
Total Pasta:
Static Analysis For Unfailing Pointer Programs

Neil Mitchell

Supervisor: Professor Colin Runciman

Fourth year project report submitted May 5, 2004 toward the degree of
MEng Computer Science and Software Engineering from the Department of
Computer Science, at the University of York.

Number of words = 28183, as counted by the Unix wc command on the LATEX
source. This includes the body of the report, but excludes the appendices.

Page count = 66, including the body of the report, but excluding the ap-
pendices.

1

Abstract

Most errors in computer programs are only found once they are run, which results in critical errors being
missed due to inadequate testing. If additional static analysis is performed, then the possibility exists for
detecting such errors, and correcting them. This helps to improve the quality of the resulting code, increasing
reliability.

In this project the existing static analysis research is reviewed, along with implementations used both by
normal programmers, and used in safety critical applications. A static analysis program is then designed
and implemented for the experimental pointer based language Pasta.

The resulting program checks for totality, proving that a particular procedure cannot crash and will termi-
nate. Where a procedure does not satisfy this, the preconditions for the procedure are generated.

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Aims . 5
1.3 Chapter review . 5

2 Background 6
2.1 Pointers . 6
2.2 Pasta . 7
2.3 Total function . 9
2.4 Summary . 10

3 Static Analysis 11
3.1 Data Flow Analysis . 11
3.2 Constraint Based Analysis . 11
3.3 Forward Analysis . 12
3.4 Backwards Analysis . 12
3.5 Programming Tools . 13
3.6 Formal Verification Tools . 15
3.7 Static Analysis for Pointers . 17
3.8 Summary . 19

4 Design 20
4.1 Totality . 20
4.2 Reduced Pasta . 21
4.3 Completeness of Reduced Pasta . 24
4.4 Full or Partial Analysis . 27
4.5 Summary . 27

5 Forward Analysis 28
5.1 Notation . 28
5.2 Compound Statements . 28
5.3 Atomic Pointer Assignment . 30
5.4 Atomic Integer Statements . 32
5.5 Aliasing . 34
5.6 The � operation . 35
5.7 Acyclic Paths . 36
5.8 Forward Analysis Sample . 38
5.9 Summary . 39

6 Backward Analysis 40
6.1 Terms . 40
6.2 Conditional Statements . 41
6.3 Loops . 41
6.4 Statements . 43
6.5 Predicate Logic . 44
6.6 Summary . 45

7 Implementation and Testing 46
7.1 Choice of Analysis Method . 46

3

7.2 Language . 46
7.3 Abstract Representation . 46
7.4 Program Design . 46
7.5 Loop Design . 48
7.6 Testing . 49
7.7 Summary . 51

8 Results and Evaluation 52
8.1 Criteria for Evaluation . 52
8.2 Linked List . 52
8.3 Queue Analysis . 54
8.4 Tree . 56
8.5 Threaded Tree . 56
8.6 Forward Analysis . 57
8.7 Disjoint Subtypes . 58
8.8 Runaway Non-termination . 58
8.9 Performance . 59
8.10 Overall Results . 60
8.11 Summary . 60

9 Conclusions and Further Work 61
9.1 Existing Performance . 61
9.2 Compiler Optimisations . 61
9.3 Better Error Reporting . 61
9.4 Removal of Annotations . 61
9.5 Extended Language . 62
9.6 Forward Analysis . 62
9.7 Performance Improvements . 62
9.8 Procedure Isolation . 62

Bibliography 64

A Expanded List insert Procedure 66
A.1 Standard Pasta . 66
A.2 Reduced Pasta . 66

B Queue Sample 67

C Thread Tree Sample 68

D Regression Tests 70

E Source Code 72
E.1 Statement Abstraction . 72
E.2 Predicate Engine . 74
E.3 Backward Execution Engine . 77
E.4 Forward Execution Engine . 81

F Pasta Language Definition 85

4

Chapter 1:

Introduction

This chapter covers the motivation and aims behind the project, and gives a brief summary of the following
chapters.

1.1 Motivation

Many computer programs crash at run time, and often extensive testing fails to catch subtle and obscure
bugs. Static analysis [23] allows certain properties of a program to be calculated without running the
program, which can highlight previously unseen errors in computer code. The analysis of programs which
directly manipulate pointers is a particularly complex area.

The Pasta programming language [25] is an experimental pointer programming language that can be checked
using graph theory to prove properties about the manipulation of data structures. For this graph analysis
to be valid, every procedure in the program must be safe, and produce an output for every input. To prove
this in the Pasta programming language it is to prove that the program does not crash, and that it does not
loop infinitely.

1.2 Aims

The first aim of this project is to research the existing static analysis tools and methodologies available, and
to determine their suitability in respect of the Pasta programming language. The second aim is to produce
a suitable analysis engine for Pasta that can correctly assert that a function within a given program is total.

1.3 Chapter review

Chapter 2 covers the background theory on pointers and the Pasta programming language. Chapter 3
reviews existing static analysis theory and implementations. Chapter 4 covers the initial design decisions,
and detailed discussion of the Pasta language. Chapter 5 describes how a forward analysis engine could
be designed. Chapter 6 covers the design of a backward analysis engine. Chapter 7 describes a concrete
implementation of the system designed in chapter 6, including information such as programming language,
and how certain concepts can be implemented. Chapter 8 gives results obtained by the implemented program,
including areas where it fails to perform optimally. Chapter 9 is the conclusion and covers an appraisal of
the current system, along with areas for possible improvement.

5

Chapter 2:

Background

This chapter covers the background material needed to understand the remainder of the project. The
subject of pointers, and in particular their place within the Pasta language, is covered. A knowledge of
discrete mathematics to first year degree level is assumed, along with familiarity with some programming
languages, such as C[5].

2.1 Pointers

Many computer programs use an area of memory known as the heap to store pieces of data. Often large
arrays and dynamically allocated data structures are placed on this heap. In order to refer to a piece of
memory on the heap programs use pointers, which are variables that point to a location within the heap,
hence the name.

Many computer programming languages limit the types of operation that can be performed on pointers,
giving different levels of power. Pointers allow many advanced computation features, however with this
power comes an additional class of programming errors that can be made.

2.1.1 Addresses

Each location in the heap corresponds to an address in the system’s memory, and this can address can be
dereferenced to obtain the contents at this point. Internally addresses are stored in the same way as integers,
therefore it is possible to perform numeric operations such as addition, subtraction, bit-wise inversion and
others on an address. As a result of this, an address is not guaranteed to point to a location within the
heap, or even within addressable memory. If the address does point to within the heap, then it does not
necessarily point at an object, but may point into either an unutilised area of the heap, the middle of any
given object within the heap, or an object that has since been deallocated.

The advantage of allowing the power of addresses is that it allows higher performance code to be written,
and is essential for low level system programming. Some languages that expose the entire power of addresses
include Assembly language and the C programming language. While the use of direct addresses within C
programs is discouraged, there are some more common uses. Often to enumerate through an array the
pointer to the first element is increased, by adding to the pointer the size of each element. Another use
for addresses is when storing doubly linked lists, the pointer to the previous item and the next item can be
coalesced into one pointer field with an XOR operation. When reaching an item, the program will know
either its previous or next element, and by performing XOR will hence find the other one. This allows space
to be saved.

2.1.2 Restricted Addresses

One method used to restrict the danger in using addresses is removing the ability to perform mathematical
operations is removed. All values used as pointers are then determined by calls to memory allocation oper-
ations. After a pointer has been initialised, it will point at a valid object, unless that object is subsequently
freed.

An example of a language that supports restricted addresses is Pascal [18], which disallows some dangerous
operations, and still allows the programmer to manually manage the allocation and deallocation of memory.

2.1.3 References

6

A reference is a far stronger construct, and requires that every pointer variable points at a valid type of object.
A pointer cannot become orphaned, or any other invalid value, so every pointer dereference is guaranteed
to be safe. Most languages which have reference types also have some special reserved value to represent
“no pointer”. In Java [16] this is called null. All pointers are typically initialised to this reserved value,
and when they are assigned to a pointer value, that pointer value is guaranteed to remain correct while that
pointer is assigned to it. These languages usually give some form of automatic memory management, such
as garbage collection in Java or reference counting in Visual Basic [11].

While less power is exposed than in other languages, there are far higher safety guarantees. Teaming
references with checked array access (which is in effect what references are) gives the assurance that memory
contents cannot be accidentally overwritten. This is essential when a language needs to assert some safety
criteria – for example the Java programming language does not perform unchecked memory operations.

2.1.4 Aliasing

When two pointers refer to the same heap cell, they are said to be aliased to each other. This has the effect
that if the underlying heap cell is mutated, then the effect of this will be visible from both pointers. This is
easiest to illustrate with the following example written in C:� �
char* p = "Pasta";
char* q = p; //q and p are now aliased
strcpy(p, "Penne"); //change the value of p� �
After this code is executed, the observed value of q will have changed from "Pasta" to "Penne". Diagram-
matically an alias can be represented as:
p //�� ���� ��Penne qoo

2.2 Pasta

The Pasta programming language [25] is designed to represent pointer manipulating programs, to support
practical research experiments. The language is small and simple, including only operations that are useful
for research experiments, not writing large scale software. The syntax of Pasta is based on that of the C
programming language, however the semantics differ greatly.

2.2.1 Initial Example

While all C style programming languages are introduced with the classic “Hello, World!” program, the equiv-
alent in pointer languages would probably be insertion into an ordered singly-linked list without duplicates.
To properly introduce the concepts behind Pasta, this is given as an example, in several portions.

The first section of any Pasta program is the signature, which comes at the top of each file. A signature is
given below:� �
list {

nil();
cons(int head, ptr tail);

}� �
This statement defined a type called list, with two subtypes being nil and cons. The cons subtype has
fields called head which is an integer, and tail which is a pointer. Any ptr field can point to any object on

7

the heap. From this the representation of a linked list can be constructed, with a list comprising of successive
cons structures, the next element being pointed at by a tail, and a final nil element. To obey the ordered
property it is also the case that x->head is numerically less than x->tail->head, assuming the head and
tail selectors are valid.� �
−− inserts an element into a list
−− requires the initial list be sorted
−− ensures the final list is sorted
insert(int i, ptr s) {

while (s::cons && s->head < i) s = s->tail;
if (s::nil || s->head > i) *s = *cons(i,copy(s));

}� �
This function traverses down the list using the while statement, at each stage checking that the end of the
list has not been reached. The s::cons expression checks the subtype of the variable s, and is true if its
subtype is cons. At each stage the pointer s is advanced down the list, with s = s->tail. At the end,
the heap cell pointed at by s is overwritten with an object of subtype cons, with the * operator performing
in-place assignment. This means that the previous node’s tail pointer does not need to be updated, as the
new node is at the position of the old node.

The final piece of code to complete this sample program would be a distinguished main procedure, that is
executed upon startup.� �
main() {

ptr r = nil();
insert(1,r); insert(9,r);
insert(2,r); insert(8,r);

}� �
This procedure inserts the elements 1, 9, 2 and 8 into the linked list pointed at by r. After executing this
procedure, the heap could be visualised as:
r // 1 // 2 // 8 // 9 // nil

2.2.2 Typing

In Pasta there are two fundamental types of item, integers (using the int keyword), and pointers (using
ptr). An item that is declared as an integer stores a number, and this number may be compared with other
numbers. Pointers are reference types, and in contrast to Java, there is no null keyword, so all pointers
refer to valid heap objects as described in the type signature.

The Pasta interpreter performs a limited static analysis on the program before execution, checking that all
assignment occurs between like types, and that comparison operators other than equality and inequality are
done only on numbers. In addition, there are some operations than can only be performed on pointers (::
and ->), and these are validated as well. No checks are made statically of the subtypes, so the -> operation
may fail at run time.

More than one subtype may have an identically named selector, and the appropriate field is selected at
runtime, based on the subtype. All selectors of the same name must have the same type, allowing the type

8

analysis to be performed with relative ease. This overloading can be thought of as similar to the C++ [6]
virtual keyword.

2.2.3 Assignment

Pasta permits destructive assignment, where a pointer is modified to point at another location on the heap.
Pasta also supports starred assignment, whereby the contents of a memory cell pointed to by a pointer are
overwritten directly. When a pointer value is first declared, it must be assigned an initial value, for example
r in the procedure main.

The numeric assignment in Pasta is quite different to this, and all int variables are unrelated. When an
assignment is made, changes to one variable do not affect others.

2.2.4 Goals of Pasta

The Pasta language can be transformed into a graph representation, and this representation can be used to
check that the program does what is intended. The graph analysis treats the program as a mathematical
function, taking an input data structure to an output structure. A prerequisite for the graph analysis is
that the procedure successfully reaches generates an output in all configurations. This condition needs to be
checked by another form of analysis, and this project attempts to achieve this.

The Pasta language can also be compiled into functions useable from a C program. Routines manipulating
pointer data structures can be written in Pasta, with assurances about safety not normally associated with
C.

2.3 Total function

Since the requirement of static analysis on Pasta is that all the functions are total, it is useful to first define
what a total function is. More details can be found in an introductory computation textbook, such as [22].

