Sat [0 . .] xs))

The intuition is that given knowledge of the root constructor of a data
value, we can reformulate the constraint in terms of what the constructor
fields must satisfy. Some sample applications:

"True" C Con "True" [] = true
"False" C Con "True" [] = false
":" C Con ":" [Con "True" [], Any] =

lit (0 `Sat̀ Con "True" []) ∧ lit (1 `Sat̀ Any)

The case rule generates a conjunct for each alternative. An alternative
satisfies a constraint if either it is never taken, or it meets the constraint
when taken.

6.3. PATTERN MATCH ANALYSIS 145

The function application rule relies on the prePost function defined in
Figure 6.10. This function calculates the precondition necessary to ensure a
given postcondition on a function, which forms an entailment. Like the pre-
condition calculation in §6.3.4, the prePost function works iteratively, with
each result becoming increasingly restrictive. Initially, all postconditions
are assumed to be true. The iterative step takes the body of the function,
and uses the reduce transformation to obtain a predicate in terms of the
arguments to the function, using the previous value of prePost. If refine-
ment chains of constraint/function pairs are finite, termination is guaran-
teed. Here again, a speed up can be obtained by tracking the dependencies
between constraints, and additionally caching all calculated results.

6.3.6 Semantics of Constraints

The semantics of a constraint are determined by which values satisfy it. We
can model values in our first-order Core language with the data type:

data Value = Value CtorName [Value]
| Bottom

Given this value representation, we can use the sat function to determine
whether a value satisfies a constraint, implemented in terms of the C oper-
ator:

sat :: Sat Value → Bool
sat (Sat Bottom k) = True
sat (Sat (Value c xs) k) = sat′ $ substP (zip [0 . .] xs) (c C k)

sat′ :: Prop (Sat Value) → Bool
sat′ = tautP sat

The first equation returns True given a value of type Bottom, as if a value
contains ⊥ then any constraint is true. In order to be consistent, the con-
straint operations must respect the following two properties – both of which
permit constraints to be more restrictive than necessary. In Appendix A we
use these properties to prove soundness of the analysis.

Property C1

sat′ (Value c xs<−cs) ⇒ c ∈ cs

146 CHAPTER 6. PATTERN-MATCH ANALYSIS

satE′ :: Prop (Sat Expr) → Bool
satE′ = tautP satE

satE :: Sat Expr → Bool
satE (Sat x k) = sat (Sat (eval x) k)

isBottom :: Value → Bool
isBottom Bottom = True
isBottom (Value c xs) = any isBottom xs

eval :: Expr → Value
eval = . . . -- evaluate an expression to normal form

Figure 6.11: Auxiliary definitions for the soundness theorem.

The first property requires that v<−cs must not match values constructed by
constructors not in cs.

Property C2

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k

The second property requires that if a constraint satisfies a value after they
have both been extended, then the original value must have satisfied the
original constraint. For example, if Just x `Sat̀ (("Just", 0) B k) is true,
then x `Sat̀ k must be true.

6.3.7 Soundness Theorem

Our analysis is sound if for any expression e, provided the precondition of e

is calculated to be true, then the evaluation of e will not result in ⊥. Using
the auxiliary definitions given in Figure 6.11 we can express this theorem
as:

satE′ $ pre e ⇒ not $ isBottom $ eval e

In order to evaluate an expression to normal form, it is necessary for the
expression to be closed and for evaluation of the expression to terminate.
If the expression e can be evaluated to normal form, and both e and the
program under analysis are first-order Core as described in §6.3.1, then we
prove the soundness theorem in Appendix A.

6.4. RICHER BUT FINITE CONSTRAINT SYSTEMS 147

6.3.8 Finite Refinement of Constraints

With unbounded recursion in patterns, the BP-constraint language does not
have only finite chains of refinement, as constraints can become infinitely
long. As we saw in §6.3.4, we need this property for termination of the
iterative analysis. In the next section we introduce two alternative constraint
systems. Both share a key property: for any type, there are finitely many
constraints.

6.4 Richer but Finite Constraint Systems

There are many ways of defining a richer constraint system, while also en-
suring the necessary finiteness properties. Here we outline two – both im-
plemented in Catch. Neither is strictly more powerful than the other; each
is capable of expressing constraints that the other cannot express.

When designing a constraint system, the main decision is which distinctions
between data values to ignore. Since the constraint system must be finite,
there must be sets of data values which no constraint within the system
can distinguish between. As the constraint system stores more information,
it will distinguish more values, but will likely take longer to obtain fixed
points. The two constraint systems in this section were developed by looking
at examples, and trying to find systems offering sufficient power to solve real
problems, but still remain bounded.

6.4.1 Regular Expression (RE) Constraints

An implementation of regular expression based constraints (RE-constraints)
is given in Figure 6.12. In a constraint of the form (r Ã cs), r is a regular
expression and cs is a set of constructors. Such a constraint is satisfied by a
data structure d if every sequence of selectors which is applicable to d, and
described by r, reaches a constructor in the set cs. If no such sequence of
selectors has a well-defined result then the constraint is vacuously true.

Concerning the helper functions needed to define B and C in Figure 6.12,
the differentiate function is from Conway (1971); integrate is its inverse; ewp

is the empty word property.

148 CHAPTER 6. PATTERN-MATCH ANALYSIS

data Constraint = RegExpÃ [CtorName]
type RegExp = [RegItem]
data RegItem = Atom Selector | Star [Selector]

(<−) :: α → [CtorName] → Prop (Sat α)
e<−cs = lit $ e `Sat̀ ([]Ãcs)

(B) :: Selector → Constraint → Constraint
p B (rÃcs) = integrate p rÃcs

(C) :: CtorName → Constraint → Prop (Sat Int)
c C (rÃcs) = bool (not (ewp r) || c ∈ cs) ∧

andP (map f [0 . . arity c− 1])
where
f i = case differentiate (c, i) r of

Nothing → true
Just r2 → lit $ i `Sat̀ (r2 Ãcs)

ewp :: RegExp → Bool
ewp x = all isStar x

where isStar (Star) = True
isStar (Atom) = False

integrate :: Selector → RegExp → RegExp
integrate p r | not (isRec p) = Atom p : r
integrate p (Star ps : r) = Star (nub (p : ps)) : r
integrate p r = Star [p] : r

differentiate :: Selector → RegExp → Maybe RegExp
differentiate p [] = Nothing
differentiate p (Atom r : rs) | p ≡ r = Just rs

| otherwise = Nothing
differentiate p (Star r : rs) | p ∈ r = Just (Star r : rs)

| otherwise = differentiate p rs

Figure 6.12: RE-constraints.

6.4. RICHER BUT FINITE CONSTRAINT SYSTEMS 149

In earlier versions of Catch, regular expressions were unrestricted and quickly
grew to an unmanageable size, preventing analysis of larger programs. In
general, a regular expression takes one of six forms:

r1 + r2 union of regular expressions r1 and r2

r1 ·r2 concatenation of regular expressions r1 then r2

r1
∗ any number (possibly zero) occurrences of r1

sel a selector, i.e. hd for the head of a list
0 the language is the empty set
1 the language is the set containing the empty string

We implement REs using the data type RegExp from Figure 6.12, with
RegExp being a list of concatenated RegItem. In addition to the restrictions
imposed by the data type, we require: (1) within Atom the Selector is not
recursive; (2) within Star there is a non-empty list of Selectors, each of which
is recursive; (3) no two Star constructors are adjacent in a concatenation.
Our restricted regular expressions have the following grammar:

re′ = item | item·selN ·re′ | selN ·re′ | 1
item = stars∗

stars = selR | selR + stars
selN = non-recursive selector
selR = recursive selector

For example, the regular expression tl∗· tl∗ is disallowed as there are two
adjacent stars, hd∗ is disallowed as a non-recursive selector under a star, and
tl is disallowed as a recursive selector without a star. When used within
RE-constraints, these restrictions ensure three properties:

• Because of static typing, constructor-sets must all be of the same type.

• There are finitely many restricted regular expressions for any type.
Combined with the finite number of constructors, this property is suffi-
cient to guarantee termination when computing a fixed-point iteration
on constraints.

• The restricted REs with 0 are closed under integration and differentia-
tion. (The 0 alternative is catered for by the Maybe return type in the
differentiation. As 0Ãc always evaluates to True, C replaces Nothing

by True.)

150 CHAPTER 6. PATTERN-MATCH ANALYSIS

Example 50

(head xs) is safe if xs evaluates to a non-empty list. The RE-constraint
generated by Catch is: xs `Sat̀ (1 Ã {:}). This may be read: from the
root of the value xs, after following an empty path of selectors, we reach a
(:)-constructed value. ¤

Example 51

(map head xs) is safe if xs evaluates to a list of non-empty lists. The RE-
constraint is: xs `Sat̀ (tl∗·hd Ã {:}). From the root of xs, following any
number of tails, then exactly one head, we reach a (:). If xs is [], it still
satisfies the constraint, as there are no well defined paths containing a hd

selector. If xs is infinite then all its infinitely many elements must be (:)-
constructed. ¤

Example 52

(map head (reverse xs)) is safe if every item in xs is (:)-constructed, or if xs is
infinite – so reverse does not terminate. The RE-constraint is: xs `Sat̀ (tl∗·
hdÃ{ :}) ∨ xs `Sat̀ (tl∗Ã{:}). The second term specifies the infinite case:
if the list xs is (:)-constructed, it will have a tl selector, and therefore the tl

path is well defined and requires the tail to be (:). Each step in the chain
ensures the next path is well defined, and therefore the list is infinite. ¤

Finite Number of RE-Constraints

We require that for any type, there are finitely many constraints (see §6.3.8).
We can model types as:

data Type = Type [Ctor]
type Ctor = [Maybe Type]

Each Type has a number of constructors. For each constructor Ctor, ev-
ery component has either a recursive type (represented as Nothing) or a
non-recursive type t (represented as Just t). As each non-recursive type is
structurally smaller than the original, a function that recurses on the type

6.4. RICHER BUT FINITE CONSTRAINT SYSTEMS 151

will terminate. We define a function count which takes a type and returns
the number of possible RE-constraints.

count :: Type → Integer
count (Type t) = 2ˆrec ∗ (2ˆctor + sum (map count nonrec))

where
rec = length (filter isNothing (concat t))
nonrec = [x | Just x ← concat t]
ctor = length t

The 2 ˆ rec term corresponds to the number of possible constraints under
Star. The 2 ˆ ctor term accounts for the case where the selector path is
empty.

RE-Constraint Propositions

Catch computes over propositional formulae with constraints as atomic
propositions. Among other operators on propositions, they are compared
for equality to obtain a fixed point. All the fixed-point algorithms given in
this chapter stop once equal constraints are found. We use Binary Decision
Diagrams (BDD) (Lee 1959) to make these equality tests fast. Since the
complexity of performing an operation is often proportional to the number
of atomic constraints in a proposition, we apply simplification rules to re-
duce this number. For example, the three simplest of the nineteen rules
are:

Exhaustion: In the constraint x `Sat̀ (rÃ [":", "[]"]) the condition lists
all the possible constructors. Because of static typing, x must be one of
these constructors. Any such constraint simplifies to True.

And merging: The conjunction e `Sat̀ (rÃc1) ∧ e `Sat̀ (rÃc2) can be
replaced by e `Sat̀ (rÃ(c1 ∩ c2)).

Or merging: The disjunction e `Sat̀ (r Ã c1) ∨ e `Sat̀ (r Ã c2) can be
replaced by e `Sat̀ (rÃc2) if c1 ⊆ c2.

152 CHAPTER 6. PATTERN-MATCH ANALYSIS

type Constraint = [Val]
data Val = [Pattern] ? [Pattern] | Any
data Pattern = Pattern CtorName [Val]

-- useful auxiliaries, non recursive selectors
nonRecs :: CtorName → [Int]
nonRecs c = [i | i ← [0 . . arity c− 1], not (isRec (c, i))]

-- a complete Pattern on c
complete :: CtorName → Pattern
complete c = Pattern c (map (const Any) (nonRecs c))

(<−) :: α → [CtorName] → Prop (Sat α)
e<−cs = lit $ Sat e [map complete cs

? map complete (ctors (head cs))
| not (null cs)]

(B) :: Selector → Constraint → Constraint
(c, i) B k = map f k

where
f Any = Any
f (ms1 ? ms2) | isRec (c, i) = [complete c] ? merge ms1 ms2
f v = [Pattern c [if i ≡ j then v else Any | j ← nonRecs c]]

? map complete (ctors c)

(C) :: CtorName → Constraint → Prop (Sat Int)
c C vs = orP (map f vs)

where
(rec, non) = partition (isRec ◦ (,) c) [0 . . arity c− 1]

f Any = true
f (ms1 ? ms2) = orP [andP $ map lit $ g vs1

| Pattern c1 vs1 ← ms1, c1 ≡ c]
where g vs = zipWith Sat non (map (:[]) vs) ++

map (`Sat̀ [ms2 ? ms2]) rec

(u) :: Val → Val → Val
(a1 ? b1) u (a2 ? b2) = merge a1 a2 ? merge b1 b2

x u y = if x ≡ Any then y else x

merge :: [Pattern] → [Pattern] → [Pattern]
merge ms1 ms2 = [Pattern c1 (zipWith (u) vs1 vs2) |

Pattern c1 vs1 ← ms1, Pattern c2 vs2 ← ms2, c1 ≡ c2]

Figure 6.13: MP-constraints.

6.4. RICHER BUT FINITE CONSTRAINT SYSTEMS 153

6.4.2 Multipattern (MP) Constraints & Simplification

Although RE-constraints are capable of solving many examples, they suffer
from a problem of scale. As programs become more complex the size of
the propositions grows quickly, slowing Catch unacceptably. Multipattern
constraints (MP-constraints, defined in Figure 6.13) are an alternative which
scales better.

MP-constraints are similar to BP-constraints, but can constrain an infinite
number of items. A value v satisfies a constraint p1 ? p2 if v itself satisfies
the pattern p1 and all its subcomponents of the same type as v satisfy p2.
We call p1 the root pattern, and p2 the recursive pattern. Each of p1 and p2

is given as a set of matches similar to BP-constraints, but each Pattern only
specifies the values for the non-recursive selectors, all recursive selectors are
handled by p2. A constraint is a disjunctive list of ? patterns.

The intuition behind the definition of (c, i) B ps is that if the selector (c, i)
is recursive, given a pattern α ? β, the new root pattern requires the value
to be c-constructed, and the recursive patterns become merge α β – i.e. all
recursive values must satisfy both the root and recursive patterns of the
original pattern. If the selector is non-recursive, then each new pattern
contains the old pattern within it, as the appropriate non-recursive field.
So, for example:

hd B (α ? β) = {(:) (α ? β)} ? {[], (:) Any}
tl B (α ? β) = {(:) Any } ? (merge α β)

For the C operator, if the root pattern matches, then all non-recursive fields
are matched to their non-recursive constraints, and all recursive fields have
their root and recursive patterns become their recursive pattern. In the
result, each field is denoted by its argument position. So, for example:

":" C ({[] } ? β) = false
":" C ({(:) α} ? β) = 0 `Sat̀ α ∧ 1 `Sat̀ (β ? β)

Example 50 (revisited)

Safe evaluation of (head xs) requires xs to be non-empty. The MP-constraint
generated by Catch on xs is: {(:) Any} ? {[], (:) Any}. This constraint can

154 CHAPTER 6. PATTERN-MATCH ANALYSIS

be read in two portions: the part to the left of ? requires the value to be
(:)-constructed, with an unrestricted hd field; the right allows either a [] or
a (:) with an unrestricted hd field, and a tl field restricted by the constraint
on the right of the ?. In this particular case, the right of the ? places no
restrictions on the value. This constraint is longer than the corresponding
RE-constraint as it makes explicit that both the head and the recursive tails
are unrestricted. ¤

Example 51 (revisited)

Safe evaluation of (map head xs) requires xs to be a list of non-empty lists.
The MP-constraint on xs is:

{[], (:) ({(:) Any} ? {[], (:) Any})} ?
{[], (:) ({(:) Any} ? {[], (:) Any})}

¤

Example 52 (revisited)

(map head (reverse x)) requires xs to be a list of non-empty lists or infinite.
The MP-constraint for an infinite list is: {(:) Any} ? {(:) Any} ¤

MP-constraints also have simplification rules. For example, the two simplest
of the eight rules are:

Val-list simplification: Given a Val-list, if the value Any is in this list, the
list is equal to [Any]. If a value occurs more than once in the list, one copy
can be removed.

Val simplification: If both p1 and p2 cover all constructors and all their
components have Any as their constraint, the constraint p1 ? p2 can be re-
placed with Any.

Finitely Many MP-Constraints per Type

As in §6.4.1, we show there are finitely many constraints per type by defining
a count function:

6.4. RICHER BUT FINITE CONSTRAINT SYSTEMS 155

count :: Type → Integer
count (Type t) = 2ˆval t

where val t = 1 + 2 ∗ 2ˆ(pattern t)

pattern t = sum (map f t)
where f c = product [count t2 | Just t2 ← c]

The val function counts the number of possible Val constructions. The
pattern function performs a similar role for Pattern constructions.

MP-Constraint Propositions and Uncurrying

A big advantage of MP-constraints is that if two constraints on the same
expression are combined at the proposition level, they can be reduced into
one atomic constraint:

(Sat e v1) ∨ (Sat e v2) = Sat e (v1 ++ v2)
(Sat e v1) ∧ (Sat e v2) = Sat e [a u b | a ← v1, b ← v2]

This ability to combine constraints on equal expressions can be exploited
further by translating the program to be analysed. After applying reduce,
all constraints will be in terms of the arguments to a function. So if all
functions took exactly one argument then all the constraints associated with
a function could be collapsed into one. We therefore uncurry all functions.

Example 53

(||) x y = case x of
True → True
False → y

in uncurried form becomes:

(||) a = case a of
(x, y) → case x of

True → True
False → y

¤

Combining MP-constraint reduction rules with the uncurrying transforma-
tion makes Sat α equivalent in power to Prop (Sat α). This simplification

156 CHAPTER 6. PATTERN-MATCH ANALYSIS

reduces the number of different propositional constraints, making fixed-point
computations faster. In the RE-constraint system uncurrying would do no
harm, but it would be of no use, as no additional simplification rules would
apply.

6.4.3 Comparison of Constraint Systems

As we discussed in §6.3.8, it is not possible to use BP-constraints, as they
do not have finite chains of refinement. Both RE-constraints and MP-
constraints are capable of expressing a wide range of value-sets, but neither
subsumes the other. We give examples where one constraint language can
differentiate between a pair of values, and the other cannot.

Example 54

Let v1 = (T : []) and v2 = (T : T : []) and consider the MP-constraint
{(:) Any} ? {[]}. This constraint is satisfied by v1 but not by v2. No
proposition over RE-constraints can separate these two values. ¤

Example 55

Consider a data type:

data Tree α = Branch{ left :: Tree α, right :: Tree α}
| Leaf { leaf :: α}

and two values of the type Tree Bool

v1 = Branch (Leaf True) (Leaf False)
v2 = Branch (Leaf False) (Leaf True)

The RE-constraint (left∗·leaf ÃTrue) is satisfied by v1 but not v2. No MP-
constraint separates the two values. ¤

We have implemented both constraint systems in Catch. Factors to con-
sider when choosing which constraint system to use include: how readable
the constraints are, expressive power, implementation complexity and scal-
ability. In practice the issue of scalability is key: how large do constraints

6.5. RESULTS AND EVALUATION 157

become, how quickly can they be manipulated, how expensive is their sim-
plification. Catch uses MP-constraints by default, as they allow much larger
examples to be checked.

6.5 Results and Evaluation

The best way to see the power of Catch is by example. §6.5.1 discusses
in general how some programs may need to be modified to obtain provable
safety. §6.5.2 investigates all the examples from the Imaginary section of
the Nofib suite (Partain et al. 2008). To illustrate results for larger and
widely-used applications, §6.5.3 investigates the FiniteMap library, §6.5.4
investigates the HsColour program and §6.5.5 reports on XMonad.

6.5.1 Modifications for Verifiable Safety

Take the following example:

average xs = sum xs `div̀ length xs

If xs is [] then a division by zero occurs, modelled in Catch as a pattern-
match error. One small local change could be made which would remove
this pattern match error:

average xs = if null xs then 0 else sum xs `div̀ length xs

Now if xs is [], the program simply returns 0, and no pattern match error
occurs. In general, pattern-match errors can be avoided in two ways:

Widen the domain of definition: In the example, we widen the domain
of definition for the average function. The modification is made in one place
only – in the definition of average itself.

Narrow the domain of application: In the example, we narrow the
domain of application for the div function. Note that we narrow this domain
only for the div application in average – other div applications may remain
unsafe. Another alternative would be to narrow the domain of application
for average, ensuring that [] is not passed as the argument. This alternative

158 CHAPTER 6. PATTERN-MATCH ANALYSIS

Name Source Core Error Pre Sec Mb

Bernoulli* 35 652 5 11 4.1 0.8
Digits of E1* 44 377 3 8 0.3 0.6
Digits of E2 54 455 5 19 0.5 0.8
Exp3-8 29 163 0 0 0.1 0.1
Gen-Regexps* 41 776 1 1 0.3 0.4
Integrate 39 364 3 3 0.3 1.9
Paraffins* 91 1153 2 2 0.8 1.9
Primes 16 241 6 13 0.2 0.1
Queens 16 283 0 0 0.2 0.2
Rfib 9 100 0 0 0.1 1.7
Tak 12 155 0 0 0.1 0.1
Wheel Sieve 1* 37 570 7 10 7.5 0.9
Wheel Sieve 2* 45 636 2 2 0.3 0.6
X2n1 10 331 2 5 1.8 1.9

FiniteMap* 670 1829 13 17 1.6 1.0
HsColour* 823 5060 4 9 2.1 2.7

Name is the name of the checked program (a starred name indicates that
changes were needed before safe pattern-matching could be verified); Source
is the number of lines in the original source code; Core is the number of
lines of first-order Core, including all needed Prelude and library definitions,
just before analysis; Error is the number of calls to error (missing pattern
cases); Pre is the number of functions which have a precondition which is
not simply ‘True’; Sec is the time taken for transformations and analysis;
Mb is the maximum residency of Catch at garbage-collection time.

Table 6.1: Results of Catch checking

would require a deeper understanding of the flow of the program, requiring
rather more work.

In the following sections, where modifications are required, we prefer to
make the minimum number of changes. Consequently, we widen the domain
of definition.

6.5.2 Nofib Benchmark Tests

The entire Nofib suite (Partain et al. 2008) is large. We concentrate on the
‘Imaginary’ section. These programs are all under a page of text, excluding
any Prelude or library definitions used, and particularly stress list operations

6.5. RESULTS AND EVALUATION 159

and numeric computations.

Results are given in Table 6.1. Only four programs contain no calls to error

as all pattern-matches are exhaustive. Four programs use the list-indexing
operator (!!), which requires the index to be non-negative and less than the
length of the list; Catch can only prove this condition if the list is infinite.
Eight programs include applications of either head or tail, most of which can
be proven safe. Seven programs have incomplete patterns, often in a where

binding and Catch performs well on these. Nine programs use division, with
the precondition that the divisor must not be zero; most of these can be
proven safe.

Three programs have preconditions on the main function, all of which state
that the test parameter must be a natural number. In all cases the generated
precondition is a necessary one – if the input violates the precondition then
pattern-match failure will occur.

We now discuss general modifications required to allow Catch to begin check-
ing the programs, followed by the six programs which required changes. We
finish with the Digits of E2 program – a program with complex pattern
matching that Catch is able to prove safe without modification.

Modifications for Checking Take a typical benchmark, Primes. The
main function is:

main = do [arg] ← getArgs
print $ primes !! (read arg)

The first unsafe pattern is [arg] ← getArgs, as getArgs is a primitive which
may return any value. Additionally, if read fails to parse the value extracted
from getArgs, it will evaluate to ⊥. Instead, we check the revised program:

main = do args ← getArgs
case map reads args of

[[(x, s)]] | all isSpace s → print $ primes !! x
→ putStrLn "Bad command line"

Instead of crashing on malformed command line arguments, the modified
program informs the user.

160 CHAPTER 6. PATTERN-MATCH ANALYSIS

Bernoulli This program has one instance of tail (tail x). MP-constraints
are unable to express that a list must be of at least length two, so Catch
conservatively strengthens this to the condition that the list must be infinite
– a condition that Bernoulli does not satisfy. One remedy is to replace
tail (tail x) with drop 2 x. After this change, the program still has several
non-exhaustive pattern matches, but all are proven safe.

Another approach would be to increase the power of MP-constraints. Cur-
rently MP-constraints store the root of a value separately from its recursive
components. If they were modified to also store the first recursive com-
ponent separately, then the Bernoulli example could be proved safe. The
disadvantage of increasing the power of MP-constraints is that the checking
process would take longer.

Digits of E1 This program contains the following equation:

ratTrans (a, b, c, d) xs |
((signum c ≡ signum d) || (abs c < abs d)) &&
(c + d) ∗ q 6 a + b && (c + d) ∗ q + (c + d) > a + b

= q : ratTrans (c, d, a− q ∗ c, b− q ∗ d) xs
where q = b `div̀ d

Catch is able to prove that the division by d is only unsafe if both c and d are
zero, but it is not able to prove that this invariant is maintained. Widening
the domain of application of div allows the program to be proved safe.

As the safety of this program depends on quite deep results in number theory,
it is no surprise that it is beyond the scope of an automatic checker such as
Catch.

Gen-Regexps This program expects valid regular expressions as input.
There are many ways to crash this program, including entering "", "[" or
"<". One potential error comes from head ◦ lines, which can be replaced by
takeWhile (6≡ ’\n’). Two potential errors take the form (a, :b) = span f xs.
At first glance this pattern definition is similar to the one in risers. But here
the pattern is only safe if for one of the elements in the list xs, f returns True.
The test f is actually (6≡ ’-’), and the only safe condition Catch can express
is that xs is an infinite list. With the amendment (a, b) = safeSpan f xs,
where safeSpan is defined by:

6.5. RESULTS AND EVALUATION 161

safeSpan p xs = (a, drop 1 b) where (a, b) = span p xs

Catch verifies pattern safety.

Wheel Sieve 1 This program defines a data type Wheel, and a function
sieve:

data Wheel = Wheel Int [Int]

sieve :: [Wheel] → [Int] → [Int] → [Int]

The lists are infinite, and the integers are positive, but the program is too
complex for Catch to infer these properties in full. To prove safety a variant
of mod is required which does not raise division by zero and a pattern in
notDivBy has to be completed. Even with these two modifications, Catch
takes 7.5 seconds to check the other non-exhaustive pattern matches.

Wheel Sieve 2 This program has similar datatypes and invariants, but
much greater complexity. Catch is able to prove very few of the necessary
invariants. Only after widening the domain of definition in three places –
replacing tail with drop 1, head with a version returning a default on the
empty list, and mod with a safe variant – is Catch able to prove safety.

Paraffins Again the program can only be validated by Catch after mod-
ification. There are two reasons: laziness and arrays. Laziness allows the
following odd-looking definition:

radical generator n = radicals undefined
where radicals unused = big memory computation

If radicals had a zero-arity definition it would be computed once and retained
as long as there are references to it. To prevent this behaviour, a dummy
argument (undefined) is passed. If the analysis was more lazy (as discussed
in §6.3.4) then this example would succeed using Catch. As it is, simply
changing undefined to () resolves the problem.

The Paraffins program uses the function array :: Ix a ⇒ (a, a) → [(a, b)] →
Array a b which takes a list of index/value pairs and builds an array. The pre-
condition on this function is that all indexes must be in the range specified.

162 CHAPTER 6. PATTERN-MATCH ANALYSIS

This precondition is too complex for Catch, but simply using listArray, which
takes a list of elements one after another, the program can be validated. Use
of listArray actually makes the program shorter and more readable. The ar-
ray indexing operator (!) is also troublesome. The precondition requires that
the index is in the bounds given when the array was constructed, something
Catch does not currently model.

Digits of E2 This program is quite complex, featuring a number of pos-
sible pattern-match errors. To illustrate, consider the following fragment:

carryPropagate base (d : ds) = . . .
where carryguess = d `div̀ base

remainder = d `mod̀ base
nextcarry : fraction = carryPropagate (base + 1) ds

There are four potential pattern-match errors in as many lines. Two of these
are the calls to div and mod, both requiring base to be non-zero. A possibly
more subtle pattern match error is the nextcarry : fraction left-hand side of
the third line. Catch is able to prove that none of these pattern-matches
fails. Now consider:

e = ("2."++) $
tail ◦ concat $
map (show ◦ head) $
iterate (carryPropagate 2 ◦map (10∗) ◦ tail) $
2 : [1, 1 . .]

Two uses of tail and one of head occur in quite complex functional pipelines.
Catch is again able to prove that no pattern-match fails.

6.5.3 The FiniteMap library

The FiniteMap library for Haskell has been widely distributed for over 10
years. The library uses balanced binary trees, based on (Adams 1993).
There are 14 non-exhaustive pattern matches.

The first challenge is that there is no main function. Catch uses all the
exports from the library, and checks each of them as if it had main status.

Catch is able to prove that all but one of the non-exhaustive patterns are
safe. The definition found unsafe has the form:

6.5. RESULTS AND EVALUATION 163

delFromFM (Branch key . . .) del key | del key > key = . . .
| del key < key = . . .
| del key ≡ key = . . .

At first glance the cases appear to be exhaustive. The law of trichotomy
leads us to expect one of the guards to be true. However, the Haskell Ord

class does not enforce this law. There is nothing to prevent an instance for
a type with partially ordered values, some of which are incomparable. So
Catch cannot verify the safety of delFromFM as defined as above.

The solution is to use the compare function which returns one of GT, EQ

or LT. This approach has several advantages: (1) the code is free from
non-exhaustive patterns; (2) the assumption of trichotomy is explicit in the
return type; (3) the library is faster.

6.5.4 The HsColour Program

Artificial benchmarks are not necessarily intended to be fail-proof. But a real
program, with real users, should never fail with a pattern-match error. We
have taken the HsColour program1 and analysed it using Catch. HsColour
has 12 modules, is 5 years old and has had patches from 6 different people.
We have contributed patches back to the author of HsColour, with the result
that the development version can be proved free from pattern-match errors.

Catch required 4 small patches to the HsColour program before it could
be verified free of pattern-match failures. Details of the checking process
are given in Table 6.1. Of the 4 patches, 3 were genuine pattern-match
errors which could be tripped by constructing unexpected input. The issues
were: (1) read was called on a preferences file from the user, this could crash
given a malformed preferences file; (2) by giving the document consisting
of a single double quote character ", and passing the “-latex” flag, a crash
occurred; (3) by giving the document (‘), namely open bracket, backtick,
close bracket, and passing “-html -anchor” a crash occurred. The one patch
which did not (as far as we are able to ascertain) fix a real bug could still
be considered an improvement, and was minor in nature (a single line).

Examining the read error in more detail, by default Catch outputs the po-
tential error message, and a list of potentially unsafe functions in a call

1http://www.cs.york.ac.uk/fp/darcs/hscolour/

164 CHAPTER 6. PATTERN-MATCH ANALYSIS

stack:

Checking “Prelude.read: no parse”
Partial Prelude.read$252
Partial Language.Haskell.HsColour.Colourise.parseColourPrefs
...
Partial Main.main

We can see that parseColourPrefs calls read, which in turn calls error. The
read function is specified to crash on incorrect parses, so the blame probably
lies in parseColourPrefs. By examining this location in the source code we
are able to diagnose and correct the problem. Catch optionally reports all
the preconditions it has deduced, although in our experience problems can
usually be fixed from source-position information alone.

6.5.5 The XMonad Program

XMonad (Stewart and Sjanssen 2007) is a window manager, which automat-
ically manages the layout of program windows on the screen. The central
module of XMonad contains a pure API, which is used to manipulate a data
structure containing information regarding window layout. Catch has been
run on this central module, several times, as XMonad has evolved. The
XMonad API contains 36 exported functions, most of which are intended to
be total. Within the implementation of these functions, there are a number
of incomplete patterns and calls to partial functions.

When the Catch tool was first used, it detected six issues which were cause
for concern – including unsafe uses of partial functions, API functions which
contained incomplete pattern matches, and unnecessary assumptions about
the Ord class. All these issues were subsequently fixed. The XMonad devel-
opers have said: “QuickCheck and Catch can be used to provide mechani-
cal support for developing a clean, orthogonal API for a complex system”
(Stewart and Sjanssen 2007).

In E-mail correspondence, the XMonad developers have summarised their
experience using Catch as follows: “XMonad made heavy use of Catch in
the development of its core data structures and logic. Catch caught several
suspect error cases, and helped us improve robustness of the window man-
ager core by weeding out partial functions. It helps encourage a healthy
skepticism to partiality, and the quality of code was improved as a result.

6.6. RELATED WORK 165

We’d love to see a partiality checker integrated into GHC.”

6.6 Related Work

6.6.1 Mistake Detectors

There has been a long history of writing tools to analyse programs to detect
potential bugs, going back at least to the classic C Lint tool (Johnson 1978).
In the functional arena there is the Dialyzer tool (Lindahl and Sagonas 2004)
for Erlang (Virding et al. 1996). The aim is to have a static checker that
works on unmodified code, with no additional annotations. However, a key
difference is that in Dialyzer all warnings indicate a genuine problem that
needs to be fixed. Because Erlang is a dynamically typed language, a large
proportion of Dialyzer’s warnings relate to mistakes a type checker would
have detected.

The Catch tool tries to prove that error calls are unreachable. The Reach
tool (Naylor and Runciman 2007) also checks for reachability, trying to find
values which will cause a certain expression to be evaluated. Unlike Catch, if
the Reach tool cannot find a way to reach an expression, this is no guarantee
that the expression is indeed unreachable. So the tools are complementary:
Reach can be used to find examples causing non-exhaustive patterns to fail,
Catch can be used to prove there are no such examples.