A total function is a relation that uniquely associates members of an input set with an output set, and is
valid for every member of the input set.

∀x ∈ In • f(x) ∈ Out

When talking about computer programming languages totality maps directly onto the idea that the procedure
must complete, for example by not crashing. While mathematics cannot enter infinite computation, this is
not the case for a programming language. If a routine in a programming language never terminates then
this is equivalent to not producing any value, and hence breaks the totality of the function.

2.3.1 Deterministic Output

For a true function, the output must be based solely on the input. This is not the case with most procedural
programming languages, as often these programs interface with the rest of the computer. Examples of this
include user interaction, for example the C scanf statement, or file accesses. Other examples of how the
output could not be based on the input include access-time or date-based routines, global variable use, or use
of a random-number generation. The Pasta language has no functions defined which are not deterministic,
hence this problem is avoided.

At a lower level, Pasta does have operations that depend on the state of more than just the function input.
When a new value is created on the heap, the location at which it is placed is based on what is already on
the heap. Fortunately, details such as these are not propagated up to the programmer, and the program
cannot behave differently based on the layout of the heap.

9

2.3.2 Termination

The Halting Problem [27] states that for any Turing Complete language, the problem of termination is
undecidable in the general case. This means that it is not possible to write a computer program that takes
as an input a definition of a programmed function, and returns as an output whether it terminates or not.

It is however, possible for certain types of function to check for termination. For example, if a function has
no loops, and no further function calls then it is easy to determine that it terminates. If the program consists
only of a loop that is guarded by a tautology, then it is can be determined that it loops infinitely. A number
of these special case termination arguments exist, and can be used to compute termination for a subset of
possible programs.

2.4 Summary

This chapter has shown an example of the Pasta programming language, along with basic specifications of
its use. The purpose of the analyser has been set out, including what does not need to be checked. The
concept of a total function is defined, along with its equivalent for a computer program.

10

Chapter 3:

Static Analysis

This chapter covers the topic of static analysis, its overall aims, and various methods of implementation.
Existing analysis programs are covered, along with how they can be used and what guarantees they give.
Various methods of representing pointer data structures are also covered.

Static analysis a term used to describe the analysis of a program, and determining properties about it,
without executing the code directly. It analyses all branches of the code, and the analysis itself is guaranteed
to terminate. Static analysis is used for many purposes, including checking for safety of programs, and for
generating higher performance software.

Often in static analysis it is not possible to completely determine a property. In this circumstance, the
analysis can either ignore a potential problem, or generate a possibly false warning. The choice of which to
do depends on the purpose of the static analyser.

There are many different models of static analysis, some of the more common ones are now described. More
information on this topic can be obtained from sources such as [23].

In order to show the difference between the various following approaches, I will use the example of calculating
z = x× y without the use of multiplication, where all the variables are positive integers, and x is destroyed.
This can be done by the following code:� �
[z = 0]1;
while ([x > 0]2) {

[x = x− 1]3;
[z = z + y]4;

}� �
3.1 Data Flow Analysis

For data-flow analysis, the program can be considered as a graph. Each statement in the program then
corresponds to a node, and the flow between the statements as directed arcs on this graph. Program
statements such as if and while lead to situations where two arcs either arrive at or leave a single node.
The example given above would translate into a graph as shown in Figure 3.1.

Using the graph representation, equations are then set up to define the reaching definitions, where a variable
obtains its value from. Separate definitions are provided for the entry and exit to each node, allowing
the output to be modelled in terms of the input. For example, statement 2 does not modify the state so
RDentry(2) = RDexit(2). Before the program is executed, on entry to statement 1, none of the values have
a known reaching definition so RDentry(1) = {(x, ?), (y, ?), (z, ?)}. However, after statement 1 has been
executed RDexit(1) = {(x, ?), (y, ?), (z, 1)}. Note that the value associated with z is 1, corresponding to the
statement that set it, and not the value it was set to.

After these reaching definitions have been created, they are then solved to determine where a variables value
at any point comes from. This information can then help show what the value of the variable is, and how it
changes. In the course of solving the equations, it may be necessary to decrease the precision of the analysis,
to ensure termination.

11

Figure 3.1: Multiplication example as a graph

��
[z = 0]1

��
[x > 0]2

yes

��

no //

[x = x− 1]3

��
[z = z + y]4BC@A

GF //

3.2 Constraint Based Analysis

Constraint based analysis uses a similar graph representation to data flow analysis, however it focuses on
the node instead of its entry and exit points. Each statement is reformulated as a constraint, describing the
effect of the node. These constraints are then solved using general constraint solving techniques. This type
of analysis seems to be more common when working with functional programs, and vast simplifications rely
on the the absence of side effects.

The example given for data-flow analysis could be reformulated as a constraint based problem. The exit
from the first statement can be represented as RDexit(1) ⊇ {(z, 1)}. Note the use of ⊇ as a constraint, many
of these can be generated and then solved to find a fixed point.

3.3 Forward Analysis

In this method the program is executed on a generic state, which represents all the possible states the
program could be in just after a particular statement. As the statements are executed, the state is modified,
and the end state can be used to deduce properties on. Where a statement can be executed more than once,
for example statement 3, the generic state must cater for all these possibilities.

Finding suitable abstractions for each variable is often specific to particular problems. One method often
used for numeric variables is range analysis, determining which variables may be between which values. For
example, after statement 1 has been executed 0 ≤ z ≤ 0, while all other variables are unknown.

3.4 Backwards Analysis

Backwards analysis takes a postcondition at the end of the procedure, and transforms it over all the state-
ments in reverse order to obtain a precondition. This is particularly useful when the exact properties required
at the end can be determined before analysis starts.

The disadvantage of using backward analysis compared to the other methods is that sometimes it becomes
counter intuitive. When an error is reached, it is not always easy to pinpoint where the error is – only that

12

it exists. On the other hand, forward analysis is generally able to give the precise statement which caused
the error.

Using backward analysis on the above example, if the postcondition for statement 4 was that z ≥ 0 then the
precondition would be z + y ≥ 0. When transformed over the entire program, z ≥ 0 would become y ≥ 0.
However, taking the postcondition z > 0 would generate y > 0 ∧ x > 0 as a precondition to the function.

3.5 Programming Tools

The following programming tools based on static analysis are in widespread use by many programmers. In
most cases the static analysis is performed with standard source code, with few modifications if any.

3.5.1 Type Checking

The most common type of static analysis is the type checking perform on statically typed languages at
compile time. These include languages such as C++ [6] and Haskell [20]. In these languages there are lots
of distinct types of objects, and different functions operate on different types, as pre-declared. The C++
language requires complete declarations of all types, and then uses these types to implement overloaded
functions, where two functions of the same name but different type signatures can be created and used,
with the compiler deciding at compile time the appropriate version. The Haskell language takes a different
approach, with types being optional, and inferred via unification where they are absent. In both cases, at
compile time, the syntax tree can be completely decorated with all the types of every variable present in the
program.

3.5.2 Liveness Analysis

Another type of static analysis that is very common is liveness analysis [15]. The point of liveness analysis
is to determine whether a variable is live at a particular statement in the program. A variable is live at a
statement if its value is used before it is assigned to, meaning some part of the program requires the value
as it is stored. One reason for liveness analysis is to help code optimisers. When compiling source code to a
target processor, particularly a register-based processor, some variables are stored in memory and some are
stored in fast access registers. With liveness analysis the variables stored in the limited number of registers
can be chosen in a more efficient manner.

More modern compilers now tend use liveness analysis also for tracking uninitialised variables. When a
variable is declared in a language such as C, its initial value is undefined, and use of this value can lead to
unpredictable behaviour. Liveness analysis allows a warning to be given at compile time, and the error can
then be corrected.

3.5.3 Compilers

The most common tool to analyse source code is a compiler. This section concentrates on some of the
static analysis tasks performed by compilers, in addition to those mentioned above. For most examples, the
GCC [24] compiler is used, as this is open source and is documented to a greater degree than commercial
alternatives.

One example of static analysis is the nonnull attribute, which can be applied to a function. This means
that passing a null pointer to the function is not a valid operation. For example, a definition of the common
memcpy function might be augmented in the following way:

extern void*
memcpy(void *destination, const void *source, size_t length)

13

attribute ((nonnull (1,2)));

This nonnull attribute tells the compiler to track the values passed to memcpy, and complain if either of
them is a null pointer. This is done using static analysis, and a variation on the liveness analysis described
above, that also tracks the values. This attribute is also used to give hints to the compiler, by assuming that
the values passed in are not null.

Another use of static analysis in the code comes not from correctness checking, but purely from performance
enhancing code. Many modern processor architectures, for example the Intel Itanium, allow hints to be
given as to whether a branch will be taken or not. For example, in an if statement typically one branch will
be taken more than the other. The compiler can emit this information to the assembly code allowing the
processor to make the common case more efficient while still keeping the less common case correct. GCC
can be configured to make these decisions based on information garnered from static analysis, principally
variable-flow analysis. In addition to traditional static analysis, the compiler also has heuristics for common
behaviour, such as more integers are positive than negative. This information is then propagated using
static analysis to determine likely code paths. This is an example where the static analysis does not have to
be correct, and indeed, provided it is correct slightly more than half the time, will result in a performance
increase.

Most of the static analysis in compilers comes from examining variable flows, by tracking what gets assigned
to what. These types of analysis are commonly broken by introducing values that have not been tracked up
to that point, for example results for external functions or global variables. In this case, the static analyser
usually keeps silent, and does not issue a warning of any sort, as these cases are very common.

3.5.4 Splint

The Splint tool [14], and various papers about it, relate to the design of a light-weight static analysis checker.
Initially the tool was based on the concept of an improved Lint [19] (Lint being an early static analyser for
C), but now Splint is more concerned with static analysis from a security point of view.

The goal of Splint is to highlight as many possible programming errors as possible. It is neither sound nor
complete, producing both false positives and false negatives. The types of bugs that are focused on are buffer
overflows and resource leaks, as these tend to be a security concern. Program correctness is not explicitly
tackled, although many programming errors would give rise to errors that are flagged. Splint has various
analysis tags that can be applied, such as nonnull, although in general the use of an annotated library, in
contrast to an annotated program, is required to diagnose security problems. Splint operates at a procedural
level, validating each procedure in isolation.

One interesting point about Splint is the treatment of loops. Splint has a list of common patterns, and then
uses these to recognise structures in loops. For example, in C, the most common form of loop statement
is probably for (int i = 0; i < n; i++), where i typically indexes into a buffer. Splint uses this to
determine that the buffer is accessed in positions 0 to n-1.

3.5.5 Stanford Checker

The Stanford Checker [13] is a static analysis tool specifically targeting the Linux kernel. In addition to
errors like buffer overflows, the checker also targets instances where the internal kernel API has been violated
– for example locks not being freed. This has now been incorporated into a commercial product called SWAT
[12].

The analysis performed is both unsafe and incomplete, but still useable by practical programs. This tool
analyses the complete C language, performs interprocedural analysis, and detects a large range of errors. The

14

tool also requires no additional annotations to the code, and instead relies on a technique termed statistical
inference. In a codebase, where a statement lock is usually followed by an unlock, the tool infers that this
is the correct behaviour. Then in future where this is violated, a warning is given.

The major project on which this analysis tool has been tested is the Linux kernel. The analysis tool was
run, and found over 2000 bugs in the code. A rate of 1 false positive to every 4 to 5 real bugs is quoted,
in contrast to around 1 real bug to 50-100 false positives for a tool such as Lint. Unfortunately the inner
details are not available, but this analysis tool seems very powerful.

3.6 Formal Verification Tools

While the tools given above are used in many projects, and can be integrated into an existing project, none
provides a guarantee of correctness. In fact the level of assurance offered by these tools is minimal, and for
a higher level of static analysis a more formal approach is required. This will often require many additional
annotations to the code, and either the use of a safe subset of a programming language, or using a more
mathematical notation. These tools are typically only used when a high level of reliability is required, due
to their high cost to integrate into the development process.

3.6.1 The B Method

The B Method [2], as implemented in the B Toolkit, is very similar in spirit and principle to the Z Notation
[1]. Due to this similarity, only B is covered.

The basic principle of the B Method is that the state of the program is represented as a finite number of vari-
ables, which are defined in terms of mathematical objects such as numbers, sets and functions. A procedure
then takes this state, and mutates it in some way, using both mathematical operators and destructive assign-
ment. All the operations in B are defined in terms of predicate logic, all procedures have a pre-condition, and
the entire state space has an invariant. The B Toolkit is then able to take this specification of the program,
and for each procedure, prove that if the preconditions and the invariant hold before, then afterwards the
invariant will hold. In B this is equivalent of checking that:

Invariant ∧ Precondition ⇒ [Statement]Invariant

In B, various constructs that are common in most programming languages are missing. Examples of these
include procedure calls (both recursive and non-recursive) and any form of looping behaviour. This ensures
that the program does not loop infinitely. The way the B toolkit proves properties about programs is by
taking the postcondition, and transforming it in light of the statements – essentially backward analysis.