6.6.2 Proving Incomplete Patterns Safe

Despite the seriousness of the problem of pattern matching, there are very
few other tools for checking pattern-match safety. The closest other work we
are aware of is ESC/Haskell (Xu 2006) and its successor Sound Haskell (Xu
et al. 2007). The Sound Haskell approach requires the programmer to give
explicit preconditions and contracts which the program obeys. Contracts
have more expressive power than our constraints – one of the examples
involves an invariant on an ordered list, something beyond Catch. But the
programmer has more work to do. We eagerly await prototypes of either
tool, to permit a full comparison against Catch.

166 CHAPTER 6. PATTERN-MATCH ANALYSIS

6.6.3 Eliminating Incomplete Patterns

One way to guarantee that a program does not crash with an incomplete
pattern is to ensure that all pattern matching is exhaustive. The GHC
compiler (The GHC Team 2007) has an option flag to warn of any incomplete
patterns. Unfortunately the Bugs section (12.2.1) of the manual notes that
the checks are sometimes wrong, particularly with string patterns or guards,
and that this part of the compiler “needs an overhaul really” (The GHC
Team 2007). A more precise treatment of when warnings should be issued
is given in Maranget (2007). These checks are only local: defining head will
lead to a warning, even though the definition is correct; using head will not
lead to a warning, even though it may raise a pattern-match error.

A more radical approach is to build exhaustive pattern matching into the
design of the language, as part of a total programming system (Turner 2004).
The Catch tool could perhaps allow the exhaustive pattern matching restric-
tion to be lifted somewhat.

6.6.4 Type System Safety

One method for specifying properties about functional programs is to use
the type system. This approach is taken in the tree automata work done on
XML and XSLT (Tozawa 2001), which can be seen as an algebraic data type
and a functional language. Another soft typing system with similarities is by
Aiken and Murphy (1991), on the functional language FL. This system tries
to assign a type to each function using a set of constructors, for example
head takes the type Cons and not Nil.

Types can sometimes be used to explicitly encode invariants on data in
functional languages. One approach is the use of phantom types (Fluet and
Pucella 2002), for example a safe variant of tail can be written as in Figure
6.14. The List type is not exported, ensuring that all lists with a Cons tag
are indeed non-empty. The types Cons and Unknown are phantom types –
they exist only at the type level, and have no corresponding value.

Using GADTs (Peyton Jones et al. 2006), an encoding of lists can be writ-
ten as in Figure 6.15. Notice that fromList requires a locally quantified type.
The type-directed approach can be pushed much further with dependent
types, which allow types to depend on values. There has been much work

6.6. RELATED WORK 167

data Cons
data Unknown

newtype List α τ = List [α]

cons :: α → [α] → List α Cons
cons a as = List (a : as)

nil :: List α Unknown
nil = List []

fromList :: [α] → List α Unknown
fromList xs = List xs

safeTail :: List α Cons → [α]
safeTail (List (a : as)) = as

Figure 6.14: A safeTail function with Phantom types.

data ConsT α
data NilT

data List α τ where
Cons :: α → List α τ → List α (ConsT τ)
Nil :: List α NilT

safeTail :: List α (ConsT τ) → List α τ
safeTail (Cons a b) = b

fromList :: [α] → (∀ τ • List α τ → β) → β
fromList [] f = f Nil
fromList (x : xs) f = fromList xs (f ◦ Cons x)

Figure 6.15: A safeTail function using GADTs.

168 CHAPTER 6. PATTERN-MATCH ANALYSIS

on dependent types, using undecidable type systems (McBride and McK-
inna 2004), using extensible kinds (Sheard 2004) and using type systems
restricted to a decidable fragment (Xi and Pfenning 1999). The downside to
all these type systems is that they require the programmer to make explicit
annotations, and require the user to learn new techniques for computation.

Chapter 7

Conclusions

In this thesis we have presented a boilerplate reduction library (Uniplate), an
optimiser (Supero), a defunctionalisation method (Firstify) and an analysis
tool (Catch), all for the Haskell language. In this chapter we first describe
some of the high-level contributions we have made in §7.1, give areas for
future work in §7.2, then summarise our approach in §7.3.

7.1 Contributions

Specific technical contributions have been given in each chapter. In this
section we instead focus on the higher-level contributions – the overall results
that are of benefit to functional programmers.

7.1.1 Shorter Programs

Some of our work enables programmers to write shorter programs. In partic-
ular the Uniplate library defines a small set of operations to perform queries
and transformations. We have illustrated by example that the boilerplate
required in our system is less than in other systems (§3.7.1).

7.1.2 Faster Programs

Some of our work helps programs execute faster. Using Supero in conjunc-
tion with GHC we obtain an average runtime improvement of 16% for the

169

170 CHAPTER 7. CONCLUSIONS

imaginary section of the nofib suite. To quote Simon Peyton Jones, “an
average runtime improvement of 10%, against the baseline of an already
well-optimised compiler, is an excellent result” (Peyton Jones 2007). The
Programming Language Shootout1 has shown that low-level Haskell can
compete with low-level imperative languages such as C. We hope that our
optimiser will allow programs to be written in a high-level declarative style,
yet still perform competitively.

We have also invested effort in optimising the Uniplate library. As a result
we can express concise traversals without sacrificing speed (§3.7.2). In par-
ticular, we show a substantial speed up over the SYB library (Lämmel and
Peyton Jones 2003).

We developed the Firstify tool for analysis, not performance. However,
for many simple examples, the resultant program performs better than the
original. If we restricted rules that reduce sharing, our defunctionalisation
method may be appropriate for integration into an optimising compiler.

7.1.3 Safer Programs

The Catch tool allows programs to have non-exhaustive patterns, yet still
have verifiable pattern-match safety. In practical use the Catch tool has
found real bugs in real programs, which have subsequently been fixed (see
§6.5.4). The XMonad developers found that using the Catch tool encouraged
a safer style of programming, paying more attention to partial functions (see
§6.5.5).

The Uniplate library also encourages a style of programming which can lead
to fewer errors. By reducing the volume of code, particularly repetitive code,
bugs become easier to spot.

7.2 Future Work

7.2.1 Robust and Widely Applicable Tools

We have implemented all the tools described in this thesis. The Uniplate
library is already robust and used in real programs. The other tools serve

1http://shootout.alioth.debian.org/

7.2. FUTURE WORK 171

more as prototypes, and have not seen sufficient real-world use to declare
them production ready. With the exception of Uniplate, the tools are based
around the core language from the Yhc compiler. Currently this core lan-
guage is generated by the Yhc compiler, as described in §2.3. Yhc restricts
our input programs to the Haskell 98 language. By making use of the GHC
front end, we would be able to deal with many language extensions.

Supero, Firstify and Catch all operate on a whole program at a time, re-
quiring sources for all function definitions. This requirement both increases
the time required, and precludes the use of closed source libraries. We may
be able to relax this requirement, precomputing partial results of libraries,
or permitting some components of the program to be ignored. We already
supply abstractions of IO functions for Catch, and this mechanism could be
extended.

7.2.2 Uniplate

The use of boilerplate reduction strategies in Haskell is not yet ubiquitous,
as we feel it should be. The ideas behind the Uniplate library have been
used extensively, in projects including the Yhc compiler (Golubovsky et al.
2007), the Catch tool, the Reach tool (Naylor and Runciman 2007) and
the Reduceron (Naylor and Runciman 2008). In previous versions of Catch
there were over 100 Uniplate traversals.

There is scope for further speed improvements: for example, use of con-
tinuation passing style may eliminate tuple construction and consumption,
and enhanced fusion may be able to eliminate some of the intermediate
structures in the uniplate function. We have made extensive practical use of
the Uniplate library, but there may be other traversals which deserve to be
added.

Another area of future work, which others have already begun to explore,
is the implementation of Uniplate in other languages. So far, we are aware
of versions in ML2 (Milner et al. 1997) and Curry3 (Hanus et al. 1995).
People have also proposed variations on Uniplate, including merging the
Uniplate/Biplate distinction4, and using descend as the underlying basis for

2http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mltonlib/trunk/com/ssh/

generic/unstable/public/value/uniplate.sig
3http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Traversal.html
4http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

172 CHAPTER 7. CONCLUSIONS

the library5.

7.2.3 Supero

Within Supero, there are three main areas for future work. Firstly, we
would like to obtain results for larger programs, including all the remaining
benchmarks in the nofib suite. Additional benchmarks will give further
insight into the performance benefits that Supero provides.

Secondly, we would like to increase the runtime performance. Earlier ver-
sions of Supero (Mitchell and Runciman 2007b) managed to obtain substan-
tial speed ups on benchmarks such as exp3 8. The Bernouilli benchmark is
currently problematic. There is still scope for improvement.

Finally, we would like to increase compilation speed. The compilation times
are tolerable for benchmarking and a final optimised release, but not for
general use. We have described the major bottlenecks in §4.4.2, along with
possible strategies for alleviating them.

7.2.4 Firstify

The Firstify library currently meets all the needs of the Catch tool. Within
the algorithm, the use of a numeric termination bound in the homeomor-
phic embedding is regrettable, but practically motivated. We need further
research to determine if such a numeric bound is necessary, or if other mea-
sures could be used.

7.2.5 Catch

The Catch tool has been applied to a range of benchmarks, and has shown
promising results. However, there are obviously safe programs (for example
Bernouilli in §6.5.2) which cannot be proven safe using MP-constraints. In
addition to having insufficient power for some examples, MP-constraints also
lack a normal form, requiring simplification rules. While MP-constraints are
useful, we suspect there exist better constraint models which still fit into

5http://tomschrijvers.blogspot.com/2007/11/

extension-proposal-for-uniplate.html

7.3. CONCLUDING REMARKS 173

the Catch framework. One option would be to combine constraint models,
allowing different constraint models to check different error calls.

The tests so far have not included any particularly large applications, such
as the darcs program, a Haskell compiler, or even Catch itself. Further
evaluation on large programs would give a better idea of what limits within
Catch are most pressing. While we have released the Catch tool, it has
not seen much use outside of our evaluation – end users are likely to have
additional requests.

7.3 Concluding Remarks

Throughout this thesis we have been motivated by the idea of simplicity.
We have attempted to reduce the complexity of our methods, both for im-
plementation and for use. In particular, none of our tools requires any
annotations to programs.

The Uniplate library restricts traversals to a uniformly typed value set,
allowing the power of well-developed techniques for list processing such as
list-comprehensions to be exploited. We feel this decision plays to Haskell’s
strengths, without being limiting in practice. Hopefully by not requiring
complicated language features (particularly ‘scary’ types) we will allow a
wider base of users to enjoy the benefits of boilerplate-free programming.

Our supercompiler is simple – the Core transformation is expressed in just
300 lines of Haskell. Yet it replicates many of the performance enhancements
of GHC in a more general way. By simplifying the design, we are able to
reduce the unintended interactions between optimisations, a problem that
has been referred to as “swings and roundabouts” (Marlow and Peyton Jones
2006).

Many analysis methods, in fields such as strictness analysis and termination
analysis, start out first-order and are gradually extended to work on a higher-
order language. Defunctionalisation offers an alternative approach: instead
of extending the analysis method, we transform the functional values away.
The analysis method can remain simple, and still work on all programs.

For the Catch tool we have made two decisions that significantly simplify the
design: (1) the target of analysis is a very small, first-order core language; (2)

174 CHAPTER 7. CONCLUSIONS

there are finitely many value-set-defining constraints per type. Decision (1)
allows for a much simpler analysis method, without the added complexity of
higher-order programs. Decision (2) inevitably limits the expressive power
of constraints; yet it does not prevent the expression of uniform recursive
constraints on the deep structure of values, as in MP-constraints.

Functional programs are well suited to analysis and transformation. In this
thesis we have presented a number of techniques, which have been refined
in response to practical experiments. We hope that the ideas presented will
be of real benefit to functional programmers.

Appendix A

Soundness of Pattern-Match

Analysis

This appendix shows that the algorithms and constraint languages presented
in Chapter 6 are sound – if Catch informs the user that a program is safe,
then that program is guaranteed not to call error. §A.1 describes the style
of proof and §A.2 defines an evaluator for expressions. §A.3 states the
soundness theorem, along with necessary side conditions. §A.4 gives two
lemmas that constraint languages must satisfy, and shows they hold for BP-
constraints and MP-constraints. §A.5 gives eight lemmas, mainly about the
constraint operations. §A.6 gives the proof of soundness and §A.7 discusses
the results.

A.1 Proof-Style and Notation

Proofs in this appendix are detailed outlines based on equational reasoning.
They make use of induction, application of equational laws, case analysis and
inlining of function definitions. When performing case analysis we ignore the
possibility of ⊥ as a Haskell value, which is valid provided all expressions
within the proof do not result in ⊥. The proofs are structured as a series
of rewrites, either preserving equality (marked with ≡), or implying the
previous statement (marked with ⇐). Some expressions may refer to locally
bound definitions, which we do not show until necessary. All the properties
are boolean valued expressions, typically implications.

175

176 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

data Value = Value CtorName [Value]
| Bottom

data Expr = Make CtorName [Expr] -- Constructor application
| Call FuncName [Expr] -- Function application
| Var VarName -- Function variable
| Sel Expr Selector -- Case alternative variable
| Case Expr [Alt] -- Case expression

data Alt = Alt CtorName [VarName] Expr

eval :: Expr → Value
eval (Sel x (c, i)) | c ≡ c′ = xs !! i

where Value c′ xs = eval x
eval (Make c xs) = Value c (map eval xs)
eval (Call f xs) | f ≡ "error" = Bottom

| otherwise = eval $ body f / (args f, xs)
eval (Case x as) = case eval x of

Value c xs → head [eval y | Alt c′ vs y ← as, c ≡ c′]
Bottom → Bottom

Figure A.1: Evaluator for expressions.

In order to reduce the size of some of the intermediate expressions, we have
replaced one side of an implication with either LHS or RHS, designating
either the left-hand side or right-hand side. We also make heavy use of the
function composition and function application operators, namely (◦) and
($). These can be read with the translations:

(f ◦ g) x = f $ g x = f (g x)

A.2 Evaluator

We start with an evaluator for a Core expression language defined in Figure
A.1. The value Bottom corresponds to program failure, not divergence.
The Expr data type represents the first-order Core language described in
§6.3.1. We have introduced Sel, which represents variables bound in case
alternatives. For the algorithms presented previously, the Sel expression
contains the information returned by the var function. While evaluating a
Sel expression we know that we are beneath a Case on the same expression
x, and that x evaluates to the constructor mentioned in the selector. The Alt

A.2. EVALUATOR 177

isBottom :: Value → Bool
isBottom Bottom = True
isBottom (Value c xs) = any isBottom xs

valCtor :: Value → Maybe CtorName
valCtor (Value c xs) = Just c
valCtor Bottom = Nothing

satE′ :: Prop (Sat Expr) → Bool
satE′ = tautP satE

satE :: Sat Expr → Bool
satE (Sat x k) = sat (Sat (eval x) k)

sat′ :: Prop (Sat Value) → Bool
sat′ = tautP sat

sat :: Sat Value → Bool
sat (Sat Bottom k) = True
sat (Sat (Value c xs) k) = sat′ $ (c C k)/([0 . .], xs)

Figure A.2: Auxiliary functions.

constructor has a list of variables which are unnecessary because selectors
are used instead of local variable names – but they are retained to allow
direct use of the algorithms from Chapter 6.

There is no case in eval for Var, and the behaviour of eval with free variables
is undefined. The Call equation will replace any free variables in the body
of a function with the supplied arguments.

We make use of (/), which we have redefined as a substitution operator – we
write x/(vs, ys) to denote replacing the free variables vs in x with ys. We use
(/) instead of substP in the proofs, where substP (zip vs ys) x = x/(vs, ys).

We also make use of a number of auxiliaries defined in Figure A.2. The sat

function tests whether a value satisfies a constraint, using the (C) operator
from the constraint language. The satE function tests whether the result of
evaluating an expression satisfies a constraint. The sat′ and satE′ functions
operate over a proposition.

178 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

A.3 Soundness Theorem

We wish to prove that our analysis is sound, as previously discussed in §6.3.7.
Our analysis is sound if for any expression e, provided the precondition of e

is calculated to be true, then the evaluation of e will not result in ⊥. Using
the definitions from §A.2 we can express this theorem as:

satE′ $ pre e ⇒ not $ isBottom $ eval e

In order to evaluate an expression to normal form, it is necessary for the
expression to be closed and for evaluation of the expression to terminate.
Therefore we prove that provided the expression e can be evaluated to nor-
mal form, and that both e and the program under analysis are first-order
Core as described in §6.3.1, the above theorem is true. The above restric-
tions allow us to assume that all constructors have the correct arity, and
that there are no free variables. We will prove this result in A.6.

A.4 Constraint Lemmas

We shall need the following two lemmas about each constraint language:

Lemma C1

sat′ (Value c xs<−cs) ⇒ c ∈ cs

Lemma C2

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k

Both lemmas are given in §6.3.6, as properties. These properties require
the (<−) and (B) operators to be consistent with sat. The sat function is
defined in terms of (C), and therefore all three operators must be consistent
with each other. We prove them for the BP-constraint and MP-constraint
systems in §A.4.1 and §A.4.2. Since RE-constraints do not scale sufficiently,
we do not recommend their use, and have not attempted to prove these
lemmas for them.

A.4. CONSTRAINT LEMMAS 179

data Constraint = Any
| Con CtorName [Constraint]

a<−xs = orP [lit (a `Sat̀ anys x) | x ← xs]
where anys x = Con x (replicate (arity x) Any)

(c, i) B k = Con c [if i ≡ j then k else Any
| j ← [0 . . arity c− 1]]

c C Any = true
c C Con c2 xs = bool (c2 ≡ c) ∧ andP (map lit (zipWith Sat [0 . .] xs))

Figure A.3: BP-Constraint operations.

A.4.1 BP-Constraint Lemmas

Since BP-constraints are presented piecemeal throughout §6.3, we present
all the relevant definitions in Figure A.3.

Lemma C1 (BP)

sat′ (Value c xs<−cs) ⇒ c ∈ cs
≡ {inline (<−)}
sat′ $ orP [lit (Value c xs `Sat̀ anys c′) | c′ ← cs] ⇒ c ∈ cs
≡ {inline sat′}
any (λc′ → sat $ Value c xs `Sat̀ anys c′) cs ⇒ c ∈ cs
≡ {inline sat}
any (λc′ → sat′ $ (c C anys c′)/([0 . .], xs)) cs ⇒ c ∈ cs
≡ {inline anys}
any (λc′ → sat′ $ (c C Con c′ (replicate (arity c′) Any))/

([0 . .], xs)) cs ⇒ c ∈ cs
≡ {inline C}
any (λc′ → sat′ $ (bool (c′ ≡ c) ∧

andP (map lit (zipWith Sat [0 . .] (replicate (arity c′) Any))))
/([0 . .], xs)) cs ⇒ c ∈ cs

≡ {inline (/)}
any (λc′ → sat′ $ (bool (c′ ≡ c) ∧

andP (map lit (zipWith Sat [0 . .] (replicate (arity c′) Any)
/([0 . .], xs))))) cs ⇒ c ∈ cs

≡ {inline sat′}
any (λc′ → (c′ ≡ c) && all sat (zipWith Sat [0 . .] (replicate (arity c′) Any)

/([0 . .], xs))) cs ⇒ c ∈ cs
⇐ {weaken implication}
any (λc′ → c′ ≡ c) cs ⇒ c ∈ cs

180 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {simplify}
any (≡ c) cs ⇒ c ∈ cs
≡ {definition of elem}
c ∈ cs ⇒ c ∈ cs
≡ {tautology}
True

Lemma C2 (BP)

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k

Case: k = Any

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k
≡ {k = Any}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat (xs !! i) Any
≡ {inline sat on RHS}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat (xs !! i) Any

Case: k = Any ; xs !! i = Bottom

sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat (xs !! i) Any
≡ {xs !! i = Bottom}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat Bottom Any
≡ {inline sat on RHS}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ True
≡ {implication}
True

Case: k = Any ; xs !! i = Value c′ ys

sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat (xs !! i) Any
≡ {xs !! i = Value c′ ys}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat $ Sat (Value c′ ys) Any
≡ {inline sat on RHS}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat′ $ (c′ C Any)/([0 . .], ys)
≡ {inline C}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat′ $ true/([0 . .], ys)
≡ {inline (/) on RHS}

A.4. CONSTRAINT LEMMAS 181

sat $ Sat (Value c xs) ((c, i) B Any) ⇒ sat′ true
≡ {inline sat′ on RHS}
sat $ Sat (Value c xs) ((c, i) B Any) ⇒ True
≡ {implication}
True

Case: k = Con c′ ys

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k
≡ {k = Con c′ ys}
sat $ Sat (Value c xs) ((c, i) B Con c′ ys) ⇒ sat $ Sat (xs !! i) (Con c′ ys)
≡ {inline sat on LHS}
sat′ $ (c C ((c, i) B Con c′ ys))/([0 . .], xs) ⇒ RHS
≡ {inline B}
sat′ $ (c C (Con c [if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]]))

/([0 . .], xs) ⇒ RHS
≡ {inline C}
sat′ $ (bool (c ≡ c) ∧ andP (map lit (zipWith Sat [0 . .]

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]])))
/([0 . .], xs) ⇒ RHS

≡ {inline c ≡ c}
sat′ $ (true ∧ andP (map lit (zipWith Sat [0 . .]

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]])))
/([0 . .], xs) ⇒ RHS

≡ {inline (∧)}
sat′ $ (andP (map lit (zipWith Sat [0 . .]

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]])))
/([0 . .], xs) ⇒ RHS

≡ {inline (/)}
sat′ $ andP $ map lit $ zipWith Sat [0 . .]

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]]
/([0 . .], xs) ⇒ RHS

≡ {inline sat′}
all sat $ zipWith Sat [0 . .]

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]]
/([0 . .], xs) ⇒ RHS

≡ {inline (/)}
all sat $ zipWith Sat xs

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]] ⇒ RHS
⇐ {weaken LHS}
sat $ zipWith Sat xs

[if i ≡ j then (Con c′ ys) else Any | j ← [0 . . arity c− 1]] !! i ⇒ RHS
≡ {inline (!!)}
sat $ Sat (xs !! i) (Con c′ ys) ⇒ RHS

182 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {restore RHS}
sat $ Sat (xs !! i) (Con c′ ys) ⇒ sat $ Sat (xs !! i) (Con c′ ys)
≡ {tautology}
True

A.4.2 MP-Constraint Lemmas

The proofs in this section appeal to definitions in Figure 6.13. To per-
form some of these proofs, we will rely on two auxiliary lemmas about MP-
constraints.

Lemma MP1

sat (Sat (Value c xs) ks) ≡ any (λk → sat $ Sat (Value c xs) [k]) ks

We argue as follows:

sat (Sat (Value c xs) ks) ≡ any (λk → sat $ Sat (Value c xs) [k]) ks
≡ {inline sat}
sat′ ((c C ks)/([0 . .], xs)) ≡ RHS
≡ {inline C}
sat′ (orP (map f ks)/([0 . .], xs)) ≡ RHS
≡ {inline (/)}
sat′ (orP (map f ks/([0 . .], xs))) ≡ RHS
≡ {inline sat′}
any sat′ (map f ks/([0 . .], xs)) ≡ RHS
≡ {inline (/)}
any sat′ (map ((/([0 . .], xs)) ◦ f) ks) ≡ RHS
≡ {combine any and map}
any (sat′ ◦ (/([0 . .], xs)) ◦ f) ks ≡ RHS
≡ {insert k}
any (λk → sat′ $ f k/([0 . .], xs)) ks ≡ RHS
≡ {insert RHS}
any (λk → sat′ $ f k/([0 . .], xs)) ks ≡ any (λk → sat $ Sat (Value c xs) [k]) ks
≡ {unwrap common parts}
sat′ (f k/([0 . .], xs)) ≡ sat (Sat (Value c xs) [k])
≡ {inline sat}
LHS ≡ sat′ ((c C [k])/([0 . .], xs))
≡ {inline C}
LHS ≡ sat′ (orP (map f [k])/([0 . .], xs))
≡ {inline map}
LHS ≡ sat′ (orP [f k]/([0 . .], xs))

A.4. CONSTRAINT LEMMAS 183

≡ {inline orP}
sat′ (f k/([0 . .], xs)) ≡ sat′ (f k/([0 . .], xs))
≡ {tautology}
True

Lemma MP2

sat $ Sat (Value c xs) [merge ms1 ms2 ? merge ms1 ms2] ⇒
sat $ Sat (Value c xs) [ms1 ? ms2]

We have not proved this lemma, as we suspect the proof is very long. Instead
we have used Lazy SmallCheck (Lindblad et al. 2007) to test the property.
Lazy SmallCheck exhaustively tests properties up to some depth of input
values. Here is the property we have tested, along with the invariants on
values:

prop :: (Value, [Pattern], [Pattern]) → Bool
prop (v,ms1, ms2) =

validValue v && validPatterns ms1 && validPatterns ms2 &&
sat (Sat v [ms ? ms]) ⇒ sat (Sat v [ms1 ? ms2])
where ms = merge ms1 ms2

validValue Bottom = True
validValue (Value c xs) = arity c ≡ length xs && all validValue xs

validVal Any = True
validVal (ms1 ? ms2) = validPatterns ms1 && validPatterns ms2

validPatterns = all validPattern
validPattern (Pattern c xs) = fields c ≡ length xs && all validVal xs

fields c = length [isRec (c, i) | i ← [0 . . arity c− 1]]

We check that values and patterns are well-formed using validValue and
validPatterns. These functions both check that the arity of constructors
are correct, and that patterns have an appropriate number of non-recursive
fields. We have defined depth so that the length-constrained list structure
present in both values and patterns does not count towards the depth of a
structure. For example, the following is a Value structure of depth 3:

Value "(,)"
[Value ":"

[Value "True" []

184 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

, Value "[]" []]
,Value "Nothing" []]

Testing all values and patterns up to depth 4 (446,105,404 tests) no counter-
example is found. These tests represent 692,363,920,494,602 possible inputs.
We do not believe it is feasible to test this property at a greater depth, but
depth 4 gives us reasonable confidence that the property is indeed true.

Lemma C1 (MP)

sat′ (Value c xs<−cs) ⇒ c ∈ cs
≡ {inline (<−)}
sat′ $ lit $ Sat (Value c xs)

[map complete cs ? map complete (ctors (head cs)) | not (null cs)] ⇒ c ∈ cs

Case: cs = []

sat′ $ lit $ Sat (Value c xs)
[map complete cs ? map complete (ctors (head cs)) | not (null cs)] ⇒ c ∈ cs

≡ {cs = []}
sat′ $ lit $ Sat (Value c xs)

[map complete [] ? map complete (ctors (head [])) | not (null [])] ⇒ c ∈ []
≡ {inline null}
sat′ $ lit $ Sat (Value c xs)

[map complete [] ? map complete (ctors (head [])) | not True] ⇒ c ∈ []
≡ {inline not}
sat′ $ lit $ Sat (Value c xs)

[map complete [] ? map complete (ctors (head [])) | False] ⇒ c ∈ []
≡ {reduce list comprehension}
sat′ $ lit $ Sat (Value c xs) [] ⇒ c ∈ []
≡ {inline elem}
sat′ $ lit $ Sat (Value c xs) [] ⇒ False
≡ {inline sat′}
sat $ Sat (Value c xs) [] ⇒ False
≡ {Lemma MP1}
any (λk → sat $ Sat (Value c xs) [k]) [] ⇒ False
≡ {inline any}
False ⇒ False
≡ {tautology}
True

A.4. CONSTRAINT LEMMAS 185

Case: cs 6≡ []

sat′ $ lit $ Sat (Value c xs)
[map complete cs ? map complete (ctors (head cs)) | not (null cs)] ⇒ c ∈ cs

≡ {null cs ≡ False}
sat′ $ lit $ Sat (Value c xs)

[map complete cs ? map complete (ctors (head cs)) | not False] ⇒ c ∈ cs
≡ {inline not}
sat′ $ lit $ Sat (Value c xs)

[map complete cs ? map complete (ctors (head cs)) | True] ⇒ c ∈ cs
≡ {simplify list comprehension}
sat′ $ lit $ Sat (Value c xs)

[map complete cs ? map complete (ctors (head cs))] ⇒ c ∈ cs
≡ {inline sat′}
sat $ Sat (Value c xs)

[map complete cs ? map complete (ctors (head cs))] ⇒ c ∈ cs
≡ {inline sat}
sat′ $ (c C [map complete cs ? map complete (ctors (head cs))])

/([0 . .], xs) ⇒ c ∈ cs
≡ {inline C}
sat′ $ (orP $ map f [map complete cs ? map complete (ctors (head cs))])

/([0 . .], xs) ⇒ c ∈ cs
≡ {inline map}
sat′ $ (orP [f $ map complete cs ? map complete (ctors (head cs))])

/([0 . .], xs) ⇒ c ∈ cs
≡ {inline (∨)}
sat′ $ (f $ map complete cs ? map complete (ctors (head cs)))

/([0 . .], xs) ⇒ c ∈ cs
≡ {inline f}
sat′ $ orP [andP $ map lit $ g vs1 | Pattern c1 vs1 ← map complete cs, c1 ≡ c]

/([0 . .], xs) ⇒ c ∈ cs
≡ {inline (/)}
sat′ $ orP [andP $ map lit $ g vs1/([0 . .], xs) |

Pattern c1 vs1 ← map complete cs, c1 ≡ c] ⇒ c ∈ cs
≡ {inline sat′}
or [sat′ $ andP $ map lit $ g vs1/([0 . .], xs) |

Pattern c1 vs1 ← map complete cs, c1 ≡ c] ⇒ c ∈ cs
≡ {move the guard}
or [c1 ≡ c && sat′ (andP $ map lit $ g vs1/([0 . .], xs)) |

Pattern c1 vs1 ← map complete cs] ⇒ c ∈ cs
≡ {remove the list comprehension}
any (λ(Pattern c1 vs1) → c1 ≡ c &&

sat′ (andP $ map lit $ g vs1/([0 . .], xs))) (map complete cs) ⇒ c ∈ cs
≡ {any f (map g xs) = any (f ◦ g) xs}
any ((λ(Pattern c1 vs1) → c1 ≡ c &&

sat′ (andP $ map lit $ g vs1/([0 . .], xs))) ◦ complete) cs ⇒ c ∈ cs

186 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {c ∈ cs = any (≡ c) cs}
any ((λ(Pattern c1 vs1) → c1 ≡ c &&

sat′ (andP $ map lit $ g vs1/([0 . .], xs))) ◦ complete) cs ⇒ any (≡ c) cs
⇐ {lift implication over any}
(λ(Pattern c1 vs1) → c1 ≡ c &&

sat′ (andP $ map lit $ g vs1/([0 . .], xs))) (complete c′) ⇒ c′ ≡ c
≡ {inline complete}
c′ ≡ c && sat′ (andP $ map lit $ g (map (const Any) (nonRecs c′))

/([0 . .], xs)) ⇒ c′ ≡ c
⇐ {weaken implication}
c′ ≡ c ⇒ c′ ≡ c
≡ {tautology}
True

Lemma C2 (MP)

As f is a local function definition of both C and B, we use fC and fB to
indicate which f we are referring to.

sat $ Sat (Value c xs) ((c, i) B k) ⇒ sat $ Sat (xs !! i) k
≡ {inline B}
sat $ Sat (Value c xs) (map f k) ⇒ sat $ Sat (xs !! i) k
≡ {inline sat}
sat′ $ (c C map fB k)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k
≡ {inline C}
sat′ $ orP (map fC (map fB k))/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k
≡ {map f ◦map g = map (f ◦ g)}
sat′ $ orP (map (fC ◦ fB) k)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k

We now proceed by induction over k. We assume k may take the values [],
Any : ks and (ms1 ? ms2) : ks.