The B Method also provides a mechanism for turning a formal specification into a concrete implementation,
without loosing the formality. This process is called reification, and involves reformulating from abstract
maths to a lower level representation, in stages. At each stage it is possible to prove that the semantics of
the program have not been changed, and that all the conditions still hold.

One step in the reification process involves introducing loops using the WHILE statement. The B Method
requires that a WHILE contains a loop invariant and a loop variant, in addition to the statement to be
executed and a conditional guard. The loop invariant must be true at the end of every loop execution, and
can simply be specified as a tautology. The loop variant however is a variable, which must correspond to a
positive integer value, and which must decrease every loop iteration. This ensures that only a finite number
of iterations are possible, bounded by the value of the loop variant. Determining a loop variant must be
done by the programmer, to do this automatically would be equivalent to solving the halting problem.

The B Method is a very rigourous tool for engineering software, using formal mathematics to prove correct-
ness. Unfortunately, the use of such a toolkit is a complex undertaking, and standard programming code is

15

hard to construct in such a manner.

3.6.2 SPARK

In many ways the SPARK programming language [7] is in the same family tree as the B Method, yet at a
much lower level of restriction and formality. SPARK uses a subset of the Ada programming language [4],
plus appropriate annotations, to perform verification. When compared to the B Method it is interesting to
observe what assurances are not provided in SPARK. Another useful exercise is to view what features of
Ada have been removed, in order to simplify the verification.

As an introduction it is useful to show an Ada program, with SPARK annotations.

procedure Add(X: in Integer)
−−# global in out Total;
−−# derives Total from Total, X;
−−# pre X + Total <= Integer’Last;
−−# post Total = Total˜ + X;
is
begin

Total := Total + X;
end Add;

In a similar way to B, SPARK provides pre and post conditions that can be proved mathematically. SPARK
also has annotations for data flow, which allows programming contracts to be enforced between areas of the
program.

The primary goal of SPARK is to prevent software exceptions from being raised. In Ada, there are four
classes of primitive exceptions, namely tasking errors, program errors, storage errors and constraint errors.
The tasking and program errors correspond to features using the multi-threading mechanisms inherent in
Ada, and these are disallowed by SPARK. The other errors have to be dealt with in other ways.

Storage errors are caused by the program running out of memory, and the is prevented by disallowing any
operations that would require dynamic (i.e. heap-based) memory to be allocated. This means that all arrays
must be of fixed size, no objects can be created on the heap, and also the use of recursion is forbidden. This
ensures that the memory requirements of a program can be calculated statically, including the depth of the
call stack, and with appropriate hardware resources can be always satisfied.

Constraint errors are caused when numeric values are out of their appropriate range, for example arithmetic
overflow and invalid array-bounds access. These errors cannot be removed, and instead are proved. The
proof is primarily performed using data flow analysis, which also allows the derives and in/out statements
to be checked.

The handling of loops is of particular note in SPARK, all loop statements must be broken using an assertion.
The analysis divides the loop into three separate conditions, each of which can be proved individually. When
an assert is placed in the middle of a loop, the obligations are that the code from before the loop to the
assert must be valid, from the assert completing one iteration of the loop and back to the assert, and from
the assert statement to the end.

One additional limitation in SPARK is the removal of aliasing. In Ada points can also point at stack based
data structures, however if the same piece of memory is referred to by more than one variable, then SPARK
catches this and reports it as a major fault. The removal of aliasing allows drastic simplifications to be made
to the analysis.

16

SPARK does not attempt to venture into the problem of termination. In Ada (unlike C), the for statement
is always guaranteed to terminate, however the loop statement may enter an infinite cycle. This is detected
by SPARK if the code matches some specific templates, however no proper analysis is used to determine if
a loop terminates.

SPARK is a very powerful tool, and has been used in the automotive industry to produce software to a high
degree of reliability [17]. At the end, the tool outputs a list of equations, that must be proved. The SPARK
prover is able to discharge most of these obligations, but as with the B Method, significant effort must be
put into proving the remaining obligations. SPARK requires less effort to use than the B Method, but in
exchange provides weaker guarantees about the resulting program.

3.7 Static Analysis for Pointers

3.7.1 Analysis of Pointers and Structures

Analysis of Pointers and Structures [9] uses the source code from a program to automatically generate a
description of the pointer structures it could generate. The features that make this paper stand out are that
it generates a framework on which all possible data structures can be generated, and it places limits on the
size of the generate structure.

The first stage of the process is the reduction of a program to its smallest atomic statements. For example,
the statement T2 = X.head.tail is split into T1 = X.head and T2 = X.tail. Another example is the
creation of a new cons node. While in LISP this would involve creating the node and assigning values to the
constituent parts, this is split up into a create statement, and two assignment statements. As an example
T1 = cons(X, Y) becomes T1 = cons(); T1.head = X; T1.tail = Y. This approach allows their analysis
engine to work on a smaller range of inputs.

Pointer structures are represented by Shape Storage Graphs (SSG). This graph consists of nodes representing
heap cells, and edges which point from variables to heap cells, and from heap cells to heap cells. More than
one edge can leave each node, and this represents that the data structure may be in more than one state
depending on the executed code. More than one SSG could represent any particular data structure, and
the different graphs can encode different information and to different levels. The occurrence of cycles in the
resulting graph can also be attributed to two factors, both a cyclic data structure and unbounded acyclic
data structures.

Chase et. al. give two algorithms for generating such a representation from the source code. The main way
of limiting the number of nodes created is by grouping nodes created at the same line of the program, and
ensuring that all nodes created on different lines remain disjoint. This exploits the property that different
parts of the program are likely to do different things. The more advanced method presented is more efficient,
especially when the graph is sparse (most nodes are pointed at by only one reference), and studies have
shown this to be a very common situation.

Finally the authors give details of how to expand procedures inline, although make no mention of the
recursive situation. The problem with this method for their particular implementation is that some methods
are helper methods, and are mainly syntactic sugar for common patterns, while others contain portions of
logic. For recognising common code statements to generate disjoint nodes, it is likely that helper methods
should be treated as separate lines of code, while logical methods should be grouped. How to achieve correct
grouping of methods is left as an open problem.

3.7.2 A Safe Approximation Algorithm for Interprocedural Pointer Aliasing

17

A Safe Approximation Algorithm for Interprocedural Pointer Aliasing [21] discusses algorithms for determin-
ing which pointers may be aliased to which, including through procedures. The focus is on creating a May
Alias relation which can determine whether it is possible that the two pointers are aliased. This relation is
designed to report that the pointers may be aliases when it is unable to find proof to the contrary.

The authors tackle the problem for C programs, and note that this is much harder than the equivalent
problem in FORTRAN, because of the side effecting operators and the C pointer model. In order to make
the problem more manageable they exclude certain operations including type casts and function pointers.
This restriction enables them to make certain assumptions that they require for their analysis. One important
thing to note is that the analysis does handle arrays and pointer arithmetic, albeit in a näıve manner.

The central idea is that each cell on the heap is an object, and each item capable of pointing at an object
has an object name. Object names are defined recursively as either a variable, the dereference of an object
name, or an object name followed by a selector field. An alias can then be defined as when two object names
point at the same object, and a list of unordered pairs can be maintained to keep this information.

This approach needs some way to limit the amount of space stored, otherwise a data structure like a linked
list, with two variables referring to the head, would have an unbounded number of aliases. The way this
is done is by choosing a limit, k, and then bounding the number of selectors to this depth. Any object
name that exceeds this number of selectors is truncated, and then this new name is used. This breaks the
uniqueness of object names: if two object names with k selectors are aliased, an infinite number of possible
aliases are then represented.

Landi and Ryder show that their algorithm has only 3 cases of imprecision, other than the k-limiting discussed
above. Importantly these 3 cases can all be measured, so the aliasing analysis can provide the approximate
precision of the result. They also show empirically that their solution outperforms some common alternative
methods.

3.7.3 Parametric Shape Analysis via 3-Valued Logic

In Parametric Shape Analysis via 3-Valued Logic [26], Sagiv et. al. attempt to construct a framework
for describing shape invariants, which can be applied to any language and data structures. The important
feature of this paper is allowing the shape to be parameterised, based on what data is desired, and hence a
flexible approach can be maintained.

When designing a shape invariant, or abstract representation of a pointer structure, it is necessary to bound
the size of the resulting graph. This means that there must be some nodes or pointers that correspond to
more than one heap cell in the concrete program. When choosing what information to store, and what to
discard, careful thought has to be taken as to the future use of the information.

Sagiv et. al. first set out a concrete representation of a data store, using boolean logic to specify properties
about the heap cells. For example, a variable x would have a unary predicate such that x(v) was only true
when the variable x points to the heap cell v. Other predicates can be developed to indicate the use of
selectors, for example tail(u1, u2) would indicate that u1.tail = u2. These predicates can then be used to
track the program state.

These predicates can represent the structure of a pointer system completely, but with this comes the problem
of an unbounded number of predicates. To solve this problem, the authors turn to Kleene’s 3-valued logic.
Boolean logic can be modelled with values of 1 and 0, min instead of ∧, and max instead of ∨. 3-valued logic
introduces 1

2
as a possible logical value. This new value is then used in some of the predicates to mean that

the predicate may be either true or false. Certain nodes are then collapsed into one single node, and their
predicates are merged.

18

The method for deciding which nodes to collapse uses the unary predicates. Initially the predicates consist
of the variable names in the program, then all nodes are grouped by which unary predicates identify them.
If two nodes have the same values for all the unary predicates then they are merged. In addition, a new
unary predicate sm is added, tracking if this node is a merged node. This sm stands for same, and indicates
the predicate that two nodes identified by this line are in fact the same node.

The important point about their method, is that it enables additional unary predicates to be added to the
list, to distinguish more types of nodes. One example of a predicate used for this purpose is cn, defined by

cn(v) def= n+(v, v)

This is a test for cyclic paths, with this predicate being true if it is possible for the node to reach itself with
any number of selector operations. This means that the end result of a cyclic list, and an acyclic list, are
now distinct with respect to cn. Even if part of the structure was acyclic, and part not, then this predicate
would ensure they had different nodes in the graph.

Sagiv et. al. also define detailed semantics for an example programming language, including the effect of
operations such as memory allocation via a malloc() statement. Update statements are given, and various
properties about their resulting scheme are proven.

3.8 Summary

There are a variety of static analysis methods, which have been applied to real world programming problems
in many ways, to obtain assurances about the code. Most standard static analysis tends to avoid the problems
of pointers, or produce very suboptimal results in these cases. However, various methods exist for specifying
possibly infinite data structures in a finite amount of space, by discarding certain information.

19

Chapter 4:

Design
This chapter deals with some design decisions made during the creation of the pasta analysis engine. Initial
discussion of the Pasta language is included, along with totality.

4.1 Totality

In order to determine if a Pasta function is total, it is first necessary to identify what could cause the breaking
of this property. Since the Pasta language is relatively simple, there are few classes of error that can occur.

4.1.1 Selectors

The Pasta term x->y is used to select the y field from the x variable. If the x variable does not have a y
field then the program will crash at runtime. The Pasta language may have many subtypes with selectors
called y. So the subtype of variable x does not have to be precisely known, but it must be within the set of
subtypes having a y field.

4.1.2 Arithmetic

One subtle area which needs consideration is the arithmetic expressions, and in particular the result of unde-
fined mathematical computations. The current version of Pasta does not permit any arithmetic operations
to be performed, only numerical assignments and comparisons are permitted.

Should this situation change in the future, then it will be important to verify that all such operations
are within the allowable bounds for the numeric type, or that any adverse effect (such as overflow being
truncated, or wrapping round) is catered for, and the theoretical values updated appropriately.

In the current implementation of the Pasta language, the Pasta int type follows the conventions of the
underlying system, being the Haskell Int type. This type is defined according to the Haskell standard[20],
which states:

The finite-precision integer type Int covers at least the range [−229, 229 − 1]. . . . The results of
exceptional conditions (such as overflow or underflow) on the fixed-precision numeric types are
undefined; an implementation may choose error (⊥, semantically), a truncated value, or a special
value such as infinity, indefinite, etc.

In addition, when Pasta is converted to C, the int type is used. For C this is of an architecture dependant
size, and overflow and underflow result in wrap around arithmetic.

For the moment this issue is ignored, as it is not possible to result in an arithmetic crash in the current
version of Pasta, although this issue may require future work, should the specifications change.

4.1.3 Termination

Another way in which a Pasta function may not be total is if it could enter an infinite loop. In most
programming languages there are two ways to do this, by use of an iterative statement, or using recursion.
The Pasta language uses while to codify looping behaviour, and this must be checked. Recursion is disallowed
in the language, as this conflicts with the graph analysis which it was designed for, so can be ignored.

20

4.1.4 Memory

The final class of error that can occur is memory exhaustion. If a Pasta program does not loop forever, then
it must execute a finite number of steps. Since there is no Pasta statement that allows an infinite amount of
memory to be allocated, it must be the case that only a finite amount of memory is required. While this is
the case, it is impossible to predict the number of steps a Pasta program will take in general (this would be
equivalent to solving the halting problem), and so it is impossible to set a bound on the amount of memory
required.

This means that on any computer with a finite amount of memory, it is possible that a Pasta program will
exhaust all the available memory, and hence result in a runtime error. This is not handled directly in Pasta,
and it would be the underlying Haskell engine which would report this memory error. Since there is no
bound given on the memory, and no memory semantics formalised by the Pasta language, I have chosen to
ignore this issue, although it may present an interesting opportunity for further work.

4.2 Reduced Pasta

While the Pasta language is already a very small language compared to other languages such as C, the
language still contains some redundancy. This section shows which statements can be removed from the
Pasta language, and how they could be equivalently replaced. This reduced Pasta language actually has
slightly more power than the original language, however since all programs will be derived from the original
language, this issue can be avoided. In addition to following the semantics of the original language, the
reduced language still has the same performance characteristics.

The following statements use many temporary variables, which I have given the name tn, where n is an
integer. These would be distinct for each production they are used in. At each stage various translations are
made, with the intention that all generated statements at an early level are re-translated until they reach
their most simple form.

For an example of the translation, see Appendix , which gives the expanded version of the singly linked list
insertion example.

4.2.1 Assignment

For the purposes of reducing Pasta, I have concentrated on the assignment statement. This statement is the
only one in Pasta that causes modification to the state of the heap, or any local variables, and hence is of
critical importance. Pasta does not permit heap construction operations or copies in conditional expressions.

Figure 4.2: Pasta assignment expansion

a, b, *c = x, y, *z;
−− becomes −−
t1 = x; t2 = y; t3 = z;
a = t1; b = t2; *c = *t3;

Parallel Assignment One statement in Pasta is parallel as-
signment, typified by a statement such as a, x = b, y. The
semantics of parallel assignment under Pasta state that all the
values are calculated before any of the results is assigned. The
rules also say that no unstarred assignment may follow any
starred one. From this it is easy to modify a Pasta statement
to remove this parallel assignment, by storing all the inter-
mediate results in temporary values first. This can be best
illustrated with an example as in Figure 4.2.

As is obvious, each right hand side (RHS) expression is evaluated and stored in a temporary variable – the
order of this evaluation is not important. Next these temporaries are assigned to the LHS’s. In this case the
order is important, and must be done from left to right to match the semantics of Pasta.

21

Assignment In a full Pasta assignment statement the LHS can be a variable followed by any number
of selectors, and the RHS can be any Pasta expression. The assignment can also be between pointers or
between integers, but both sides must be of the same type. Since the semantics of both types of assignment
are completely different, it is useful to introduce the

ptr
= and int= assignment operators. These only operate

on the appropriate type, while = can still be used for both. Since the Pasta language is statically typed, it
is possible to convert any instance of = to a typed version, without difficulty.

Figure 4.3: Atomic assignment statements
in Reduced Pasta

x = y;
x->field = y;
x = y->field;

*x
ptr
= *y;

x
ptr
= new();

x
ptr
= copy(y);

x
int= 12;

In order to properly preserve the meanings, it is necessary to
define the atomic statements given in Figure 4.3. In every case,
x and y are variables, field is a selector and new is the name
of a subtype.

It should be relatively easy to see how the conversion
process can be carried out. In general, for an assign-
ment LHS = RHS, first the RHS can be assigned into a
temporary, and then assigned to the LHS. An example
would be x->head->tail = y->tail, which gets converted
to t1 = y->tail; t2 = x->head; t2->tail = t1;. The
starred assignments are treated like ordinary assignments, with
both the LHS and RHS being stored in temporary variables,
before a final atomic starred assignment.

The one point that needs raising is the x
ptr
= new(); statement, where new is the name of a subtype, for

example cons or nil. While the heap cell creation statement in Pasta includes parameters representing
all the fields, this version doesn’t, as shown in [9]. A statement such as x = cons(a, b); would therefore
be transformed to x = cons(); x->tail = a; x->head = b;. This is very useful, as otherwise a variable
number of parameters need to be included in the heap cell construction statement, which complicates the
definitions. A side effect is that it is possible in this reduced Pasta language to create a heap cell, and
not initialise the fields within it, which is an undefined operation. This is the single area where the new
definition has more power over the heap than the existing one, however if all construction statements are
followed by assigning the fields (as would always be the case when converting from standard Pasta), this is
not a problem.

4.2.2 Copying Expressions

The next expression that can be removed from the language is the copy expression. That this can be removed
is mentioned in [25], with the remark “Providing copy as a primitive is convenient: it could be programmed
as an operation for each data type.”

The copy statement is dependant on the type signature at the start of the Pasta program. If a signature
such as that given in is present, the equivalent procedure would be:� �
copy_list(ptr source, ptr destination) {

if (source::nil)
*destination = *nil();

else
*destination = *cons(source->head, source->tail);

}� �
Then the statement x

ptr
= copy(y); can be replaced with x = nil(); copy list(y, x);. The initial

22

x = nil(); statement is included merely to allocate a memory cell which can be overwritten later with
the starred assignment.

4.2.3 Loop statements

Figure 4.4: Reduced while statement

if (condition) {
t1 = 1;
while (t1 == 1) {

statement;
if (condition)

t1 = 1;
else

t1 = 0;
}

}

With the while statement the main complexity arises from
the guarding condition. In order to reduce this complexity, it
is possible remove the expression out of the while statement,
and replace it with a simpler expression. The format used to
convert while(condition) statement; is shown in figure 4.4.

As can be seen, this reduces the complexity of the while con-
dition to a comparison with 1. In fact, as this comparison is
fixed, the while statement could be redefined to include this
implicitly. The 1 and 0 are in fact representing boolean values,
however Pasta has no literal boolean type, so integers are used
instead.

An equivalent way of dealing with the while statement would
be to introduce a loop statement that loops without a guard,
and a break statement. This has some advantages, but resists
mathematical analysis by distributing the iterative structure over more than one statement.

4.2.4 Conditional Statements

Figure 4.5: Expansion of &&

if (a)
{ if (b) x; else y; }

else
y;

Figure 4.6: Expansion of ||

if (a)
x;

else
{ if (b) x; else y; }

The complexity in the if statement stems mainly from the
short circuit operators, && and ||. The problem here is that
depending on the result of a previous expression, the next ex-
pression may not be executed and this conflicts with the nat-
ural mathematical approach. It is possible to remove these
operators entirely, by expanding out the statements, for exam-
ple if (a ## b) x; else y; is expanded as shown in Figures
4.5 and 4.6. The disadvantage of doing so is that sections of
code are duplicated.

The other reduction that can be performed is the re-
moval of the else branch. This can be on the expression
if (a) x; else y; as shown in Figure 4.7. There is however
the question of whether removing the else statement actually
reduces complexity, or increases it. While the else statement
is an extra keyword, it makes the intent behind the above state-
ment far more clear than the expanded version. Also, the else
statement is relatively easy to define mathematically, and hence
it has been retained.

Any final source of complexity now rests in the conditions, which are executed to completion at every if
statement. The two conditions that are available are subtype checking x::cons and relational operators
x > y. In both these cases, the expressions x and y can be any variable followed by a chain of selectors, and
additionally for the relation operators can be a literal number. In both these cases, x and y can be replaced
by single variables, without loss of power. In the case where a selector is involved, the atomic statements
discussed earlier can be used. For the relational operators, where a literal is used, this can first be assigned

23

to a variable. As an example, translating if (x->head > 4) statement; could be transformed as shown
in Figure 4.8.

4.2.5 Subroutine calls

The other form of structure in Pasta is subroutine calls. The Pasta language forbids recursion, both direct
and indirect, and hence all subroutines can be expanded inline without resulting in an infinite amount of
code. This does result in a large number of code statements, but removes some complexity.

4.2.6 Scope renaming

Figure 4.7: Removal of else

t1 = 0; if (a) {
t1 = 1;
x;

} if (t1 == 0)
y;

Figure 4.8: Simplification of comparison

if (a)
x;

else
{ if (b) x; else y; }

Another feature of Pasta that can cause problems from a math-
ematical analysis point of view is scope renaming. In Pasta,
when a variable name is encountered the program looks for the
variable which such a name in the innermost enclosing scope.
This presents a problem because it means that two distinct
variables may be referred to by the same name. This can be
solved quite easily by appending the depth of the variable onto
the name, and resolving all names at this point.

4.2.7 Typing

A final point to mention on this reduced Pasta language, is
that all the declaration statements have been removed. For
example, in standard Pasta ptr p is used to declare a variable
called p which is a pointer. In actual fact, the declarations
are redundant from the meaning of the language, other than
being additional assertions the programmer can use to state
their intent more clearly. As a result, these definitions can
be removed, and all variables can be considered to be in the
outermost scope, with their type being inferred by their use.

The resulting Reduced Pasta language removes some of the
complexity of the Pasta language, but at the cost of a vastly larger number of statements and temporary
variables. This new language is suitable for analysis, but is not intended to be used by programmers.

4.3 Completeness of Reduced Pasta

Now reduced Pasta language has been constructed, it is possible to define what totality means in terms of
the Pasta language in much more concrete terms. The one issue that is not touched upon is the typing, as
this is an easy problem to solve, and has already been fully covered by the initial Pasta compiler.

4.3.1 Selectors

There are only two statements in the reduced version of Pasta that involved navigating down a selector, these
are y = x->field and x->field = y. The expression x->field is only valid if the subtype of the heap cell
pointed to by x has a selector named field. Another way of phrasing this would be that the subtype of x
must be one of the set that contains field as a selector.

4.3.2 Termination

24

Since Reduced Pasta has no procedure calls, the only statements that can repeat are within the while
construct. Of course, it is impossible to prove termination in the general case, because the Reduced Pasta
language Turing complete. However, there are several mechanisms for proving that a large subset of a
particular language will indeed terminate.

First it is necessary to investigate the statement while(k == 1) x;, to determine what termination means
in this context. For a while loop to terminate, it must eventually be the case that the condition does not
hold, and here this means that k 6= 1. If kn is used to denote the value of k after n executions of the
statement x, the condition of termination can then be given as:

∃i ∈ Z • i ≥ 0 ∧ ki 6= 1

While this is the general case, there are several restricted cases where termination can be proved, and these
are covered below.

Bounded State Spaces In a deterministic language, the action of the code at any point is determined
by the state of the program. In the context of loops, this means that whether the loop is executed again will
depend only on the state of the program at that particular point. If a loop is in a particular state, and after
n executions of the loop body, returns to the same state then a periodic fixed point is established, and it is
clear that the loop will never terminate.

While this is a method for detecting non-termination, it cannot be applied so easily for proving the reverse.
The reason for this is that the length of the period n is unbounded, and hence it is never possible to say
that sufficient values of n have been checked. However, if the number of distinct states is bounded, then the
maximum value of n is equal to this number.

Figure 4.9: Example of a fixed state space

while(i 6= 0) {
i = (i× 3)2 mod 100;

}

One example of a routine with a fixed state space is shown in
Figure 4.9, where the state space is bounded to 100 values for i,
provided i is defined to be an integer. At runtime, if this loop
is executed 101 or more times, then it will never terminate.
During static analysis, the value of i before the loop is unlikely
to be known, but it is possible that i could be narrowed down
to a finite number of states. Each of these states can be tested
on the loop, for the maximum number of times. This would then either prove termination, or give a specific
state in which the program does not terminate.

In Pasta the state at any point consists of the pointers between heap cells and from variables, and any literal
integers present in the program. Since it is not possible to create any new literal integers (due to the lack
of arithmetic), it is clear that if the number of integers remains fixed, then the integer state is limited to
the exchanging of values, and hence is bounded. In a similar way, if the number of heap cells and pointers
remains fixed, and all pointers point at a valid heap cell, then only pointer rearrangement is possible, which
is also bounded.

The one thing that can increase state space is the heap cell creation statement, such as new(). If this
statement occurs within a loop, then there is no easy way to determine an upper bound on the state space.
This does however mean that if the new() statement does not occur inside a loop, then it is possible to test
if the loop terminates, provided the state before the loop was finite.

Putting these observations together, it is possible to see that if a Pasta program does not contain any
unbounded state loops, then the amount of state in the program is finite. This means that if the program
does not contain any new() statements within while statements, then the program can be proved to either

25

terminate or not terminate. A large number of programs do not contain heap allocation in loops, including
linked lists, queues, trees and some sort algorithms. However, while manipulating linked lists can be done
in this way, it is quite possible that they will be created in a loop statement.

Another problem with this method is its feasibility. While the number of states is bounded, it is by no means
a small number, and in fact for simple structures is likely to be significantly out of a computable range. As
an example, if there are n pointer variables, and m cells in the heap, the number of program states would
be at least mn.

Since it possible to determine termination information for this restricted subset it is clear then that this is
not Turing complete. In fact, the expressive power of this language is equivalent to that of a linear-bounded
Turing machine. While this result is useful theoretically, its restrictions are too great to use as the basis of
a termination proof.

Fixed Loop Iterations One common program pattern is to iterate over a predetermined range, for
example the for statement in Ada requires the number of iterations to be specified before starting the loop.
This means that the for statement is guaranteed to terminate.