Case: k = []

sat′ $ orP (map (fC ◦ fB) k)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k
≡ {k = []}
sat′ $ orP (map (fC ◦ fB) [])/([0 . .], xs) ⇒ sat $ Sat (xs !! i) []
≡ {inline map}
sat′ $ orP []/([0 . .], xs) ⇒ sat $ Sat (xs !! i) []
≡ {inline orP}
sat′ $ false/([0 . .], xs) ⇒ sat $ Sat (xs !! i) []
≡ {inline (/)}

A.4. CONSTRAINT LEMMAS 187

sat′ false ⇒ sat $ Sat (xs !! i) []
≡ {inline sat′}
False ⇒ sat $ Sat (xs !! i) []
≡ {implication}
True

Case: k = Any : ks

sat′ $ orP (map (fC ◦ fB) k)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k
≡ {k = Any : ks}
sat′ $ orP (map (fC ◦ fB) (Any : ks))/([0 . .], xs) ⇒ sat $ Sat (xs !! i) (Any : ks)
⇐ {weaken implication}
sat $ Sat (xs !! i) (Any : ks)

Case: k = Any : ks ; xs !! i = Bottom

sat $ Sat (xs !! i) (Any : ks)
≡ {xs !! i = Bottom}
sat $ Sat Bottom (Any : ks)
≡ {inline sat}
True

Case: k = Any : ks ; xs !! i = Value c′ ys

sat $ Sat (xs !! i) (Any : ks)
≡ {xs !! i = Value c′ ys}
sat $ Sat (Value c ys) (Any : ks)
≡ {inline sat}
sat′ $ (c′ C (Any : ks))/([0 . .], ys)
≡ {inline C}
sat′ $ orP (map f (Any : ks))/([0 . .], ys)
≡ {inline map f}
sat′ $ orP (true : map f ks)/([0 . .], ys)
≡ {inline orP}
sat′ $ true/([0 . .], ys)
≡ {inline (/)}
sat′ true
≡ {inline sat′}
True

188 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

Case: k = (ms1 ? ms2) : ks

sat′ $ orP (map (fC ◦ fB) k)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) k
≡ {k = (ms1 ? ms2) : ks}
sat′ $ orP (map (fC ◦ fB) ((ms1 ? ms2) : ks))/([0 . .], xs) ⇒

sat $ Sat (xs !! i) ((ms1 ? ms2) : ks)
≡ {inline map}
sat′ $ orP ((fC $ fB $ ms1 ? ms2) : map (fC ◦ fB) ks)/([0 . .], xs) ⇒ RHS
≡ {inline (/)}
sat′ $ orP (((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) :

(map (fC ◦ fB) ks/([0 . .], xs))) ⇒ RHS
≡ {inline orP}
sat′ $ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ∨

orP (map (fC ◦ fB) ks/([0 . .], xs)) ⇒ RHS
≡ {inline sat′}
sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ||

sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒ RHS
≡ {reinstate RHS}
sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ||

sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒
sat $ Sat (xs !! i) ((ms1 ? ms2) : ks)

Case: k = (ms1 ? ms2) : ks ; xs !! i = Bottom

sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ||
sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒
sat $ Sat (xs !! i) ((ms1 ? ms2) : ks)

⇐ {weaken implication}
sat $ Sat (xs !! i) ((ms1 ? ms2) : ks)
≡ {xs !! i = Bottom}
sat $ Sat Bottom ((ms1 ? ms2) : ks)
≡ {inline sat}
True

Case: k = (ms1 ? ms2) : ks ; xs !! i = Value c′ ys

sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ||
sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒
sat $ Sat (xs !! i) ((ms1 ? ms2) : ks)

≡ {xs !! i = Value c′ ys}
LHS ⇒ sat $ Sat (Value c′ ys) ((ms1 ? ms2) : ks)
≡ {Lemma MP1}
LHS ⇒ any (λk → sat $ Sat (Value c′ ys) [k]) ((ms1 ? ms2) : ks)

A.4. CONSTRAINT LEMMAS 189

≡ {inline any}
LHS ⇒ sat (Sat (Value c′ ys) [ms1 ? ms2]) ||

any (λk → sat $ Sat (Value c′ xs) [k]) ks
≡ {Lemma MP1}
LHS ⇒ sat (Sat (Value c′ ys) [ms1 ? ms2]) || sat (Sat (Value c′ ys) ks)
≡ {reinstate LHS}
sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ||

sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒
sat (Sat (Value c ys) [ms1 ? ms2]) || sat (Sat (Value c′ ys) ks)

⇐ {split the implication}
(sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ⇒

sat (Sat (Value c′ ys) [ms1 ? ms2])) &&
(sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒ sat (Sat (Value c′ ys) ks))

≡ {xs !! i = Value c′ ys}
(sat′ ((fC $ fB $ ms1 ? ms2)/([0 . .], xs)) ⇒ sat (Sat (xs !! i) [ms1 ? ms2])) &&

(sat′ (orP (map (fC ◦ fB) ks/([0 . .], xs))) ⇒ sat (Sat (xs !! i) ks))
≡ {inductive hypothesis}
sat′ $ (fC $ fB $ ms1 ? ms2)/([0 . .], xs) ⇒

sat $ Sat (xs !! i) [ms1 ? ms2]

Case: k = (ms1 ? ms2) : ks ; xs !! i = Value c′ ys ; isRec (c, i) = False

sat′ $ (fC $ fB $ ms1 ? ms2)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) [ms1 ? ms2]
≡ {inline fB, assuming isRec (c, i) = False}
sat′ $ (fC $ [Pattern c [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]] ?

map complete (ctors c))/([0 . .], xs) ⇒ LHS
≡ {inline fC}
sat′ $ orP [andP $ map lit $ g vs1 | Pattern c1 vs1 ←

[Pattern c [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]],
c1 ≡ c]/([0 . .], xs) ⇒ LHS

≡ {simplify list comprehension}
sat′ $ orP [andP $ map lit $ g

[if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]]
/([0 . .], xs) ⇒ LHS

≡ {inline orP}
sat′ $ (andP $ map lit $ g

[if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c])
/([0 . .], xs) ⇒ LHS

≡ {inline (/)}
sat′ $ andP $ map lit $ g

[if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]
/([0 . .], xs) ⇒ LHS

≡ {inline sat′}
all sat $ g [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]

190 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

/([0 . .], xs) ⇒ LHS
≡ {inline g}
all sat $ (zipWith Sat non (map (:[])

[if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]) ++
map (`Sat̀ [map complete (ctors c) ? map complete (ctors c)]) rec)
/([0 . .], xs) ⇒ LHS

≡ {inline (/)}
all sat $ zipWith Sat (non/([0 . .], xs))

(map (:[]) [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]) ++
map (`Sat̀ [map complete (ctors c) ? map complete (ctors c)])
(rec/([0 . .], xs)) ⇒ LHS

≡ {inline all}
all sat (zipWith Sat (non/([0 . .], xs))

(map (:[]) [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c])) &&
all sat (map (`Sat̀ [map complete (ctors c) ? map complete (ctors c)])
(rec/([0 . .], xs))) ⇒ LHS

⇐ {weaken implication}
all sat $ zipWith Sat (non/([0 . .], xs))

(map (:[]) [if i ≡ j then ms1 ? ms2 else Any | j ← nonRecs c]) ⇒ LHS
≡ {inline map}
all sat $ zipWith Sat (non/([0 . .], xs))

[if i ≡ j then [ms1 ? ms2] else [Any] | j ← nonRecs c] ⇒ LHS
≡ {non = nonRecs c, by definition of nonRecs}
all sat $ zipWith Sat (non/([0 . .], xs))

[if i ≡ j then [ms1 ? ms2] else [Any] | j ← non] ⇒ LHS
≡ {rewrite list comprehension}
all sat $ zipWith Sat (non/([0 . .], xs))

(map (λj → if i ≡ j then [ms1 ? ms2] else [Any]) non) ⇒ LHS
≡ {inline (/)}
all sat $ zipWith Sat (map (/([0 . .], xs)) non)

(map (λj → if i ≡ j then [ms1 ? ms2] else [Any]) non) ⇒ LHS
≡ {zipWith f (map g xs) (map h xs) = map (λx → f (g x) (h x)) xs}
all sat $ map (λj → Sat (j/([0 . .], xs))

(if i ≡ j then [ms1 ? ms2] else [Any])) non ⇒ LHS
⇐ {weaken implication, using i ∈ non because of false isRec test}
all sat $ map (λj → Sat (j/([0 . .], xs))

(if i ≡ j then [ms1 ? ms2] else [Any])) [i] ⇒ LHS
≡ {inline map}
all sat $ [Sat (i/([0 . .], xs)) (if i ≡ i then [ms1 ? ms2] else [Any])] ⇒ LHS
≡ {inline all}
sat $ Sat (i/([0 . .], xs)) (if i ≡ i then [ms1 ? ms2] else [Any]) ⇒ LHS
≡ {inline (≡)}
sat $ Sat (i/([0 . .], xs)) (if True then [ms1 ? ms2] else [Any]) ⇒ LHS
≡ {simplify if}
sat $ Sat (i/([0 . .], xs)) [ms1 ? ms2] ⇒ LHS
≡ {inline (/)}

A.4. CONSTRAINT LEMMAS 191

sat $ Sat (xs !! i) [ms1 ? ms2] ⇒ LHS
≡ {reinstate LHS}
sat $ Sat (xs !! i) [ms1 ? ms2] ⇒ sat $ Sat (xs !! i) [ms1 ? ms2]
≡ {tautology}
True

Case: k = (ms1 ? ms2) : ks ; xs !! i = Value c′ ys ; isRec (c, i) = True

sat′ $ (fC $ fB $ ms1 ? ms2)/([0 . .], xs) ⇒ sat $ Sat (xs !! i) [ms1 ? ms2]
≡ {inline fB, assuming isRec (c, i)}
sat′ $ (fC $ [complete c] ? merge ms1 ms2)/([0 . .], xs) ⇒ LHS
≡ {inline fC}
sat′ $ orP [andP $ map lit $ g vs1 |

Pattern c1 vs1 ← [complete c], c1 ≡ c]/([0 . .], xs) ⇒ LHS
≡ {inline complete c}
sat′ $ orP [andP $ map lit $ g vs1 | Pattern c1 vs1 ←

[Pattern c (map (const Any) (nonRecs c))], c1 ≡ c]/([0 . .], xs) ⇒ LHS
≡ {simplify list comprehension}
sat′ $ orP [andP $ map lit $ g $ map (const Any) (nonRecs c)]

/([0 . .], xs) ⇒ LHS
≡ {inline orP}
sat′ $ andP (map lit $ g $ map (const Any) (nonRecs c))

/([0 . .], xs) ⇒ LHS
≡ {inline (/)}
sat′ $ andP $ map lit $ (g $ map (const Any) (nonRecs c))

/([0 . .], xs) ⇒ LHS
≡ {inline sat′}
all sat $ (g $ map (const Any) (nonRecs c))/([0 . .], xs) ⇒ LHS
≡ {inline g}
all sat $ (zipWith Sat non (map (:[]) vs) ++

map (`Sat̀ [merge ms1 ms2 ? merge ms1 ms2]) rec)/([0 . .], xs) ⇒ LHS
≡ {inline (/)}
all sat $ zipWith Sat non (map (:[]) vs)/([0 . .], xs) ++

map (`Sat̀ [merge ms1 ms2 ? merge ms1 ms2]) rec/([0 . .], xs) ⇒ LHS
≡ {inline all}
all sat (zipWith Sat non (map (:[]) vs)/([0 . .], xs)) &&

all sat (map (`Sat̀ [merge ms1 ms2 ? merge ms1 ms2]) rec
/([0 . .], xs)) ⇒ LHS

≡ {weaken implication}
all sat $ map (`Sat̀ [merge ms1 ms2 ? merge ms1 ms2]) rec

/([0 . .], xs) ⇒ LHS
≡ {eta expand}
all sat $ map (λj → Sat j [merge ms1 ms2 ? merge ms1 ms2]) rec

/([0 . .], xs) ⇒ LHS

192 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {inline (/)}
all sat $ map (λj → Sat (j/([0 . .], xs))

[merge ms1 ms2 ? merge ms1 ms2]) rec ⇒ LHS
≡ {combine all and map}
all (λj → sat $ Sat (j/([0 . .], xs))

[merge ms1 ms2 ? merge ms1 ms2]) rec ⇒ LHS
⇐ {weaken implication, as i ∈ rec, because of isRec test}
all (λj → sat $ Sat (j/([0 . .], xs))

[merge ms1 ms2 ? merge ms1 ms2]) [i] ⇒ LHS
≡ {inline all}
sat $ Sat (i/([0 . .], xs)) [merge ms1 ms2 ? merge ms1 ms2] ⇒ LHS
≡ {inline (/)}
sat $ Sat (xs !! i) [merge ms1 ms2 ? merge ms1 ms2] ⇒ RHS
≡ {reinstate RHS}
sat $ Sat (xs !! i) [merge ms1 ms2 ? merge ms1 ms2] ⇒

sat $ Sat (xs !! i) [ms1 ? ms2]
≡ {xs !! i = Value c′ ys}
sat $ Sat (Value c′ ys) [merge ms1 ms2 ? merge ms1 ms2] ⇒

sat $ Sat (Value c′ ys) [ms1 ? ms2]
⇐ {Lemma MP2}
sat $ Sat (Value c′ ys) [ms1 ? ms2] ⇒ sat $ Sat (Value c′ ys) [ms1 ? ms2]
≡ {tautology}
True

A.5 Auxiliary Lemmas

To prove the main result we shall need the following lemmas.

Lemma A1

(x ∈ (ys \ [x])) ≡ False

The elem application is only true if ys\ [x] contains x. The expression cannot
contain x, as if it existed in ys it was removed, therefore this application is
always False.

Lemma A2

sat′ (eval x<−cs) ≡ satE′ (x<−cs)

A.5. AUXILIARY LEMMAS 193

We argue as follows:

sat′ (eval x<−cs) ≡ satE′ (x<−cs)
≡ {inline sat′ and satE′}
tautP sat (eval x<−cs) ≡ tautP satE (x<−cs)
≡ {inline tautP and reduce common bits}
mapP (bool ◦ sat) (eval x<−cs) ≡ mapP (bool ◦ satE) (x<−cs)

Now we can use the type signature of <−:

(<−) :: α → [CtorName] → Prop (Sat α)

The theorems for free work (Wadler 1989) shows that the first argument
will end up as the first argument of the Sat constructor, unmodified and
unexamined. The satE function applies eval to the first argument of Sat,
therefore the equivalence holds.

Lemma A3

precond "error" ≡ false

The initial computation of precond will return false. All successive compu-
tations will be at least as restrictive, therefore the result must be false.

Lemma A4

precond f ⇒ reduce $ pre $ body f

The definition of precond f is a conjunction where the second conjunct is
reduce $ pre $ body f, therefore precond f is at least as restrictive as the
alternative.

Lemma A5

prePost f k ⇒ reduce (lit $ body f `Sat̀ k)

The definition of prePost f k is a conjunction where the second conjunct is
reduce (lit $ body f `Sat̀ k), therefore prePost f k is at least as restrictive as
the alternative.

194 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

Lemma A6

satE′ (pre e / (vs, ys)) && all (satE′ ◦ pre) ys ⇒ satE′ $ pre $ e / (vs, ys)

We assume that all free variables in e are bound in vs. To shorten the
proofs we do not explicitly write the all (satE′ ◦ pre) ys term, as it is never
manipulated. We proceed by induction on e.

Case: e = Var v

satE′ $ pre e / (vs, ys) ⇒ satE′ $ pre $ e / (vs, ys)
≡ {e = Var v}
satE′ $ pre (Var v) / (vs, ys) ⇒ satE′ $ pre $ Var v / (vs, ys)
≡ {inline pre on LHS}
satE′ $ true / (vs, ys) ⇒ satE′ $ pre $ Var v / (vs, ys)
≡ {inline (/) on LHS}
satE′ true ⇒ satE′ $ pre $ Var v / (vs, ys)
≡ {inline satE′}
True ⇒ satE′ $ pre $ Var v / (vs, ys)
≡ {reintroduce hidden term}
all (satE′ ◦ pre) ys ⇒ satE′ $ pre $ Var v / (vs, ys)

We know that v will be a member of vs, and that the result will be pre y,
where y is drawn from ys. Since all ys satisfy the precondition, then so will
the particular y we substitute.

Case: e = Sel x s

satE′ $ pre e / (vs, ys) ⇒ satE′ $ pre $ e / (vs, ys)
≡ {e = Sel x s}
satE′ $ pre (Sel x s) / (vs, ys) ⇒ satE′ $ pre $ Sel x s / (vs, ys)
≡ {inline (/) on RHS}
satE′ $ pre (Sel x s) / (vs, ys) ⇒ satE′ $ pre $ Sel (x / (vs, ys)) s
≡ {inline pre on RHS}
satE′ $ pre (Sel x s) / (vs, ys) ⇒ satE′ $ true
≡ {inline satE′ on RHS}
satE′ $ pre (Sel x s) / (vs, ys) ⇒ True
≡ {implication}
True

A.5. AUXILIARY LEMMAS 195

Case: e = Make c xs

satE′ $ pre x / (vs, ys) ⇒ satE′ $ pre $ x / (vs, ys)
≡ {x = Make c xs}
satE′ $ pre (Make c xs) / (vs, ys) ⇒ satE′ $ pre $ Make c xs / (vs, ys)
≡ {inline (/) on RHS}
satE′ $ pre (Make c xs) / (vs, ys) ⇒

satE′ $ pre $ Make c $ map (/(vs, ys)) xs
≡ {inline pre on both sides}
satE′ $ andP (map pre xs) / (vs, ys) ⇒

satE′ $ andP $ map (pre ◦ (/(vs, ys))) xs
≡ {inline (/) on LHS}
satE′ $ andP $ map ((/(vs, ys)) ◦ pre) xs ⇒

satE′ $ andP $ map (pre ◦ (/(vs, ys))) xs
≡ {inline satE′ on both sides}
all (satE′ ◦ (/(vs, ys)) ◦ pre) xs ⇒ all (satE′ ◦ pre ◦ (/(vs, ys))) xs
⇐ {by induction}
True