While this is a useful construct, it is unlikely to be of great use in Pasta. The most common use of this
statement is for iterating through arrays, incrementing an index each iteration. In Pasta there are neither
arrays, nor arithmetic, so this statement would not be as useful as for Ada.

Traversal down a finite path One form of fixed loop iteration in a pointer programming language is
traversal down a finite path. If a loop proceeds down a finite path, then the number of executions of the
loop is bounded by the length of the path. While it is relatively easy to prove that a loop proceeds down a
path, the difficult thing is determining if this path is finite or not.

For example, it is clear that the following loop proceeds down the tail pointers of the variable x:� �
ptr x = ...;
while(x::cons)

x = x->tail;� �
And on a typical linked list, this program would terminate, for example if x was:
x // 1 // 2 // 8 // 9 // nil

However, it is not necessary that the path down x, following tail selectors is finite. Consider the following
program structure for x:
x // 1 // 2 dd

For traversal down a finite path to prove terminate, it must be the case that the loop travels down a path by
at least one node during every execution, and that any other operations in the loop body do not affect the
structure of the path. This information can be determined statically in a range of cases. It is possible that
more than one path traversal will occur during a loop. This means that the safety condition for the while
statement is that there exists a finite path out of those paths that are traversed.

26

The final question is what will happen if the end is reached? In the above example the x::cons checks
that the end has been reached. However, if that expression was replaced with a tautologous expression, and
the path was indeed finite, then a crash would occur. The finite path traversal argument does indeed work
as proof for termination, but does not specify whether that termination is safe or unsafe. Fortunately this
approach can be combined with the safety analysis of selectors, and safe termination can then be proved.

4.4 Full or Partial Analysis

A final question that needs to be addressed is the type of analysis being performed. One type of analysis is
full analysis, where an entire program is taken as a unit and analysed. This is in contrast to partial analysis,
where only a subroutine within a program is analysed. While the two types can be implemented in very
similar ways, as a procedure taking either no unknown variables, or some unknowns, they can have very
different design goals.

One particular instance where the difference is pronounced is the reaction to a failure. If an individual
subroutine does not pass the analysis, then this is something to examine, but it may be that the routine
is being called without its preconditions satisfied. On the other hand, if a program in its totality does not
pass, then this indicates a clear failure by either the program (performing incorrectly), or the static analysis
(failing to correctly interpret the program).

For the subsequent chapters, I have tried to cover both types of analysis, to produce a tool that is suited
to all cases. Where a design decision is particularly influenced by one tasks or the other, this has been
mentioned.

4.5 Summary

In this chapter a Reduced Pasta has been presented, and its relationship to standard Pasta has be shown.
The totality of Reduced Pasta has been examined, including both selector safety and various termination
arguments.

27

Chapter 5:

Forward Analysis

This chapter takes the Reduced Pasta language as set out in the previous chapter, along with its requirements
for totality, and expands it into an analysis program that could be implemented. The focus of this chapter
is a forward analyser, however much of the discussion is generally applicable to other types of analysis.

Forward analysis works by tracking all possible states the program could be in at any point, and then
executing statements to transform this abstract state. From the abstract state, it is then possible to determine
if the safety preconditions for each statement hold. One of the biggest challenge when designing a forward
analyser is choosing what information to discard, in order to keep the information at a bounded size.

5.1 Notation

In order to accurately represent the effect of statements, the notation JxK(Q) = Q′ is used to mean that if
the system is in state Q before statement x, then afterwards it will be in state Q′.

To check if a precondition is true in a given state, the predicate pre(Q, r) is used, where Q is a state, and r
is a condition. The pre predicate returns true only if the condition r definitely holds in state Q.

In order to reduce two states into one, the operator � is used. The � operator can be thought of as merging
two knowledge states when only on of the states is correct, and can be defined as:

∀r • pre(Q1 �Q2, r) ⇒ pre(Q1, r) ∧ pre(Q2, r)

The v operator is used to mean that everything in the LHS state can be inferred from the RHS. This can
be defined as:

(Q1 v Q2) ⇔ (∀r • pre(Q2, r) ⇒ pre(Q1, r))

The function add(Q, r) is used to add the condition r into the state Q. This can be defined as:

∀r • add(Q, r) = Q′ ⇒ Q v Q′ ∧ pre(Q′, r)

5.2 Compound Statements

The first thing that needs considering is how the state will be mapped over the various statements that are
encountered, and appropriately updated. Before defining the effect of the individual assignment statements,
it is first useful to consider larger groups of statements, assuming these atomic statements have been defined.
The three groups that are focused on are if statements, while statements and sequences of statements.

5.2.1 Sequence

The most simple compound statement in Pasta is the sequence, for example x; y, the result of executing x
and then y. This can be defined quite simply as:

Jx; yK(Q) = JyK(JxK(Q))

5.2.2 Condition statements

28

Figure 5.10: General while statement

Q // R //�� ���� ��while (a)
yes //

no

��

P //�� ���� ��x; // P ′
BC
EDGF

��

Q′

When analysing an if statement, it may sometimes be possible to determine the outcome of the condition,
and hence exclude one branch from the analysis. While at first appearance, this may suggest an area of the
code which cannot be executed, this is not the case. During a loop, it is quite possible that the first iteration
will invoke one branch of the if statement, while all subsequent iterations will invoke the other one.

In the normal case, where either branch may be executed, the test performed will yield some information
about the state of the program. If the else branch is taken, then the complement of the test must be true.
After both branches have been executed, there will necessarily be two distinct states, and these need to be
merged into one to continue the next statement. An if statement can therefore be analysed with:

Jif (a) x; else y;K(Q) =

 JxK(Q) where a is true
JyK(Q) where a is false
JxK(add(Q, a))� JyK(add(Q,¬a)) otherwise

5.2.3 Loop statements

The while statement is far harder to model than the other statements, due to its repetitive nature. For the
following initial analysis, it is assumed that the loop terminates – detecting if this is not the case is discussed
later.

A loop can be generalised as in Figure 5.10. In this diagram, Q is the state before analysing the loop, R is
the state just before the guard and P is the state in which the preconditions of x must be satisfied. The
state at each point can then be defined by:

R = Q� P ′

P = add(R, a)
P ′ = JxK(P)

Q′ = add(R,¬)a

In order to calculate the knowledge after an unbounded number of executions, it is necessary to establish a
fixed point to the state. A fixed point state at R would be one where additional executions did not effect it,
defined as:

(R v JxK(add(R, a)) ∧ (R v Q)

The simplest value for R would be no knowledge, and this is indeed a fixed point, although hopefully this
would be a worst case. From this fixed point R, it is easy to determine P and Q′, using the equations given
above.

29

One way of finding a fixed point is to define Rn as the state just before the (n +1)th execution of the while
loop, with R0 being the initial Q parameter. It is then possible to define Rn+1 as:

Rn+1 = Rn � JxK(Rn ∧ a)

If the � operator is defined in such a way that (Q′ = Q1 � Q2) ⇒ (Q′ v Q1) ∧ (Q′ v Q2), and that the
amount of knowledge in a state can be mapped to a positive integer, then this terminates. The intuitive
understanding of this would be that whenever two states are joined, no new information is created. By
performing a � with the Rn state to generate the Rn+1, this means that Rn+1 v Rn. If they are equal, then
a fixed point has been achieved. If they are not equal, then the amount of knowledge must have been reduced
by some amount. If the reduction proceeds repeatedly, then eventually the state containing no knowledge
will be reached, at which point a fixed point will have been achieved. This can be thought of as the R∞

state.

An alternative mechanism can also be developed, which retains more information until the end of the
computation, albeit requiring a larger number of computations. An alternative (and possibly more natural)
definition could then be given for Rn+1 omitting the � with Rn.

Rn+1 = JxK(Rn ∧ a)

It is no longer the case that Rn+1 v Rn, meaning that knowledge is not needlessly destroyed. R∞ can still
be found by applying the � operator to the states, until a fixed point is found:

R∞ = R0 �R1 �R2 � · · ·

This new version of R∞ can be used to generate P , but it does not need to be used in the computation of
Q′. Since all the intermediate results are already known, Un can be defined as the state after the loop, when
n iterations have been performed. Un can be defined as:

Un = add(Rn,¬a)

It is then possible to define U∞ in the same way as was done for R. U∞ is then equal to Q′. This method
is at least as precise as the previous method, while offering the opportunity for more precision.

The trade off in choosing the method for determining Q′ is one of the superior speed of method 1, versus the
possible superior accuracy of method 2. To actually determine the size of the difference in these categories
would require experimentation and empirical results.

5.3 Atomic Pointer Assignment

The effect of an atomic pointer assignment statement needs to be modelled, with a view to deducing if the
require safety preconditions for statements are true. The information that is used in preconditions, that is
most affected by assignment, is the safety of selectors. This can be done by tracking the subtypes of heap
cells.

The easiest atomic statement to deal with is the x
ptr
= new(), which sets x to point at a new heap cell, of

subtype new. The :: operator, as used in the if statement, also provides information on subtypes. This
condition enables the subtype of a heap cell to be known exactly, or in the case where the condition fails,
one possibility to be excluded from the possible types.

None of the other atomic statements give knowledge about the type of a heap cell when viewed in isolation.
However if the state before contains information about the subtype of a cell, some information may be
determined. The most simple statement, x = y, assigns x to point to the same heap cell as y. If the subtype

30

of y is known before, then afterwards the subtype of x will also be known. This is an example of adding
knowledge to the state. But any information stored about x before x = y will become invalid, and needs to
be removed. This includes both x, and any selectors from it, for example the subtype of x->tail is now no
longer known. On the other hand, all information about the selectors of y now also applies to x, for example
x = y means x->tail and y->tail are both the same heap cell (assuming y has a tail selector).

The statement x = y also creates an aliasing. The predicate alias(x, y) is used to mean that the variables
x and y are aliased – this relation is both symmetric and transitive. An alternative model of the heap is
as a set of alias relations, with some additional information indicating which heap cells are of known type.
Then all the assignment statements either mutate the aliasing relations, or the type information. Tracking
aliases ensures that if two nodes point to the same heap cell, and that heap cell is mutated (for example
using starred assignment), then this can be tracked.

The starred assignment statement is also very hard to model. The statement *x = *y mutates the heap
cell that x pointers to, and any variables that are aliased to x are also mutated. This means that tracking
aliasing information is clearly a very useful operation.

Tracking complete alias information in a program is likely to be impossible, since the � operator may mean
that the alias predicate cannot be determined exactly. Also, to track the aliasing in an unbounded linked
list would require an unbounded amount of alias relations, which is clearly not feasible. As a result it is
likely that the alias predicate will not return boolean values, but rather use Kleene’s 3-valued logic. In this
new definition of alias, 0 represents that the two pointers are not aliased, 1

2
represents that they may be,

and 1 that they definitely are.

In most static-analysis work, the program is concerned mainly with the local variables and their values,
which are finite in size. However, with Pasta, the analysis is mainly concentrating on data structures on the
heap, which may have other data structures referenced within them. This means that instead of being finite
in scope, there is potentially an infinite amount of state. This can be modelled in two contrasting ways, each
giving different complexities to different operations.

5.3.1 Infinite Domains

The first view of the problem is to see a finite number of variables, but each with an infinite range of values it
could take. In this representation child nodes would be stored as children of the parent. This has advantages
for traversing an entire variable, and is possibly easier to perform techniques such as shape analysis. In this
view the statement x = cons(12, nil()) would have one variable x, with the value cons(12, nil()).

5.3.2 Infinite Variables

A totally different view of the variables is to consider each variable as either a subtype or an integer, with the
children of the node as separate variables. This results in an infinite number of variables, but with a finite
domain for each variable. This makes tracking of the aliasing information easier, and holding the integer
values used in comparisons becomes slightly more accessible as well. In this view x = cons(12, nil())
would create the variables x = cons(), x->head = 12 and x->tail = nil().

The first intuitive observation on these two options is that the infinite domains representation more closely
models Pasta, whereas the infinite variables representation is closer to Reduced Pasta. Despite this, both
models can be used when working from either dialect of Pasta.

Infinite variable works much better for aliasing, and allows variables to alias into the middle of other heap
structures. Using this representation it is also the case that if field exists in both x and y, and is a ptr

31

type, then:
alias(x→field, y→field) ≥ alias(x, y)

This relation uses the fact that aliasing can be 0, 1
2

or 1. If the initial variables x and y are aliased, then
their common selectors must be, but even if they are distinct, their selectors could still be aliased.

It is useful to define ϕ(x) as the set of possible subtypes of the heap cell pointed at by x. If nothing is
known about x then ϕ(x) would be the set of all subtypes. When combined with alias, it can be seen that
if alias(x, y) = 1 then the possible subtypes for x are actually ϕ(x) ∩ ϕ(y).

With these primitives, it is possible to define more precisely the effects of the atomic statements.

5.3.3 Simple variable assignment

The most simple assignment statement, x = y, has the effect of aliasing x and y, making alias(x, y) = 1.
Also the update destroys all information about x, and makes ϕ′(x) = ϕ(y). In addition, ∀z • alias(x, z) =
alias(y, z). Another way of stating this would be that all existing alias relations with x are destroyed, and
instead those related to y are used instead.

5.3.4 Assignment from field values

The next statement, x = y→field, also creates the aliasing alias(x, y→field) = 1. Also, in a very similar
manner to x = y, it makes ϕ′(x→field) = ϕ(y→field), and destroys existing alias information.

5.3.5 Assignment to field values

The statement x → field = y adds more complexity to the situation, by affecting more variables than
just x and y. The additional alias(x → field, y) = 1 relation is an obvious effect, and also as before
ϕ′(x→field) = ϕ(y). The interesting cases come from examining the effect of this statement on a different
variable, z. If alias(x, z) = 0 then this statement does not affect ϕ(z). If alias(x, z) = 1 then afterwards
alias(z→field, y) = 1 is the case.

The final case, where alias(x, z) = 1
2

is the most interesting. In this case, ϕ′(z→field) = ϕ(z→field)∪ϕ(y).
Also z → field → field may be aliased to y → field, meaning that ϕ′(z → field → field) = ϕ(y →
field)∪ϕ(z→field→field). This assumes that the field selector exists for both z→field and y, otherwise
all information about z → field’s children may need to be destroyed. In this case, a small amount of
imprecision in the aliasing may lead to a large amount of imprecision in the resulting state.

5.3.6 Starred Assignment

The case of a starred assignment ∗x = ∗y is also complex, and also requires modification to variables not
involved in the statement. The major difference from all other statements covered so far is that after this
statement alias(x, y) = 1 is not guaranteed to hold, and in fact retains its original value. If this expression
does hold before the evaluation of the assignment, then the assignment has no effect on the state of the heap.

After the assignment, ϕ′(x) = ϕ(y) and all the selectors that x possesses are now aliased to those of y. For
example, if y has a selector named field, afterwards alias(x→field, y→field) = 1 will be true.

For all other variables, such as z, if alias(x, z) = 0 then ϕ(z) does not change. If alias(x, z) = 1, then
ϕ′(z) = ϕ′(x) = ϕ(y). Again the interesting case is where alias(x, z) = 1

2
, in which case ϕ′(z) = ϕ(z)∪ϕ(y).

In a similar manner to x→field = y, information about the children of z may need to be destroyed.

32

5.4 Atomic Integer Statements

To add extra power to the static analysis, it is useful to track the value of integer variables. However, while
many static analysis programs focus on integers, the purpose of this static analyser is to focus on the heap
data structures. As a result the numeric analysis can be limited. No preconditions for safety require any
numeric values to be known, instead the use of numbers is to precisely determine which branch of an if
statement will be taken.

5.4.1 Range analysis

One approach is to track the possible ranges of a value, and use that to determine the result of computations.
This is an approach that has been used extensively by other analysis tools. When a comparison is made,
then the ranges can be used to check if the result of the comparison can be determined. The � operation can
be easily implemented, and mathematical operations on integers can be performed on ranges with reasonable
precision.

One specific problem with range analysis comes when an assertion is made about the relationship between two
unknown variables, e.g. a < b where the values of neither a nor b are known. In this case, the simple range
analysis techniques do not increase the available knowledge. Looking through samples of Pasta programs,
this seems to be by far the most common situation, and hence range analysis is inappropriate for the Pasta
programming language. Also the major focus of range analysis is the effect of mathematical operators, which
do not exist in Pasta.

5.4.2 Constraint analysis

An alternative to tracking the ranges of a particular variable is to accumulate constraints about all variables.
This delays processing any of the information until information is requested about the values of the variables.
This is the optimum solution, as no information is discarded at any stage, however constraint solving is an
NP-Complete problem [8]. Since the focus in Pasta not on numeric work, this seems hard to justify as an
expense.

5.4.3 Trichotomy

One particular example of reduced constraints uses the law of Trichotomy, which can be expressed as:

For arbitrary real numbers a and b, exactly one of the relations a < b, a = b, a > b holds

It should be mentioned that while this law applies to Mathematics, it does not apply to computer programs
in general, where reserved values such as NaN, the “Not a Number” constant, are in effect. With the Pasta
language, there is no such problem of invalid numbers, and hence this law always holds.

For any two integer variables, their known relationship can be stored as an element of the powerset of
{<,=, >}. If no information is known then the set {<,=, >} represents the knowledge available. While it
may appear non-intuitive, it is possible for the static analysis to determine that the relationship between two
variables is ∅; that is there is no possible relationship between them. This can be interpreted as meaning
the program has entered an impossible state, for example if (x > y && x < y) statement; will never
executed statement.

5.4.4 Transitive Trichotomy

33

From the basic trichotomy information it is possible to return information that has been already stored.
There are various laws about the transitive nature of relations, for example:

a > b ∧ b > c ⇒ a > c

A number of these laws exist, and these can be used to increase the amount of information in the inferred.
One method for performing this is when a new relation is added to the set. If a relation between a and b is
added, then the new relation between a and b will be the intersection of the new relation and the existing
one. If this changes the existing relation then compare all relations where either a or b is a member, and see
if the relation set can be reduced. If it can, then replace the relation, and add it to a queue. Keep taking
a relation off the queue, performing transitive updates and keep going until there are no more relations on
the queue. At this point the transitive closure of the relations will have been found.

5.4.5 Numerical Assignment

In Pasta, while there are not any mathematical operations, there are assignment operations, and these add
information to the state. Where numbers are given explicitly, e.g. int a = 100; this does not fit easily
into the store of relations between numbers. One approach is to store the numerical values of all the known
integers, and then when another known value is added, insert relationships between all existing values and
the new one into the relation list.

5.5 Aliasing

As has been shown earlier, in Pasta the effect of a statement varies greatly depending on what is aliased
to what, i.e. the alias predicate. The power of the aliasing determination is likely to play a great role in
the power of the resulting analysis. With the Pasta programming language, when focusing on a subroutine
in isolation, it is not possible to determine full aliasing information. One reason for this is that the data
structure given as an argument may alias other things, either within the data structure it points at, or other
arguments, and this cannot be determined.

In order to track the aliasing information at each stage I came up with two distinct representations, each with
advantages and disadvantages. In both cases, if a variable does not have any aliasing information associated
with it then it is in the Unknown set, otherwise it is in the Known set.

5.5.1 No Aliasing Information

Of course, a simple implementation could ignore aliasing entirely, and this would be equivalent to

∀x, y • alias(x, y) = 1
2

However, without any more resources, certain cases can be refined:

∀x • alias(x, x) = 1

5.5.2 May be aliased

The first representation I considered maintains two sets of information, the Def set representing those vari-
ables which are aliased, and the May set representing those which may be aliased. Both Def and May are sets
of sets which contain variables. With these sets the alias information can be determined using the following
equations.

∀A, x, y •A ∈ Def ∧ x ∈ A ∧ y ∈ A ⇒ alias(x, y)
∀A, x, y •A ∈ May ∧ x ∈ Known ∧ y ∈ A ∧ x /∈ A ⇒ ¬alias(x, y)

34

Def sets can be thought of as a partitioning of all the Known variables. If two variables are in the same
partition then are definitely aliased.

The May sets contain variables that may be aliased. If two known variables are not in the same May set
then they are not aliased.

Any variable that is in the Unknown set may be aliased with any element in the Known set at all, and this
representation returns Unknown for all such alias requests.

This representation naturally models the idea of aliasing, but has a disadvantage of always assuming the
worst with respect to Unknown variables. It is also simple in this model to tell what variables that are
known may be aliased to each other.

5.5.3 Uniquely aliased

An alternative model is to store those things that are uniquely aliased in the Uni set, and those that are
non-uniquely aliased in the Shr set, both being sets of sets of variables. If two things are uniquely aliased
that means that no other variables point at that memory location. If two elements are non-uniquely aliased,
then other variables may also point at that location.

∀A, x, y •A ∈ Uni ∧ x ∈ A ⇒ (y ∈ A ⇔ alias(x, y))
∀A, x, y •A ∈ Shr ∧ x ∈ A ∧ y ∈ A ⇒ alias(x, y)

The advantage of this approach over the alternative is that information is now known about the Unknown
set, as a variable in the Unknown set may not be aliased to a variable contained anywhere within a Uni set.
Another large factor in favour of this approach is that it is easier to generate the required knowledge from
the program constructs.

While at first glance this method seems to be better suited to the Pasta language, experimentation would be
required to determine this for certain. However, both approaches can exist simultaneously, and the resulting
alias function can then choose whichever method results in a higher information content, where 1

2
has lower

information than either 0 or 1.

5.6 The � operation

One of the major operations in this static analysis method involves the � operator. While an actual �
operator is not detailed here, this section focuses on the ideas surrounding it. The � operator is defined
above as:

∀r • pre(Q1 �Q2, r) ⇒ pre(Q1, r) ∧ pre(Q2, r)

The ⇒ is particularly important in this case, as it means the � operator may be lossy. An example of a valid
(albeit very pessimistic) � would also result in a Q′ such that ∀r • ¬pre(Q′, r). This would be equivalent to
failing every safety precondition.

The implication may appear to mean that information would have to be discarded at each stage, but this
is not the case. One possible construction of � on an if (a) b; else c; statement would be just that
information that is true at the end, with all intermediate results being destroyed. An alternative, and more
knowledge preserving �, would be to store that if a is true one state is the case, and otherwise another is. If
consequently it turns out that a is true, then one portion of the knowledge could then be rejected, without
having diluted the valid knowledge.

The primary disadvantage of this definition would be that the termination of the while statement would no
longer be guaranteed. One way to remove this problem would be to define more than one � operator, one

35

which is lossy, and one which is not. Then by using the lossy one where other arguments require it, and the
non-lossy one elsewhere, more knowledge could be preserved.

5.7 Acyclic Paths

Up until this point the information has been used mainly to determine the appropriate subtype of any heap
cell. While the subtype proves the selector operation safe, it does not help with the termination argument.
The termination argument relies on finding a variable in a while statement with forward motion down an
acyclic path.

A variable has forward motion if down every possible route through the body of the while statement, a
variable is moved from one position in the path to a subsequent one. Checking that the path is traversed
down every branch means that if the update occurs on one branch of an if statement, then it must occur on
the other branch as well for this to be a valid path. The requirement that the variable is moved down means
that other operations in the while body do not interfere with the variable in question. This in particular
excludes starred assignment and x→field = y statements, where x may be aliased to the path variable.

The second problem, determining acyclicity, is far harder. Acyclicity could be determined by aliasing in-
formation, although this would require all aliases to be determined as one single 1

2
result could break this

argument. Another way to check for this property is by using shape analysis techniques, as described in [26].
Both these techniques are only useful when the input at the start of the program can be determined, and
not for validating a procedure on its own with undefined inputs.

When the input at the start of the procedure is not known, it becomes impossible to automatically derive
acyclic arguments, and so for a large number of cases termination cannot be determined. Unfortunately this
is likely to be a very common scenario, and so an alternative mechanism is required. Any manual solution
must involve the programmer adding annotations to the program, which is unfortunate, and a goal should
be to minimise the complexity of these annotations.

The definition I have chosen to add to Pasta is the acyclic keyword. The format is
acyclic(selector1, selector2, . . ., selectorn), where the elements in selectori form a set. This says that
from any heap cell, following any number of selectors in the set, the original heap cell will not be reached.
When restricted to a set of selectors, there are no cycles in the data structure. This statement is applied at
the signature level, so the initial example given in would become:� �
list acyclic(tail) {

nil();
cons(int head, ptr tail);

}� �
It should be noted that the statement acyclic(left, right) is a much stronger assertion than
acyclic(left) acyclic(right). For example the following heap state is allowed by the latter, but not the
former:

�������� ��������right
yy

left

99��������right
yy

left

99��������

Using the acyclic assertions provided, the static analyser can determine which paths that are traversed
are acyclic with ease. Having an annotation of acyclicity does not guarantee this property will be true, and

36

would require the programmer to check this manually. This would mean that the program could only be
proved to the same degree as the acyclic property.

One solution to this problem is to assume the acyclic property holds before the execution of the current
routine. Then the analysis can be responsible for ensuring that if the precondition of acyclicity is true, then
afterwards the structure must also be acyclic. Viewed this way, the acyclic property serves mainly as a hint
to the analyser that this is a good choice to use for checking.

If a program has n pointer selection fields, then there are 2n possible acyclic statements that could be written.
Of these, one would be the trivial ayclic() statement, which is always true. This leaves 2n − 1 possible
statements that could be written. The number n is likely to be relatively small for most programs, for
example in the linked list example this number would be 1, and even for more complex data structures such
as doubly threaded trees and 234 trees, this number does not exceed 4. This would mean that 24 − 1 = 15
possible acyclic statements can be generated. This number is small enough so that checking each statement
using the analysis is feasible, and then after this has been done, those that are always true can be retained.

The disadvantage of automatically generating acyclic statements is that the programmer no longer is
responsible for determining the properties of the program. Properties that are not violated, but equally are
not intrinsic properties of the structure, may be used. The other problem is when analysing small sections
of the program in isolation, it is impossible to see what properties would be violated in other sections of
the program. For this reason, a tool to generate acyclic properties would be useful, but relying on given
assertions is probably the right course to explore.