Case: e = Call f xs

satE′ $ pre e / (vs, ys) ⇒ satE′ $ pre $ e / (vs, ys)
≡ {e = Call f xs}
satE′ $ pre (Call f xs) / (vs, ys) ⇒ satE′ $ pre $ Call f xs / (vs, ys)
≡ {inline (/) on RHS}
satE′ $ pre (Call f xs) / (vs, ys) ⇒ satE′ $ pre $ Call f $ map (/(vs, ys)) xs
≡ {inline pre}
satE′ $ (pre′ f xs ∧ andP (map pre xs)) / (vs, ys) ⇒ RHS
≡ {inline (/)}
satE′ $ (pre′ f xs / (vs, ys)) ∧ andP (map (pre ◦ (/(vs, ys))) xs) ⇒ RHS
≡ {inline satE′}
satE′ (pre′ f xs / (vs, ys)) && all (satE′ ◦ pre ◦ (/(vs, ys))) xs ⇒ RHS
≡ {switch to RHS}
LHS ⇒ satE′ $ pre $ Call f $ map (/(vs, ys)) xs
≡ {inline pre}
LHS ⇒ satE′ $ (pre′ f (map (/(vs, ys)) xs)) ∧

andP (map (pre ◦ (/(vs, ys))) xs)
≡ {inline satE′}
LHS ⇒ satE′ (pre′ f (map (/(vs, ys)) xs)) && all (satE′ ◦ pre ◦ (/(vs, ys))) xs
≡ {reinstate LHS}
satE′ (pre′ f xs / (vs, ys)) && all (satE′ ◦ pre ◦ (/(vs, ys))) xs ⇒

satE′ (pre′ f (map (/(vs, ys)) xs)) && all (satE′ ◦ pre ◦ (/(vs, ys))) xs
⇐ {eliminate common term}
satE′ $ pre′ f xs / (vs, ys) ⇒ satE′ $ pre′ f (map (/(vs, ys)) xs)

196 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {inline pre′}
satE′ $ (precond f/(args f, xs)) / (vs, ys) ⇒

satE′ $ precond f/(args f, map (/(vs, ys)) xs)
≡ {inline (/) on LHS}
satE′ $ precond f/(args f,map (/(vs, ys)) xs) ⇒

satE′ $ precond f/(args f, map (/(vs, ys)) xs)
≡ {tautology}
True

Case: e = Case x as

satE′ $ pre e / (vs, ys) ⇒ satE′ $ pre $ e / (vs, ys)
≡ {e = Case x as}
satE′ $ pre (Case x as) / (vs, ys) ⇒ satE′ $ pre $ Case x as / (vs, ys)
≡ {inline (/) on RHS}
satE′ $ pre (Case x as) / (vs, ys) ⇒

satE′ $ pre $ Case (x / (vs, ys)) (map (/(vs, ys)) as)
≡ {inline pre on both sides}
satE′ $ (pre x ∧ andP (map alt as)) / (vs, ys) ⇒

satE′ $ pre (x / (vs, ys)) ∧ andP (map (alt ◦ (/(vs, ys))) as)
≡ {inline (/) on LHS}
satE′ $ (pre x / (vs, ys)) ∧ andP (map ((/(vs, ys)) ◦ alt) as) ⇒

satE′ $ pre (x / (vs, ys)) ∧ andP (map (alt ◦ (/(vs, ys))) as)
≡ {inline satE′}
satE′ (pre x / (vs, ys)) && all (satE′ ◦ (/(vs, ys)) ◦ alt) as ⇒

satE′ (pre (x / (vs, ys))) && all (satE′ ◦ alt ◦ (/(vs, ys))) as
⇐ {by induction}
all (satE′ ◦ (/(vs, ys)) ◦ alt) as ⇒ all (satE′ ◦ alt ◦ (/(vs, ys))) as
⇐ {implication over all}
satE′ $ alt a / (vs, ys) ⇒ satE′ $ alt $ a / (vs, ys)
≡ {instantiate a as a general Alt}
satE′ $ alt (Alt c ws y) / (vs, ys) ⇒ satE′ $ alt $ Alt c ws y / (vs, ys)
≡ {inline (/) on RHS}
satE′ $ alt (Alt c ws y) / (vs, ys) ⇒ satE′ $ alt $ Alt c ws (y / (vs, ys))
≡ {inline alt}
satE′ $ (x<−(ctors c \ [c]) ∨ pre y) / (vs, ys) ⇒

satE′ $ (x / (vs, ys)<−(ctors c \ [c])) ∨ pre (y / (vs, ys))
≡ {let cs = ctors c \ [c]}
satE′ $ (x<−cs ∨ pre y) / (vs, ys) ⇒

satE′ $ (x / (vs, ys)<−cs) ∨ pre (y / (vs, ys))
≡ {inline (/) on LHS}
satE′ $ (x / (vs, ys)<−cs) ∨ (pre y / (vs, ys)) ⇒

satE′ $ (x / (vs, ys)<−cs) ∨ pre (y / (vs, ys))
≡ {inline satE′ on both sides}

A.5. AUXILIARY LEMMAS 197

satE′ (x / (vs, ys)<−cs) || satE′ (pre y / (vs, ys)) ⇒
satE′ (x / (vs, ys)<−cs) || satE′ (pre (y / (vs, ys)))

⇐ {remove duplicate bits on each side}
satE′ $ pre y / (vs, ys) ⇒ satE′ $ pre $ y / (vs, ys)
⇐ {by induction}
True

Lemma A7

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k

We proceed by induction on e.

Case: e = Var v

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k
≡ {e = Var v}
satE′ $ red (Var v) k/sub ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {inline red}
satE′ $ lit (Sat v k)/sub ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {inline (/) on LHS}
satE′ $ lit (Sat (v/sub) k) ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {promote v on LHS to Var v because (/) operates identically on both}
satE′ $ lit (Sat (Var v / sub) k) ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {inline satE′}
satE (Sat (Var v / sub) k) ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {inline satE}
sat $ Sat (eval $ Var v / sub) k ⇒ sat $ Sat (eval $ Var v / sub) k
≡ {tautology}
True

Case: e = Sel x (c, i)

Here we may assume eval (x / sub) = Value c xs.

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k
≡ {e = Sel x (c, i)}
satE′ $ red (Sel x (c, i)) k/sub ⇒ sat $ Sat (eval $ Sel x (c, i) / sub) k
≡ {inline red}
satE′ $ red x ((c, i) B k)/sub ⇒ sat $ Sat (eval $ Sel x (c, i) / sub) k
≡ {inline (/) on RHS}

198 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

satE′ $ red x ((c, i) B k)/sub ⇒ sat $ Sat (eval $ Sel (x / sub) (c, i)) k
≡ {inline eval on RHS}
satE′ $ red x ((c, i) B k)/sub ⇒ sat $ Sat (xs !! i) k
⇐ {Lemma C2}
satE′ $ red x ((c, i) B k)/sub ⇒ sat $ Sat (Value c xs) ((c, i) B k)
≡ {replace using the assumption}
satE′ $ red x ((c, i) B k)/sub ⇒ sat $ Sat (eval (x / sub)) ((c, i) B k)
⇐ {by induction}
True

Case: e = Make c xs

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k
≡ {e = Make c xs}
satE′ $ red (Make c xs) k/sub ⇒ sat $ Sat (eval $ Make c xs / sub) k
≡ {inline red}
satE′ $ reduce ((c C k)/([0 . .], xs))/sub ⇒ sat $ Sat (eval $ Make c xs / sub) k
⇐ {Lemma A8}
satE′ $ ((c C k)/([0 . .], xs)) / sub ⇒ sat $ Sat (eval $ Make c xs / sub) k
≡ {inline (/) on LHS}
satE′ $ (c C k)/([0 . .], map (/sub) xs) ⇒ sat $ Sat (eval $ Make c xs / sub) k
≡ {inline satE′ on LHS}
sat′ $ (c C k)/([0 . .],map (eval ◦ (/sub)) xs) ⇒

sat $ Sat (eval $ Make c xs / sub) k
≡ {inline (/) on RHS}
sat′ $ (c C k)/([0 . .],map (eval ◦ (/sub)) xs) ⇒

sat $ Sat (eval $ Make c (map (/sub) xs)) k
≡ {inline eval on RHS}
sat′ $ (c C k)/([0 . .],map (eval ◦ (/sub)) xs) ⇒

sat $ Sat (Value c (map (eval ◦ (/sub)) xs)) k
≡ {fold back sat}
sat $ Sat (Value c (map (eval ◦ (/sub)) xs)) k ⇒

sat $ Sat (Value c (map (eval ◦ (/sub)) xs)) k
≡ {tautology}
True

Case: e = Call f xs

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k
≡ {e = Call f xs}
satE′ $ red (Call f xs) k/sub ⇒ sat $ Sat (eval $ Call f xs / sub) k
≡ {inline red}
satE′ $ reduce (prePost f k/(args f, xs))/sub ⇒ RHS

A.5. AUXILIARY LEMMAS 199

⇐ {Lemma A8}
satE′ $ (prePost f k/(args f, xs)) / sub ⇒ RHS
≡ {inline (/) on LHS}
satE′ $ prePost f k/(args f, map (/sub) xs) ⇒ RHS
⇐ {Lemma A5}
satE′ $ reduce (lit $ Sat (body f) k)/(args f,map (/sub) xs) ⇒ RHS
⇐ {Lemma A8}
satE′ $ (lit $ Sat (body f) k) / (args f,map (/sub) xs) ⇒ RHS
≡ {inline (/) on LHS}
satE′ $ (lit $ Sat (body f / (args f, map (/sub) xs)) k) ⇒ RHS
≡ {inline satE′}
satE $ Sat (body f / (args f, map (/sub) xs)) k ⇒ RHS
≡ {inline satE}
sat $ Sat (eval $ body f / (args f,map (/sub) xs)) k ⇒

sat $ Sat (eval $ Call f xs / sub) k
≡ {inline (/) on RHS}
sat $ Sat (eval $ body f / (args f,map (/sub) xs)) k ⇒

sat $ Sat (eval $ Call f (map (/sub) xs)) k

Case: e = Call f xs ; f = "error"

sat $ Sat (eval $ body f / (args f,map (/sub) xs)) k ⇒
sat $ Sat (eval $ Call f (map (/sub) xs)) k

≡ {assume f = "error"}
sat $ Sat (eval $ body "error" / (args f,map (/sub) xs)) k ⇒

sat $ Sat (eval $ Call "error" (map (/sub) xs)) k
≡ {inline eval on RHS}
sat $ Sat (eval $ body "error" / (args f,map (/sub) xs)) k ⇒

sat $ Sat Bottom k
≡ {inline sat}
sat $ Sat (eval $ Call "error" [Var "x"] / (["x"], map (/sub) xs)) k ⇒ False
≡ {implies}
True

Case: e = Call f xs ; f 6≡ "error"

sat $ Sat (eval $ body f / (args f,map (/sub) xs)) k ⇒
sat $ Sat (eval $ Call f (map (/sub) xs)) k

≡ {inline eval on RHS, assuming f 6≡ "error"}
sat $ Sat (eval $ body f / (args f,map (/sub) xs)) k ⇒

sat $ Sat (eval $ body f / (args f, map (/sub) xs)) k
≡ {tautology}
True

200 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

Case: e = Case x as

satE′ $ red e k/sub ⇒ sat $ Sat (eval $ e / sub) k
≡ {e = Case x as}
satE′ $ red (Case x as) k/sub ⇒ sat $ Sat (eval $ Case x as / sub) k
≡ {inline red}
satE′ $ andP (map alt as)/sub ⇒ sat $ Sat (eval $ Case x as / sub) k
≡ {inline (/) on LHS}
satE′ $ andP $ map ((/sub) ◦ alt) as ⇒ sat $ Sat (eval $ Case x as / sub) k
≡ {inline satE′}
all (satE′ ◦ (/sub) ◦ alt) as ⇒ sat $ Sat (eval $ Case x as / sub) k
≡ {inline (/) on RHS}
all (satE′ ◦ (/sub) ◦ alt) as ⇒ sat $ Sat (eval $ Case (x / sub) (as / sub)) k

Case: e = Case x as ; eval (x / sub) = Bottom

all (satE′ ◦ (/sub) ◦ alt) as ⇒ sat $ Sat (eval $ Case (x / sub) (as / sub)) k
≡ {inline eval, assuming eval (x / sub) = Bottom}
all (satE′ ◦ (/sub) ◦ alt) as ⇒ sat $ Sat Bottom k
≡ {inline sat}
all (satE′ ◦ (/sub) ◦ alt) as ⇒ True
≡ {implies}
True

Case: e = Case x as ; eval (x / sub) = Value c xs

all (satE′ ◦ (/sub) ◦ alt) as ⇒ sat $ Sat (eval $ Case (x / sub) (as / sub)) k
≡ {inline eval, assuming eval (x / sub) = Value c xs}
LHS ⇒ sat $ Sat (head [eval y | Alt c′ vs y ← as / sub, c ≡ c′]) k
≡ {expand RHS, removing list comprehension}
all (satE′ ◦ (/sub) ◦ alt) as ⇒

all (λ(Alt c′ vs y) → c ≡ c′ ⇒ sat $ Sat (eval y) k) (as / sub)
⇐ {lift implication over all}
satE′ $ alt a/sub ⇒

(λ(Alt c′ vs y) → c ≡ c′ ⇒ sat $ Sat (eval y) k) (a / sub)
≡ {instantiate a = Alt c′ vs y}
satE′ $ alt a/sub ⇒

(λ(Alt c′ vs y) → c ≡ c′ ⇒ sat $ Sat (eval y) k) (Alt c′ vs y / sub)
≡ {inline (/) on RHS}
satE′ $ alt a/sub ⇒

(λ(Alt c′ vs y) → c ≡ c′ ⇒ sat $ Sat (eval y) k) (Alt c′ vs $ y / sub)
≡ {inline lambda on RHS}
satE′ $ alt (Alt c′ vs y)/sub ⇒

A.5. AUXILIARY LEMMAS 201

(c ≡ c′ ⇒ sat $ Sat (eval $ y / sub) k)
≡ {use knowledge from RHS in LHS}
satE′ $ alt (Alt c vs y)/sub ⇒ sat $ Sat (eval $ y / sub) k
≡ {inline alt on LHS}
satE′ $ (reduce (x<−(ctors c \ [c])) ∨ red y k)/sub ⇒ RHS
≡ {inline (/) on LHS}
satE′ $ (reduce (x<−(ctors c \ [c]))/sub) ∨ (red y k/sub) ⇒ RHS
≡ {inline satE′ on LHS}
satE′ (reduce (x<−(ctors c \ [c]))/sub) || satE′ (red y k/sub) ⇒ RHS
⇐ {Lemma A8}
satE′ ((x<−(ctors c \ [c])) / sub) || satE′ (red y k/sub) ⇒ RHS
≡ {inline (/) on LHS}
satE′ ((x / sub)<−(ctors c \ [c])) || satE′ (red y k/sub) ⇒ RHS
≡ {Lemma A2}
sat′ (eval (x / sub)<−(ctors c \ [c])) || satE′ (red y k/sub) ⇒ RHS
≡ {substitute eval (x / sub) = Value c xs}
sat′ (Value c xs<−(ctors c \ [c])) || satE′ (red y k/sub) ⇒ RHS
⇐ {Lemma C1}
c ∈ (ctors c \ [c]) || satE′ (red y k/sub) ⇒ RHS
≡ {Lemma A1}
False || satE′ (red y k/sub) ⇒ RHS
≡ {inline (||)}
satE′ $ red y k/sub ⇒ sat $ Sat (eval $ y / sub) k
⇐ {by induction}
True

Lemma A8

satE′ $ reduce x/sub ⇒ satE′ $ x / sub
≡ {inline reduce}
satE′ $ mapP (λ(Sat x k) → red x k) x/sub ⇒ satE′ $ x / sub
≡ {inline (/) on LHS}
satE′ $ mapP (λ(Sat x k) → red x k/sub) x ⇒ satE′ $ x / sub
≡ {inline (/) on RHS}
satE′ $ mapP (λ(Sat x k) → red x k/sub) x ⇒

satE′ $ mapP (λ(Sat x k) → lit $ Sat x k / sub) x
≡ {inline (/) on RHS}
satE′ $ mapP (λ(Sat x k) → red x k/sub) x ⇒

satE′ $ mapP (λ(Sat x k) → lit $ Sat (x / sub) k) x
≡ {inline satE′}
isTrue $ mapP (λ(Sat x k) → bool $ satE′ $ red x k/sub) x ⇒

isTrue $ mapP (λ(Sat x k) → bool $ satE′ $ lit $ Sat (x / sub) k) x
⇐ {lift mapP over (⇒)}
satE′ $ red x k/sub ⇒ satE′ $ lit $ Sat (x / sub) k

202 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

≡ {inline satE′ on RHS}
satE′ $ red x k/sub ⇒ satE $ Sat (x / sub) k
≡ {inline satE on RHS}
satE′ $ red x k/sub ⇒ sat $ Sat (eval $ x / sub) k
⇐ {Lemma A7}
True

A.6 The Soundness Theorem

A.6.1 Theorem

satE′ $ pre e ⇒ not $ isBottom $ eval e

That is, the analysis defined in Figures 6.10, 6.7, 6.8 and 6.3 is sound.

A.6.2 Proof

We proceed by case analysis on the structure of the expression e. We induc-
tively assume that the theorem is true for all subexpressions of e.

Case: e = Var v

We do not need to consider Var as eval cannot be called on expressions with
free variables, see §A.3.