Once the acyclic properties have been determined, they then have to be checked. These properties are similar
to invariants in an object-orientated program, and from this various approaches can be garnered.

Some languages require the invariants to hold at all points, while others only require that the invariants hold
at interprocedural boundaries, not during the body of a procedure. An example of a case where an acyclic
data structure may become momentarily non-acyclic would be swapping two adjacent elements in a linked
list. For example, consider the following structure:
a

��

b

��

c

��

d

��'&%$!"#1 // '&%$!"#2 // '&%$!"#3 // '&%$!"#4

Suppose elements 2 and 3 must be swapped. One possible piece of code to do this would be:� �
c->tail = b; b->tail = d; a->tail = c;� �
This code does give the correct result, but consider the situation after the first statement has been executed:
a

��

b

��

c

��

d

��'&%$!"#1 // '&%$!"#2
(('&%$!"#3hh '&%$!"#4

In this code sample, the acyclic constraint has been temporarily violated. The question then becomes whether
to disallow this sequence of statements in that order, or require that the ordering of code be changed, or
temporaries be created, so that always the acyclic property is preserved. It is likely that in most cases an
equivalent sequence of code can be derived that preserves the property at all times. This could generally be

37

achieved by pointing all the fields at a new temporary heap object, and then repointing them to their final
destination afterwards. An example of how to rewrite the above code would be:� �
a->tail = c; b->tail = d; c->tail = b;� �
This sequence does preserve the property at every step, and produces identical end results. I have decided to
disallow the breaking of this constraint at any point, partly because of the ease of rewriting in the occasional
case where this property is violated. Another reason is that if the acyclic constraint is violated with a loop
statement then the termination argument would be broken. For this purpose procedure boundaries are not
sufficient.

If an acyclic property must be true at all times, then atomic pointer statement must preserve it. To achieve
this, it is necessary to analyse each of the statements. The x = y statement, and the x = y→field statement
are both fine, as they only effect the aliasing of the variables, and not of the heap cells.

The statement x→ tail = y is harder to prove. The most obvious case is that y must not point at x through
any cycle of tail pointers. This is, the set of nodes which point to x through any number of tail selectors,
must be disjoint from those to which y points via tail. This also takes care of variables that alias to the
same heap cell as x, as they must point at x through tail selectors.

One restricted instance where acyclicity can be proven is when the value of y has just been created using
a new() statement, as nothing else can yet point at this new cell. Another case is when the y heap cell is
of a subtype which does not have tail selector. Finally, another case is when this statement results from a
x→ tail = x→ tail→ tail statement, the effect being to delete a node from the list.

The last remaining statement, ∗x = ∗y is even trickier. To preserve acyclicity, for every variable z, where
alias(z→ tail, x) > 0, the conditions as for z→ tail = y must hold. Notice that variables that are aliased to
x, including x itself, are not considered. This is because either the variable is not pointed at by any tail and
can be ignored, or it is and is therefore dealt with by z− > tail. The special cases that hold for x→ tail = y
also hold in this.

5.8 Forward Analysis Sample

To explain how the forward analysis would work, it is useful to give an example. Full details are not given
of the analysis, merely an overview. The linked-list insert procedure is used, as described in .� �
insert(int i, ptr s) {

while (s::cons && s->head < i) s = s->tail;
if (s::nil || s->head > i) *s = *cons(i,copy(s));

}� �
The abstract state before the analysis would be empty. This is then executed over the various statements
to find the possible state at each point. Within the while guard, the initial piece of knowledge that is
determined by s::cons is ϕ(s) = {cons}. This then allows the s->head and s->tail statements on that
line to be proved.

The variable with forward motion in the loop is s, and this can be seen from s = s->tail. There are no
other statements in the loop, so nothing interferes with either s or the tail path.

38

After the while has executed, then the state must be that at least one of s::cons and s->head < i is false.
How this information is stored is specific to the implementation, although the obvious implementation would
be to treat this as no information. Fortunately this is sufficient to check the if statement successfully.

The if statement first tests if s::nil, if this is true execution proceeds to the body of the if statement. The
second condition of s->head > i is only executed is s::nil fails, and ¬s::nil would make ϕ(s) = {cons}.
When s->head is selected, this is now safe because of the negative information obtained by the first condition.

The statement inside the if has no preconditions related to field selection, and after the state would include
ϕ(s) = {cons}. If the if is not taken then the state would include ϕ(s) = {cons} and s→head ≤ i. When
these two states were joined by the � operator, the resulting state would contain ϕ(s) = {cons}.

From this forward analysis, it can be shown that this procedure is total. In addition the variable s afterwards
is of type cons.

5.9 Summary

This chapter has presented a design for a forward analyser, including details of the atomic assignment
statements for both pointers and integers. Aliasing has been investigated, and two possible schemes have
been proposed. Finally, the case of loops has been considered, both fixed pointing of the state, and design
of their termination arguments.

39

Chapter 6:

Backward Analysis

This chapter presents a design for a backward analysis program, including which predicates would be required
and how they could be manipulated. Much of the discussion regarding forward analysis also applies to
backward analysis, and this is not repeated.

In order to define some of the concepts in a more mathematical way, I have used JxK−1(Q) = Q′ to mean
that if Q is the postcondition to x, then Q′ is its precondition. It is also useful to introduce changes in the
index, defined as:

JxK−n(Q) =

Q where n = 0
as above where n = 1
JxK−1(JxK−(n−1)(Q)) where n > 1

6.1 Terms

The predicate expressions will be written using the normal logic connectives, ∨, ∧, ¬ etc. along with
additional specific terms. These terms need to model the preconditions of safety for each statement, along
with any additional notions to derive such safety. The terms used in the logic engine are now introduced,
along with their purpose. Each of these terms is only stored while its value cannot be determined, so it is at
the 1

2
logic state. When additional information renders the term either true or false, then it can be replaced

with the appropriate literal.

In all the following terms, the variables mentioned may be any program variable, along with any number of
selectors. Most of these terms have direct mappings to the information stored in the forward analysis.

6.1.1 Test

The predicate term test(a, b) is equivalent to the Pasta condition a::b. The use of this predicate is primarily
for the proof of selectors.

6.1.2 Field

The predicate term field(a, b) says that the variable a has a field b. That is, a→b is safe. Clearly the field
predicate can be replaced with multiple test predicates, and this is in fact done. However, for the analysis
stage, it is useful to think of field as a separate construct.

6.1.3 Alias

The predicate term alias(a, b) means that a and b are aliases of each other. This is useful and replaces the
alias analysis involved in the forward analysis method. The advantages are that only the alias information
required to be proven is stored, without redundant information.

The trivial case of alias is where a = b, i.e. alias(x, x). In this case the alias relation is clearly true, and
can be replaced with the literal truth value.

6.1.4 Relation

40

The predicate relation(a, op, b) is used to say that a numeric relation holds between a and b, where op ∈ {=
, <, >,≤,≥, 6=}. Here a and b can be either variables or numeric literals.

A relation term can be evaluated easily when both a and b are numbers by just applying the given operator
to them. If a and b are the same variable, then the relation can also be evaluated easily.

6.2 Conditional Statements

The if statement can be treated in much the same way as for the forward analysis. The main difference is
that in the statement if (a) b; else c; it is impossible to deduce the value of a, and therefore determine
which branch is taken. Fortunately by using ⇒, if the value of a is later determined then the appropriate
precondition will remain.

Jif (a) b; else c;K−1(Q) = (a ⇒ JbK−1(Q)) ∧ (¬a ⇒ JcK−1(Q))

In this case, if the value of a is completely undetermined even after the entire computation has finished, then
it is possible to replace this precondition with a weaker condition, equivalent to that used by the forward
analysis when nothing about a is known.

(JbK−1(Q) ∧ JcK−1(Q)) ⇒ ((a ⇒ JbK−1(Q)) ∧ (¬a ⇒ JcK−1(Q)))

6.3 Loops

In order to determine that a loop is safe, an acyclic path must exist, and the body of the loop must be safe.
In addition the analysis must terminate.

6.3.1 Safety

To analyse a loop it is necessary to take the postconditions, and generate appropriate preconditions by
applying the loop statement. This section is concerned with the safety of the statements after the loop, and
within the loop body, and not with a proof of termination.

For the statement:
Jwhile (a) b;K−1(Q) = Q′

The first thing to do is to determine the value of Q′, given a known number of executions of the loop body b.
For example, if this number is 0, then Q′ = Q, assuming a does not have any preconditions (this assumption
is valid in Reduced Pasta). For 1 iteration Q′ = JbK−1(Q), and after two this would be Q′ = JbK−2(Q). This
means that if n iterations are performed, then:

Q′ = JbK−n(Q)

The next step is to determine how many iterations are performed. If 0 iterations are performed, then it must
be the case that ¬a is true. For 1 iteration, it must be the case that the first initially a is true, but after an
application of b it becomes false, so a ∧ JbK−1(¬a). In general for n iterations, the first n times ¬a must be
the case, and the next iteration a is true. The condition for n iterations can therefore be stated as:

JbK−n(¬a) ∧
n−1∧
i=0

JbK−i(a)

For the program to be safe, if n iterations are made, then n iterations must be safe. This can be expressed
by combining the previous above two equations as:

Q′ = ∀n ∈ Z • n ≥ 0 ∧ JbK−n(¬a) ∧
n−1∧
i=0

JbK−i(a) ⇒ JbK−n(Q)

41

This precondition only asserts that the operations performed in b and after the end of the loop are safe, not
that the loop terminates. In order to generate a finite precondition Q′, one approach is to generate a fixed
point on this statement. If n is restricted to the set 0..k instead of Z and Q′k=j = Q′k=j+1 then by making
k = j a fixed point is established which is equivalent to the full precondition.

What happens if this condition does not reach a fixed point? Any precondition P where P ⇒ Q′ can be
used as a conservative approximation of Q′. Using the precondition False would work, although admittedly
at the cost of making proving safety unlikely.

Figure 6.11: Safe deletion of all elements
before the maximum

ptr x = cons(0, ...); int Max = -1;

ptr i = x; while (i::cons) {
if (Max > i->head)

Max = i->head;
i = i->tail;

}

while (x->head > Max)
x = x->tail;

One (possibly convoluted) example of where fixed-pointing
would not occur is deleting all elements from a linked list which
occur before the maximum element. A safe implementation,
ignoring termination issues, is shown in Figure 6.11. For this
piece of code, the second loop would generate an infinite pre-
condition that would not reach a fixed point. However, this
precondition is correct, using the loop above it. It would be
possible to rewrite this function into one involving only one
while statement, and this new piece of code would be prov-
able.

Another example of a piece of safe code that generates a non-
fixed-pointing while precondition is shown in Figure 6.12. In
this sample, the condition for loop safety is infinite, however
the loop is never executed. The next question is what to do
about these loops. Both these examples can be rewritten into a safe format, in the second case by removing
the while statement entirely. Because of the possibility of rewriting, fixed pointing is probably a reasonable
method to choose.

Figure 6.12: A non-fixed-pointing precon-
dition

ptr a = nil(); ptr b = ...;

while (a::cons)
b = b->tail;

Having decided to use fixed pointing of the precondition, the
next question is at what number to bound the search for the
fixed point. The smaller this number the quicker the program
will detect loops that do not fixed point, but this may result in
certain safe loops being erroneously reported as having an infi-
nite precondition. This number should therefore be determined
by experimentation.

6.3.2 Forward

The next step after proving safety of selectors is to prove the
loop terminates, by finding an acyclic path. To find an acyclic path, it is useful to introduce an ordering over
heap cells. This ordering, a � b means that b can be reached from a by following only acyclic selectors. In
addition, due to the properties of acyclicity, this means a cannot be reached by b, following acyclic selectors.

a � b ⇒ b � a

For implementation this definition would have to be complicated in order to account for the possibility of
multiple acyclic statements within one signature. While this would add to the implementation complexity,
it is easy to expand from one � operator to many. For the discussion of the theory, one acyclic set alone is
assumed.

6.3.3 Termination

42

To prove termination is valid, there must be one pointer such that on all iterations, the value of the pointer
is a successor using �, of its original value afterwards. A pointer could be any variable, followed by any
number of selectors. If such a variable exists, then there will be one that is mentioned within the loop. If
the variable that is updated in this manner is done so via an alias, then the alias would be the appropriate
variable. This means that there are only a finite number of candidate pointers.

A way to check that a pointer points to a forward point after the loop is to propagate the variable over the
statements within the loop. If regardless of the branches taken, the variable points at a forward location
afterwards, this variable proves termination for this loop. Care needs to be taken that any assignments do
not destroy this property as they are executed. In particular starred assignment may destroy this property.

6.4 Statements

This section details exact equations that specify how postconditions are transformed by the various atomic
Pasta statements.

6.4.1 Simple variable assignments

One common effect of assignment is to rename the variables. For example, in Jx = yK−1(Q) = Q′, it is
possible to replace all terms in Q which mention x with y. I have denoted this as Qx7→y. In particular, the
terms for which this is relevant is the test, field, alias and relation terms. Using this notation, the effect
of the above statement can be given as:

Jx = yK−1(Q) = Qx7→y

6.4.2 Assignments from a field

The effect of the statement x = y → field is similar to x = y, but an additional safety precondition is
generated to check the selector access is safe.