Case: e = Sel x (c, i)

By definition:

eval (Sel x (c, i)) | c ≡ c′ = xs !! i
where Value c′ xs = eval x

We know that any Sel x value must be contained within an alternative
of a Case x expression. We may assume that the original Case expression
satisfied its precondition.

satE′ $ pre e ⇒ not $ isBottom $ eval e
≡ {e = Sel x (c, i)}

A.6. THE SOUNDNESS THEOREM 203

satE′ $ pre $ Sel x (c, i) ⇒ not $ isBottom $ eval $ Sel x (c, i)
≡ {inline eval}
satE′ $ pre $ Sel x (c, i) ⇒ not $ isBottom $ xs !! i
⇐ {strengthen implication}
satE′ $ pre $ Sel x (c, i) ⇒ all (not ◦ isBottom) xs
≡ {by definition of isBottom}
satE′ $ pre $ Sel x (c, i) ⇒ not $ isBottom $ Value c′ xs
≡ {Value c′ xs = eval x}
satE′ $ pre $ Sel x (c, i) ⇒ not $ isBottom $ eval x
⇐ {inductive hypothesis}
satE′ $ pre $ Sel x (c, i) ⇒ satE′ $ pre x
≡ {assuming original Case satisfied its constraint}
satE′ $ pre $ Case x as ⇒ satE′ $ pre x
≡ {inline pre}
satE′ $ pre x ∧ andP (map alt as) ⇒ satE′ $ pre x
≡ {inline satE′}
satE′ (pre x) && satE′ (andP $ map alt as) ⇒ satE′ $ pre x
⇐ {weaken implication}
satE′ $ pre x ⇒ satE′ $ pre x
≡ {tautology}
True

Case: e = Make c xs

satE′ $ pre e ⇒ not $ isBottom $ eval e
≡ {e = Make c xs}
satE′ $ pre $ Make c xs ⇒ not $ isBottom $ eval $ Make c xs
≡ {inline eval}
satE′ $ pre $ Make c xs ⇒ not $ isBottom $ Value c $ map eval xs
≡ {inline isBottom}
satE′ $ pre $ Make c xs ⇒ all (not ◦ isBottom ◦ eval) xs
⇐ {inductive hypothesis}
satE′ $ pre $ Make c xs ⇒ all (satE′ ◦ pre) xs
≡ {inline pre}
satE′ $ andP $ map pre xs ⇒ all (satE′ ◦ pre) xs
≡ {inline satE′}
and $ map satE′ $ map pre xs ⇒ all (satE′ ◦ pre) xs
≡ {map f ◦map g = map (f ◦ g)}
and $ map (satE′ ◦ pre) xs ⇒ all (satE′ ◦ pre) xs
≡ {and ◦map f = all f}
all (satE′ ◦ pre) xs ⇒ all (satE′ ◦ pre) xs
≡ {tautology}
True

204 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

Case: e = Call f xs

satE′ $ pre e ⇒ not $ isBottom $ eval e
≡ {e = Call f xs}
satE′ $ pre $ Call f xs ⇒ not $ isBottom $ eval $ Call f xs

Case: e = Call f xs ; f = "error"

satE′ $ pre $ Call f xs ⇒ not $ isBottom $ eval $ Call f xs
≡ {f = "error"}
satE′ $ pre $ Call "error" xs ⇒ not $ isBottom $ eval $ Call "error" xs
≡ {inline eval}
satE′ $ pre $ Call "error" xs ⇒ not $ isBottom Bottom
≡ {inline isBottom}
satE′ $ pre $ Call "error" xs ⇒ not True
≡ {inline not}
satE′ $ pre $ Call "error" xs ⇒ False
≡ {implication}
not $ satE′ $ pre $ Call "error" xs
≡ {inline pre}
not $ satE′ $ (precond "error"/(args "error", xs)) ∧ andP (map pre xs)
≡ {inline satE′}
not $ satE′ (precond "error"/(args "error", xs)) && all (satE′ ◦ pre) xs
≡ {inline not}
not (satE′ (precond "error"/(args "error", xs))) || not (all (satE′ ◦ pre) xs)
⇐ {weaken proposition}
not $ satE′ (precond "error"/(args "error", xs))
≡ {Lemma A3}
not $ satE′ $ (false/(args "error", xs))
≡ {inline (/)}
not $ satE′ false
≡ {inline satE′}
not $ False
≡ {inline not}
True

Case: e = Call f xs ; f 6≡ "error"

satE′ $ pre $ Call f xs ⇒ not $ isBottom $ eval $ Call f xs
≡ {inline eval, assuming f 6≡ "error"}
satE′ $ pre $ Call f xs ⇒ not $ isBottom $ eval $ body f / (args f, xs)
⇐ {inductive hypothesis}
satE′ $ pre $ Call f xs ⇒ satE′ $ pre $ body f / (args f, xs)

A.6. THE SOUNDNESS THEOREM 205

≡ {inline pre on LHS}
satE′ $ (precond f/(args f, xs)) ∧ andP (map pre xs) ⇒ RHS
≡ {inline satE′}
satE′ (precond f/(args f, xs)) && all (satE′ ◦ pre) xs ⇒ RHS
⇐ {Lemma A4}
satE′ ((reduce $ pre $ body f)/(args f, xs)) && all (satE′ ◦ pre) xs ⇒ RHS
⇐ {Lemma A8}
satE′ (pre (body f) / (args f, xs)) && all (satE′ ◦ pre) xs ⇒ RHS
⇐ {Lemma A6}
satE′ $ pre $ body f / (args f, xs) ⇒ satE′ $ pre $ body f / (args f, xs)
≡ {tautology}
True

Case: e = Case x as

satE′ $ pre e ⇒ not $ isBottom $ eval e
≡ {e = Case x as}
satE′ $ pre $ Case x as ⇒ not $ isBottom $ eval $ Case x as

Case: e = Case x as ; eval x = Bottom

satE′ $ pre $ Case x as ⇒ not $ isBottom $ eval $ Case x as
≡ {inline eval, assuming eval x = Bottom}
satE′ $ pre $ Case x as ⇒ not $ isBottom Bottom
≡ {inline isBottom}
satE′ $ pre $ Case x as ⇒ not True
≡ {inline not}
satE′ $ pre $ Case x as ⇒ False
≡ {implication}
not $ satE′ $ pre $ Case x as
≡ {inline pre}
not $ satE′ $ pre x ∧ andP (map alt as)
≡ {inline satE′}
not $ satE′ (pre x) && satE′ (andP $ map alt as)
≡ {inline not}
not (satE′ $ pre x) || not (satE′ $ andP $ map alt as)
⇐ {weaken condition}
not $ satE′ $ pre x
⇐ {inductive hypothesis}
not $ not $ isBottom $ eval e
≡ {not (not x) = x}
isBottom $ eval e
≡ {eval x = Bottom}

206 APPENDIX A. SOUNDNESS OF PATTERN-MATCH ANALYSIS

isBottom Bottom
≡ {inline isBottom}
True

Case: e = Case x as ; eval x = Value c xs

satE′ $ pre $ Case x as ⇒ not $ isBottom $ eval $ Case x as
≡ {inline eval, assuming eval x = Value c xs}
LHS ⇒ not $ isBottom $ head [eval y | Alt c′ vs y ← as, c ≡ c′]
⇐ {strengthen implication}
LHS ⇒ all (not ◦ isBottom) [eval y | Alt c′ vs y ← as, c ≡ c′]
≡ {inline all over list comprehension}
LHS ⇒ and [not $ isBottom $ eval y | Alt c′ vs y ← as, c ≡ c′]
≡ {rearrange guard as an implication}
LHS ⇒ and [c ≡ c′ ⇒ not $ isBottom $ eval y | Alt c′ vs y ← as]
≡ {rewrite list comprehension as an all}
LHS ⇒ all (λ(Alt c′ vs y) → c ≡ c′ ⇒ not $ isBottom $ eval y) as
⇐ {inductive hypothesis}
LHS ⇒ all (λ(Alt c′ vs y) → c ≡ c′ ⇒ satE′ $ pre y) as
≡ {switch to LHS}
satE′ $ pre $ Case x as ⇒ RHS
≡ {inline pre}
satE′ $ pre x ∧ andP (map alt as) ⇒ RHS
≡ {inline satE′}
satE′ (pre x) && all (satE′ ◦ alt) as ⇒ RHS
⇐ {weaken implication}
all (satE′ ◦ alt) as ⇒

all (λ(Alt c′ vs y) → c ≡ c′ ⇒ satE′ $ pre y) as
⇐ {lift implies over all}
satE′ $ alt a ⇒ (λ(Alt c′ vs y) → c ≡ c′ ⇒ satE′ $ pre y) a
≡ {instantiate a = Alt c′ v ys}
satE′ $ alt $ Alt c′ v ys ⇒ (c ≡ c′ ⇒ satE′ $ pre y)
≡ {rearrange implication}
satE′ (alt $ Alt c′ v ys) && (c ≡ c′) ⇒ satE′ $ pre y
≡ {substitute c ≡ c′}
satE′ $ alt $ Alt c v ys ⇒ RHS
≡ {inline alt}
satE′ (x<−(ctors c \ [c]) ∨ pre y) ⇒ RHS
≡ {inline satE′}
satE′ (x<−(ctors c \ [c])) || satE′ (pre y) ⇒ RHS
≡ {Lemma A2}
sat′ (eval x<−(ctors c \ [c])) || satE′ (pre y) ⇒ RHS
≡ {eval x = Value c xs}
sat′ (Value c ys<−(ctors c \ [c])) || satE′ (pre y) ⇒ RHS

A.7. SUMMARY 207

⇐ {Lemma C1}
c ∈ (ctors c \ [c]) || satE′ (pre y) ⇒ RHS
≡ {Lemma A1}
False || satE′ (pre y) ⇒ RHS
≡ {inline (||)}
satE′ $ pre y ⇒ satE′ $ pre y
≡ {tautology}
True

A.7 Summary

We have outlined an argument that the Catch analysis method presented in
Chapter 6 is sound. In doing so, we have characterised the properties that
a constraint system must obey, and have shown these properties for BP-
constraints and MP-constraints. The majority of the proof uses equational
reasoning, apart from Lemma MP2 which has been tested for all small values.
The proof has undergone limited checking for simple type-correctness, but
has not been fully machine-checked.

Appendix B

Function Index

This chapter provides an index to all the Haskell functions used in the thesis.
Some functions are defined in the body of the thesis, while others are taken
from the Haskell report (Peyton Jones 2003). Many of the library functions
are reproduced in §B.1.

abstractTemplate, 111

all, 212

Alt, 20, 176

and, 212

andP, 138

Any, 140, 152

any, 212

args, 21

arity, 21

Atom, 148

Biplate, 53

biplate, 53

biplateSelf, 51

BiplateType, 51

body, 21

Bool, 211

bool, 138

Bottom, 145, 176

break, 212

Call, 176

Case, 176

Char, 214

children, 46

childrenOn, 51

complete, 152

Con, 140

concat, 212

concatMap, 212

const, 211

Constraint, 140, 148, 152

contains, 62

contexts, 46

couple, 31

CtorName, 21

ctors, 21

descend, 46

descendBi, 53

descendM, 46

208

209

descendOn, 51
differentiate, 148
dive, 31
drive, 77
drop, 212
dropWhile, 212

elem, 212
error, 211
eval, 176
evalState, 215
ewp, 148
Expr, 20, 176

False, 211
false, 138
filter, 212
firstify, 104
fix, 104
flip, 211
fmap, 215
foldr, 212
freeVars, 23
fromJust, 214
fromMaybe, 214
fst, 211
Func, 20
FuncName, 21
Function, 215
Functor, 215

generalise, 83
get, 215
getArgs, 215
getContents, 215

head, 212
holes, 46

id, 211

integrate, 148
IO, 215
isBottom, 146, 177
isBox, 108
isLambda, 108
isNothing, 214
isRec, 136
isSpace, 214
isTrue, 138
iterate, 212

Just, 214

length, 212
liftM, 215
linear, 25
List, 212
listStr, 44
lit, 138
lookup, 212

Make, 176
map, 212
mapM, 215
mapM , 215
mapP, 138
Maybe, 214
maybe, 214
merge, 152
mergeVal, 152
Monad, 215
msg, 82

nonRecs, 152
not, 211
notElem, 212
Nothing, 214
nub, 212
null, 212

210 APPENDIX B. FUNCTION INDEX

occurs, 25
on, 215
One, 44
or, 212
orP, 138

para, 46
partition, 212
Pattern, 152
plate, 55, 57
PlateAll, 57
plateAll, 57
PlateData, 60
PlateDirect, 55
plateSome, 57
PlateTypeable, 57
pre, 141
precond, 142
Prelude, 211
prePost, 144
print, 215
Prog, 20
Prop, 138
put, 215
putChar, 215
putStr, 215
putStrLn, 215

read, 211
reads, 211
reduce, 143
RegExp, 148
RegItem, 148
repeat, 26
replicate, 212
return, 215
reverse, 212
rewrite, 46
rewriteM, 46

rhs, 21
runState, 215

Sat, 139
sat, 145, 177
sat’, 145, 177
satE, 146, 177
satE’, 146, 177
Sel, 176
Selector, 136
sequence, 215
sequence , 215
Shell, 31
shouldTemplate, 111
show, 211
simpleTerminate, 82
snd, 211
span, 212
splitAt, 212
Star, 148
State, 215
Str, 44
String, 211
strList, 44
substP, 139
supercompile, 77
System, 215

tail, 212
take, 212
takeWhile, 212
tautP, 138
tie, 77
transform, 46
transformBi, 53
transformM, 46
transformOn, 51
True, 211
true, 138

B.1. LIBRARY FUNCTIONS 211

Two, 44
Type, 55, 57
TypeBox, 62

undefined, 211
unfold, 81
unfolds, 81
Uniplate, 47
uniplate, 47
universe, 46
universeBi, 53
universeOn, 51

Val, 152
val, 136
valCtor, 177
Value, 145, 176
Var, 176
VarName, 21

words, 87

Zero, 44
zip, 212
zipWith, 212

B.1 Library Functions

The following functions are available in the Haskell standard libraries. All
the functions are given a type signature, and most contain a possible imple-
mentation.

module Prelude where

type String = [Char]

data Bool = False | True

not :: Bool → Bool
not x = if x then False else True

(∧), (∨) :: Bool → Bool → Bool
a ∧ b = if a then b else False
a ∨ b = if a then True else b

(◦) :: (β → γ) → (α → β) → α → γ
(◦) f g x = f (g x)

flip :: (α → β → γ) → β → α → γ
flip f a b = f b a

id :: α → α
id x = x

-- terminate with an error
error :: String → α

212 APPENDIX B. FUNCTION INDEX

undefined :: α
undefined = error "undefined"

fst :: (α, β) → α
fst (x, y) = x

snd :: (α, β) → β
snd (x, y) = y

const :: α → β → α
const x = x

-- show an item as a string
show :: Show α ⇒ α → String

-- read an item from a string
read :: Read α ⇒ String → α

-- read an item, returning all possible parses
reads :: Read α ⇒ String → [(α, String)]

module Data.List where

data [α] = [] | (:) α [α]

length :: [α] → Int
length [] = 0
length (x : xs) = 1 + length xs

map :: (α → β) → [α] → [β]
map f xs = [f x | x ← xs]

foldr :: (α → β → β) → β → [α] → β
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

(++) :: [α] → [α] → [α]
xs ++ ys = foldr (:) ys xs

or, and :: [Bool] → Bool
or = foldr (∨) False
and = foldr (∧) True

any, all :: (α → Bool) → [α] → Bool
any f = or ◦map f
all f = and ◦map f

null :: [α] → Bool
null [] = True
null (:) = False

B.1. LIBRARY FUNCTIONS 213

head :: [α] → α
head (x :) = x

tail :: [α] → [α]
tail (: xs) = xs

elem, notElem :: Eq α ⇒ α → [α] → Bool
elem x = any (≡ x)
notElem x = all (6≡ x)

zipWith :: (α → β → γ) → [α] → [β] → [γ]
zipWith f (x : xs) (y : ys) = f x y : zipWith f xs ys
zipWith f = []

zip :: [α] → [β] → [(α, β)]
zip = zipWith (,)

lookup :: Eq α ⇒ α → [(α, β)] → Maybe β
lookup key [] = Nothing
lookup key ((x, y) : xys) | key ≡ x = Just y

| otherwise = lookup key xys

iterate :: (α → α) → α → [α]
iterate f x = x : iterate f (f x)

splitAt :: Int → [α] → ([α], [α])
splitAt n xs = (take n xs, drop n xs)

take :: Int → [α] → [α]
take n | n 6 0 = []
take [] = []
take n (x : xs) = x : take (n− 1) xs

drop :: Int → [α] → [α]
drop n xs | n 6 0 = xs
drop [] = []
drop n (x : xs) = drop (n− 1) xs

span, break :: (α → Bool) → [α] → ([α], [α])
span p xs = (takeWhile p xs, dropWhile p xs)
break p = span (not ◦ p)

dropWhile :: (α → Bool) → [α] → [α]
dropWhile [] = []
dropWhile p (x : xs)

| p x = dropWhile p xs
| otherwise = x : xs

takeWhile :: (α → Bool) → [α] → [α]
takeWhile [] = []

214 APPENDIX B. FUNCTION INDEX

takeWhile p (x : xs)
| p x = x : takeWhile p xs
| otherwise = []

replicate :: Int → α → [α]
replicate n x = take n (repeat x)

filter :: (α → Bool) → [α] → [α]
filter p xs = [x | x ← xs, p x]

concat :: [[α]] → [α]
concat = foldr (++) []

concatMap :: (α → [β]) → [α] → [β]
concatMap f = concat ◦map f

nub :: Eq α ⇒ [α] → [α]
nub [] = []
nub (x : xs) = x : nub (filter (6≡ x) xs)

reverse :: [α] → [α]
reverse l = rev l []

where rev [] a = a
rev (x : xs) a = rev xs (x : a)

partition :: (α → Bool) → [α] → ([α], [α])
partition p xs = (filter p xs, filter (not ◦ p) xs)

module Data.Char where

-- is a character a space
isSpace :: Char → Bool

module Data.Maybe where

data Maybe α = Nothing | Just α

maybe :: β → (α → β) → Maybe α → β
maybe nothing just Nothing = nothing
maybe nothing just (Just x) = just x

fromMaybe :: α → Maybe α → α
fromMaybe x = maybe x id

fromJust :: Maybe α → α
fromJust (Just x) = x

isNothing :: Maybe α → Bool
isNothing Nothing = True
isNothing = False

B.1. LIBRARY FUNCTIONS 215

module Control.Monad where

class Monad m where
(>>=) :: m α → (α → m β) → m β
(>>) :: m α → m β → m β
return :: α → m α

class Functor f where
fmap :: (a → b) → f a → f b

(=<<) :: Monad m ⇒ (α → m β) → m α → m β
(=<<) = flip (>>=)

liftM :: Monad m ⇒ (α → β) → m α → m β
liftM f x = x >>= (return ◦ f)

mapM :: Monad m ⇒ (α → m β) → [α] → m [β]
mapM f = sequence ◦map f

mapM :: Monad m ⇒ (α → m β) → [α] → m ()
mapM f = sequence ◦map f

sequence :: Monad m ⇒ [m α] → m [α]
sequence ms = foldr k (return []) ms

where k m ms = m >>= λx → ms >>= λxs → return (x : xs)

sequence :: Monad m ⇒ [m α] → m ()
sequence ms = foldr (>>) (return ()) ms

module Control.Monad.State where

newtype State s α = State{runState :: s → (α, s)}
instance Monad (State s)

evalState :: State s α → s → α
evalState s = fst ◦ runState s

get :: State s s
put :: s → State s ()

module Data.Function where

on :: (β → β → γ) → (α → β) → α → α → γ
on g f x y = g (f x) (f y)

module System.IO where

-- write out a character to the output
putChar :: Char → IO ()

216 APPENDIX B. FUNCTION INDEX

putStr :: String → IO ()
putStr = mapM putChar

putStrLn :: String → IO ()
putStrLn x = putStr x >> putChar ’\n’

print :: Show α ⇒ α → IO ()
print = putStrLn ◦ show

-- get the command line arguments
getArgs :: IO [String]

-- get the input stream
getContents :: IO String

Bibliography

Stephen Adams. Efficient sets – a balancing act. JFP, 3(4):553–561, 1993.

Alex Aiken and Brian Murphy. Static Type Inference in a Dynamically
Typed Language. In Proc. POPL ’91, pages 279–290. ACM Press, 1991.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

Adam Bakewell and Colin Runciman. A space semantics for core Haskell.
In Proc. Haskell Workshop 2000, September 2000.

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunc-
tionalization. In Proc. ICFP ’97, pages 25–37. ACM, 1997.

Urban Boquist and Thomas Johnsson. The GRIN project: A highly opti-
mising back end for lazy functional languages. In Proc IFL ’96, volume
1268 of LNCS, pages 58–84. Springer-Verlag, 1996.

Björn Bringert and Aarne Ranta. A pattern for almost compositional func-
tions. In Proc. ICFP ’06, pages 216–226. ACM Press, 2006.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed clo-
sure conversion for typed languages. In Proc. ESOP ’00, volume 1782 of
LNCS, pages 56–71. Springer–Verlang, 2000.

Wei-Ngan Chin and John Darlington. A higher-order removal method. Lisp
Symb. Comput., 9(4):287–322, 1996.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for ran-
dom testing of Haskell programs. In Proc. ICFP ’00, pages 268–279. ACM
Press, 2000.

John Horton Conway. Regular Algebra and Finite Machines. London Chap-
man and Hall, 1971.

217

218 BIBLIOGRAPHY

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proc ICFP ’07, pages 315–326.
ACM Press, October 2007a.

Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting Haskell
strings. In Proc PADL 2007, pages 50–64. Springer-Verlag, January 2007b.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proc.
PPDP ’01, pages 162–174. ACM, 2001.

Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. In
Proc. TCS ’02, pages 448–460, Deventer, The Netherlands, 2002.

Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,
12(4):381–391, 1999.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proceedings of
the 3rd International Joint Conference on Automated Reasoning (IJCAR
’06), volume 4130 of LNCS, pages 281–286. Springer–Verlag, 2006a.

J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann. Automated
termination analysis for Haskell: From term rewriting to programming
languages. In Proceedings of the 17th International Conference on Rewrit-
ing Techniques and Applications (RTA-06), volume 4098 of LNCS, pages
297–312. Springer–Verlag, 2006b.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to
deforestation. In Proc FPCA ’93, pages 223–232. ACM Press, June 1993.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core – from
Haskell to Core. The Monad.Reader, 1(7):45–61, April 2007.

M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional-
logic language. In ILPS’95 Post Conference Workshop on Declarative
Languages for the Future. Portland State University and ALP, Melbourne
University, 1995.

Ralf Hinze. Generics for the masses. In Proc. ICFP ’04, pages 236–243.
ACM Press, 2004. ISBN 1-58113-905-5.

BIBLIOGRAPHY 219

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In
Summer School on Generic Programming, volume 2793 of LNCS, pages
1–56. Springer-Verlang, 2003.

Gerard Huet. Functional pearl: The Zipper. JFP, 7(5):549–554, September
1997.

John Hughes. A novel representation of lists and its application to the
function “reverse”. Inf. Process. Lett., 22(3):141–144, 1986.

Graham Hutton and Joel Wright. Calculating an Exceptional Machine. In
Hans-Wolfgang Loidl, editor, Trends in Functional Programming volume
5. Intellect, February 2006. Selected papers from the Fifth Symposium
on Trends in Functional Programming, Munich, November 2004.

S. C. Johnson. Lint, a C program checker. Technical Report 65, Bell Labo-
ratories, 1978.

Thomas Johnsson. Lambda lifting: transforming programs to recursive
equations. In Proc. FPCA ’85, pages 190–203. Springer-Verlag New York,
Inc., 1985.

Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. In Proc.
PEPM ’94, pages 107–117. ACM Press, June 1994.

Mark P. Jones. Type classes with functional dependencies. In Proc ESOP
’00, volume 1782 of LNCS, pages 230–244. Springer-Verlang, 2000.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice-Hall International, 1993.

Peter A. Jonsson and Johan Nordlander. Positive Supercompilation for a
higher order call-by-value language. In Proc. IFL 2007, September 2007.

J B Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95(2):210–255,
1960.

R. Lämmel and J. Visser. A Strafunski Application Letter. In Proc.
PADL’03, volume 2562 of LNCS, pages 357–375. Springer-Verlag, Jan-
uary 2003.

220 BIBLIOGRAPHY

Ralf Lämmel. The sketch of a polymorphic symphony. In Proc. of Interna-
tional Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2002), volume 70 of ENTCS. Elsevier Science, 2002.

Ralf Lämmel. Typed generic traversal with term rewriting strategies. Jour-
nal of Logic and Algebraic Programming, 54:1–64, 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In Proc. TLDI ’03, pages 26–37.
ACM Press, March 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proc. ICFP ’04, pages 244–255. ACM Press,
2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class:
extensible generic functions. In Proc. ICFP ’05, pages 204–215. ACM
Press, September 2005.

C. Lee. Representation of switching circuits by binary decision diagrams.
Bell System Technical Journal, 38:985–999, 1959.

Michael Leuschel. Homeomorphic embedding for online termination of sym-
bolic methods. In The essence of computation: complexity, analysis,
transformation, pages 379–403. Springer-Verlag, 2002.

Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in
telecom applications through lightweight static analysis: A war story. In
Proc. APLAS ’04, LNCS 3302, pages 91–106. Springer, November 2004.

Fredrik Lindblad, Matthew Naylor, and Colin Runciman. Lazy Small-
Check - project home page. http://www.cs.york.ac.uk/~mfn/

lazysmallcheck/, October 2007.

Luc Maranget. Warnings for pattern matching. JFP, 17(3):1–35, May 2007.

Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD
thesis, University of Glasgow, 1996.

Simon Marlow and Simon Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. JFP, 16(4–5):415–449, July
2006.

BIBLIOGRAPHY 221

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones.
Faster laziness using dynamic pointer tagging. In Proc. ICFP ’07, pages
277–288. ACM Press, October 2007.

Conor McBride and James McKinna. The view from the left. JFP, 14(1):
69–111, 2004.

Conor McBride and Ross Paterson. Applicative programming with effects.
JFP, 17(5):1–13, 2007.

John Meacham. jhc: John’s haskell compiler. http://repetae.net/john/
computer/jhc/, 2008.

Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–424, 1992.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML - Revised. The MIT Press, May 1997.

Neil Mitchell and Stefan O’Rear. Derive - project home page. http://www.
cs.york.ac.uk/~ndm/derive/, March 2007.

Neil Mitchell and Colin Runciman. Not all patterns, but enough – an auto-
matic verifier for partial but sufficient pattern matching. In Proc. Haskell
’08, 2008a.

Neil Mitchell and Colin Runciman. A static checker for safe pattern match-
ing in Haskell. In Trends in Functional Programming (2005 Symposium),
volume 6, pages 15–30. Intellect, 2007a.

Neil Mitchell and Colin Runciman. Unfailing Haskell: A static checker for
pattern matching. In Proceedings of the Sixth Symposium on Trends in
Functional Programming, pages 313–328, September 2005.

Neil Mitchell and Colin Runciman. Supercompilation for core Haskell. In
Selected Papers from the Proceedings of IFL 2007, 2008b. To appear.

Neil Mitchell and Colin Runciman. Supero: Making Haskell faster. In Proc.
IFL 2007, September 2007b.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In Proc. Haskell ’07, pages 49–60. ACM, 2007c.

222 BIBLIOGRAPHY

Markus Mohnen. Context patterns in Haskell. In Implementation of Func-
tional Languages, pages 41–57. Springer-Verlag, 1996.

Paliath Narendran and Jonathan Stillman. On the complexity of homeo-
morphic embeddings. Technical Report 87–8, State University of New
York at Albany, Albany, NY, USA, March 1987.

Matthew Naylor and Colin Runciman. Finding inputs that reach a target
expression. In Proc. SCAM ’07, pages 133–142. IEEE Computer Society,
September 2007.

Matthew Naylor and Colin Runciman. The Reduceron: Widening the von
Neumann bottleneck for graph reduction using an FPGA. In Selected
Papers from the Proceedings of IFL 2007, 2008. To appear.

George Nelan. Firstification. PhD thesis, Arizona State University, Decem-
ber 1991.

Will Partain et al. The nofib Benchmark Suite of Haskell Programs. http:
//darcs.haskell.org/nofib/, 2008.

Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Re-
port. Cambridge University Press, 2003.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In Engi-
neering theories of software construction, 2002.

Simon Peyton Jones. The Implementation of Functional Programming Lan-
guages. Prentice-Hall, 1987.

Simon Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proc. ICFP ’07, pages 327–337. ACM Press, October 2007.

Simon Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The spineless tagless G-machine. JFP, 2(2):127–202, 1992.

Simon Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In J. Hughes, editor, Proc
FPCA ’91, volume 523 of LNCS, pages 636–666, Cambridge, Massachus-
sets, USA, August 1991. Springer-Verlag.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell
Compiler inliner. JFP, 12:393–434, July 2002.

BIBLIOGRAPHY 223

Simon Peyton Jones and Andrés Santos. Compilation by transformation in
the Glasgow Haskell Compiler. In Functional Programming Workshops in
Computing, pages 184–204. Springer-Verlag, 1994.

Simon Peyton Jones, Will Partain, and Andre Santos. Let-floating: Moving
bindings to give faster programs. In Proc. ICFP ’96, pages 1–12. ACM
Press, 1996.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In Proc.
Haskell ’01, pages 203–233. ACM Press, 2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In Proc.
ICFP ’06, pages 50–61. ACM Press, 2006.

François Pottier and Nadji Gauthier. Polymorphic typed defunctionaliza-
tion. In Proc. POPL ’04, pages 89–98. ACM Press, 2004.

Deling Ren and Martin Erwig. A generic recursion toolbox for Haskell or:
scrap your boilerplate systematically. In Proc. Haskell ’06, pages 13–24.
ACM Press, 2006.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proc. ACM ’72, pages 717–740. ACM Press, 1972.

Niklas Röjemo. Highlights from nhc – a space-efficient Haskell compiler. In
Proc. FPCA ’95, pages 282–292. ACM Press, 1995.

David Roundy. Darcs: distributed version management in Haskell. In Proc.
Haskell ’05, pages 1–4. ACM Press, 2005.

Jens Peter Secher and Morten Heine B. Sørensen. On perfect supercompi-
lation. In D. Bjørner, M. Broy, and A. Zamulin, editors, Proceedings of
Perspectives of System Informatics, volume 1755 of LNCS, pages 113–127.
Springer-Verlag, 2000.

Damien Sereni. Termination analysis and call graph construction for higher-
order functional programs. In Proc. ICFP ’07, pages 71–84. ACM, 2007.

Tim Sheard. Languages of the future. In Proc. OOPSLA ’04, pages 116–119.
ACM Press, 2004.

224 BIBLIOGRAPHY

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proc. Haskell Workshop ’02, pages 1–16. ACM Press, 2002.

M. Heine Sørensen and R. Glück. An algorithm of generalization in positive
supercompilation. In J.W. Lloyd, editor, Logic Programming: Proceedings
of the 1995 International Symposium, pages 465–479. MIT Press, 1995.

Don Stewart and Spencer Sjanssen. XMonad. In Proc. Haskell ’07, pages
119–119. ACM Press, 2007.

Jonathan Stillman. Computational problems in equational theorem proving.
PhD thesis, State University of New York at Albany, Albany, NY, USA,
1989.

The GHC Team. The GHC compiler, version 6.8.2. http://www.haskell.
org/ghc/, December 2007.

The Yhc Team. The York Haskell Compiler – user manual. http://www.

haskell.org/haskellwiki/Yhc, February 2007.

Andrew Tolmach. An External Representation for the GHC Core
Language. http://www.haskell.org/ghc/docs/papers/core.ps.gz,
September 2001.

Akihiko Tozawa. Towards Static Type Checking for XSLT. In Proc. DocEng
’01, pages 18–27. ACM Press, 2001.

V. F. Turchin. Refal-5, Programming Guide & Reference Manual. New
England Publishing Co., Holyoke, MA, 1989.

V F Turchin. The algorithm of generalization in the supercompiler. In Par-
tial Evaluation and Mixed Copmutation, pages 341–353. North-Holland,
1988.

Valentin F. Turchin. The concept of a supercompiler. ACM Trans. Program.
Lang. Syst., 8(3):292–325, 1986.

Valentin F. Turchin, Robert M. Nirenberg, and Dimitri V. Turchin. Experi-
ments with a supercompiler. In Proc. LFP ’82, pages 47–55. ACM, 1982.
ISBN 0-89791-082-6. doi: http://doi.acm.org/10.1145/800068.802134.

Alan Mathinson Turing. On Computable Numbers, with an Application
to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42:230–265, 1937.

BIBLIOGRAPHY 225

David Turner. Total Functional Programming. Journal of Universal Com-
puter Science, 10(7):751–768, July 2004.

Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent program-
ming in ERLANG. Prentice Hall, second edition, 1996.

Eelco Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Domain-Specific Program Gen-
eration, volume 3016 of LNCS, pages 216–238. Spinger-Verlag, June 2004.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc ESOP ’88, volume 300 of LNCS, pages 344–358. Berlin: Springer-
Verlag, 1988.

Philip Wadler. List comprehensions. In Simon Peyton Jones, editor, Imple-
mentation of Functional Programming Languages. Prentice Hall, 1987.

Philip Wadler. Theorems for free! In Proc. FPCA ’89, pages 347–359. ACM
Press, 1989.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proc. POPL ’89, pages 60–76. ACM Press, 1989.

Stephanie Weirich. RepLib: a library for derivable type classes. In Proc.
Haskell ’06, pages 1–12. ACM Press, 2006.

Noel Winstanley. Reflections on instance derivation. In 1997 Glasgow Work-
shop on Functional Programming. BCS Workshops in Computer Science,
September 1997.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming.
In Proc. POPL ’99, pages 214–227. ACM Press, 1999.

Dana N. Xu. Extended static checking for Haskell. In Proc. Haskell ’06,
pages 48–59. ACM Press, 2006.

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract
checking for Haskell. In Proc. IFL 2007, pages 382–399, 2007.