Jx = y→fieldK−1(Q) = Qx7→y→field ∧ field(y, field)

6.4.3 Assignment to fields

Jx→field = yK−1(Q) = Q∀z•alias(x,z)⇒z→field7→y ∧ field(x, field) ∧ x � y

Note the transformation of Q. The ∀ seems to suggest an infinite number of terms may be generated, but
this is not the case. The only terms that need to be included as values for z are the pointers that are included
in the list of terms. As a more concrete example, for the single term Q = test(a→field, cons), the expanded
version would be:

Jx→field = yK−1(test(a→field, cons)) = (alias(x, a→field) ⇒ test(y, cons))∧
(¬alias(x, a→field) ⇒ test(a→field, cons))

Note also the inclusion of x � y, which is required to maintain the acyclicity. In particular, note that x and
not x→ field is compared to y. This proves that x→ field = x→ field maintains the acyclicity property,
as indeed it does.

6.4.4 Starred Assignment

J∗x = ∗yK−1(Q) = Q∀z•alias(x,z)⇒z 7→y ∧ (∀z • alias(x, z→field) ⇒ z � y)

43

The starred assignment is very similar to the assignment to a field. The only addition is that now for
all variables aliased to x, the acyclic constraint must be preserved. Unfortunately this would expand to
an infinite number of preconditions, requiring all possible z aliases to be checked, even for values of z not
mentioned in the procedure.

One way to permit the starred assignment would be to introduce the universal quantifier to the predicate
logic system. This would complicate all the other expressions, requiring them to deal with quantifiers, and
make implementation harder.

Another method is to remove the quantifier, replacing the condition with an alternative one, that implies
the original condition. One replacement condition is:

J∗x = ∗yK−1(Q) = Q∀z•alias(x,z)⇒z 7→y ∧ (¬alias(x, y) ⇒ x � y)

In this expression, x � y is used, as this implies ∀z • alias(x, z→ field) ⇒ z � y. There are various cases
in which the new condition will fail, while the old one succeeds, but the most obvious is when alias(x, y) is
true. In this situation, the ∗x = ∗y statement has no effect, and therefore alias(x, y) can be used to guard
the � condition.

The new expression has a finite number of terms in it, at the cost of slightly reduced power compared to the
original. While some statements accepted by the original expression are now rejected, this does not appear
to include any statements actually used in programs.

6.4.5 Allocating Assignments

A statement x = new() has no preconditions, and allows any alias(x, ?) statements to be discharged, since
this new node is clearly not aliased to anything. It also allows test(x, ?) statements to be discharged.

6.5 Predicate Logic

This section concerns how to store the predicates at each stage. The most simple format is in the form in
which they are generated. The main problem with this is that the information available at any stage of the
computation to the user will be in an incredibly bloated format. The other problem is that loops require
fixed pointing of the precondition, and by not having a standard representation, fixed pointing is not as easy.

When choosing a format for propositional logic, the two standard forms are disjunctive normal form, and
conjunctive formal form. This is achieved by removing statements such as ⇒ and replacing a ⇒ b with
¬a ∨ b. Brackets are multiplied out as required, and this generally leads to repeated subexpressions.

An important concern here is the field predicate, which can be replaced by the disjunction of all the types
which contain such a field. However, doing this does not allow negative information to accumulate. The
fact that a variable is not of a particular type does not solve any terms. The reverse, saying that the type
is not any of the types not containing the field allows both negative information to accumulate (by solving
a term), and positive information (by solving all terms). So the ideal expansion, where Type¬field is the set
of all subtypes not containing a particular field, is:

field(x, selector) = ∀y ∈ Type¬field • ¬test(x, y)

Having established this as the format for checking selectors, which is very common precondition, we need
to design a predicate representation that can encode this condition efficiently. Using conjunctive normal
form for the expression would result in a very large number of terms, when an outer operator such as ∧ was
expanded. For this reason, disjunctive normal form is an appropriate choice.

44

Using disjunctive normal form, what optimisations can we apply and at what stage? Various boolean
relations, in particular idempotence, can be applied. Deciding what level of optimisation to apply and at
what stage is therefore deferred to the results section, where measurements can be made.

6.6 Summary

In this chapter I have discussed the design decisions specific to backward analysis, covering the terms required
and the predicate expression. Details have also been given of the transformations individual statements make
to the predicates.

45

Chapter 7:

Implementation and Testing

This chapter covers the details of implementation, how the static analysis program is constructed, and the
testing carried out. Selected highlights of the program are included in Appendix .

7.1 Choice of Analysis Method

I have implemented both forward and backward analysis, as described in Chapters 5 and 6. Following
experimentation with both types, I decided that backward analysis was more appropriate for this particular
task. Details of the performance of the forward analysis can be seen in section , along with reasons for
prefering backward analysis. I have included some design details related to forward analysis, however the
majority of this chapter is concerned with backwards analysis.

7.2 Language

I chose to implement my analysis program in Haskell [20], primarily because the existing parser and imple-
mentation for the Pasta programming language are written in this language. In addition, the mathematical
model of the static analysis can be mapped easily into Haskell.

The primary disadvantage of using Haskell is that the destructive pointer assignment in Pasta would benefit
greatly from a language which exposed the power of references. As a result alternative mechanisms are
required to achieve the same effect. This is mainly of note in the forward analysis.

7.3 Abstract Representation

As discussed in Chapter 4, the Pasta language contains many constructs that can either be removed or
simplified, and the design chapters considered Reduced Pasta. For the implementation, breaking Pasta
down to the Reduced level given is not necessarily practical, as many of the abstractions complicate the
structure of the program.

One particular example of the abstraction tradeoff is the while statement. The simplified while removes
the condition out of the guard, which decreases complexity for mathematical analysis, but increases it for
implementation. However, if the while statement is retained with its guard, the short-circuit boolean
operators && || must be implemented directly. Having implemented them for the while statement, the code
and its inherent complexity can be reused for the if statements.

A disadvantage of any abstraction process is that the knowledge determined by the static analyser is harder
to reintegrate with the standard abstract syntax tree for the full Pasta program. This means that certain
applications, for example optimising compilers as discussed later, would require more work. However, I feel
that the benefit of having simpler code outweighs this, certainly for an initial implementation.

One particular note in relation to the abstractions is that temporary variables have been minimised, in order
to avoid a global counter. All variables are given a number related to their scoping, so variables in the
outermost scope are named varname1, within one statement varname2 etc. This is also used for procedures
that are expanded inline, where the code is considered to be with a block. Where additional temporaries are
needed, for example parallel assignment, a leading underscore is used in addition to the standard variable.
This is valid, because in standard Pasta programs a variable name may not contain either an underscore or
a digit, and hence all the generated names are unique.

46

Figure 7.13: Program Structure

input file
��

Parser

syntax tree

��
Abstraction

abstract syntax tree

��
Evaluation

wwnnnnnnnnnnnn

((PPPPPPPPPPPP

oblig/update Predicate Logic

7.4 Program Design

The analysis program is designed to be modular. The analysis is detached from the related tasks such as the
abstraction and the predicate solver. In order to implement the solver, two particular functions are used to
generate the preconditions, namely oblig and update. The oblig function takes an atomic statement, and
returns the safety preconditions. The update function takes both a statement, and a single predicate term,
and generates a modified predicate term or terms. Special case solvers are used for both the if and while
statements.

An object diagram of the program is shown in Figure 7.13. In this diagram the program to analyse flows
down from the top to the bottom. The Evaluation stage uses both the update and oblig procedures, in
addition to the predicate solver.

7.4.1 Short Circuit Boolean Operators

The short-circuit boolean operators, && and ||, are implemented in a separate function. The statement
a || b in particular is defined as being the case when either a is true, or a is false, and b is true. This raises
the need to determine the value of not a, remembering that the Pasta language has no such not keyword
or ! operator. To create a not of a numerical relation is easy enough, and simply requires inverting the
operator. A test x::cons can be replaced with n − 1 terms, where n is the number of subtypes, being all
the subtypes but the original one. However, in order to reduce the number of terms, I have added the not
symbol into the language at the abstraction level. This construct is particularly easy to process, as it maps
trivially to the predicate logic ¬ term.

7.4.2 Obligations as Predicate Trees

The oblig function takes a statement, and generates the obligations for it as a predicate tree. If the predicate
tree generated is true, then the statement is safe. For an example, if x = y->tail is the statement, then
¬test(y, nil) is the generated predicate.

As a particular example, the statement x = y is dealt with by the code in listing 7.1. The obligations are

47

Listing 7.1: Implementation of oblig

oblig prog (Assign l1 l2) = PAnd [obLoc prog l1, obLoc prog l2]

obLoc prog loc = PAnd (map f (inits loc))
where

f [] = Pass ""
f [_] = Pass ""
f loc = obSelector prog (init loc) (last loc)

Listing 7.2: Implementation of update

update prog (New l n) p = case p of
s@(Test l’ n’) -> if l == l’ then porf (n == n’) (show s) else Proof p
s@(Alias x y) | x == y -> Pass (show s)
s@(Alias x y) | x == l || y == l -> Fail (show s)
x -> Proof x

that the two variables are both valid down all their selectors. These obligations are generated by taking all
the selectors and applying the obSelector function.

7.4.3 Predicate Updating

The update function maps a particular term over a statement. An example of this is the term test(x, nil),
when mapped over x = y, is changed to test(y, nil). However, while the input term is just one single
atomic predicate, the output term does not have to be. For example, test(q→ tail, nil) when mapped over
x->tail = y generates (alias(x, q) ⇒ test(y, nil)) ∧ (¬alias(x, q) ⇒ test(q→ tail)).

One equation in the definition of update is given in Listing 7.2. This equation handles the x = new()
statement, with n being the subtype and l being the variable. This particular function discharges all test
terms related to the variable x by directly checking the type, and also deals with alias relations where either
variable is x.

7.5 Loop Design

The question of how to implement looping is of particular difficulty. The basic problem is to find a pointer
which points to a successor after the loop has executed. The method that is used is to generate all pos-
sible variables that might satisfy this, along with all possible sets of acyclic variables, and take the cross
product. The disjunction of all of these statements is then taken, with each condition being of the form
forward(variable, variable, selectors). In the actual implementation FwdLoop also has an integer variable to
denote the depth – this is only used for dealing with nested loop statements. The update function mentioned
above then performs variable renaming on only one of the variables.

After a loop has been executed once, all forward terms are examined. Any that have shown forward motion
are retained for the next iteration, and any which do not are falsified. This is repeated until the a fixed point
is reached, at which time all remaining forward terms are passed. This results in the correct behaviour for
finding forward motion. If no forward terms remain, then the whole condition fails. Even if the forward

48

terms have become distributed throughout the entire expression, for example via alias(. . .) ⇒ forward(. . .),
this method still works.

This implementation is particularly nice, because the update function can be reused to perform most of the
work. The main disadvantage however, is the number of pointers that are checked for forward motion, which
can become quite big. Most of these pointers are rejected in the first iteration, so this does not prove too
much of a problem.

The vast number of forward predicates complicates the output traces considerably in some cases, and so the
program was altered to produce more effective output. First the loop is analysed once using all the possible
variables, and then all those that do not show any forward motion are discarded, and the loop is reanalysed
from the beginning using only the remaining variables. This does not affect the result of the analysis. It
takes additional time, but the result is more usable for a human reader.

7.6 Testing

As always, testing the program to check it performs correctly is of paramount important. There are various
testing methods available, and different approaches are appropriate for different sections of the program.

7.6.1 Random Testing using QuickCheck

The program QuickCheck [10] is written in Haskell, and is a tool for testing Haskell programs automatically.
QuickCheck generates large numbers of sample expressions, and checks that properties supplied by the
tester hold under all these cases. QuickCheck can be used as a reasonable program tester in functional
programs because the lack of global state allows the testing of each function to be performed in isolation
without worrying about the state of the system. To apply QuickCheck in a program it is necessary to give
a mechanism for QuickCheck to generate sample expressions, and to give various properties for it to check
against.

I considered using QuickCheck to test the entire analysis. The main problem is generating random programs.
It is entirely possible to generate a random program, and by imposing certain restrictions on it valid Pasta
programs, with appropriate typing, can be generated. The problem however is that the vast majority of
programs will not be safe and will not terminate. Determining which category a random program falls into
requires manual intervention, so automated testing cannot be performed. Despite this, checking random
programs would help to suggest the analysis itself did not crash and always terminated, but this would
require a lot of effort to implement for relatively little gain.

One particularly complex area of the program is the predicate solver. This takes a predicate expression,
puts it into disjunctive normal form, and simplifies it. The important properties about this transformation
are that the original expression is equivalent to the final one, and that the final one is in disjunctive normal
form. Both these are perfect candidates for checking with QuickCheck, and this was done.

Random Predicates The first task when using QuickCheck is to randomly generate various expressions
that can be used as test cases. The proof engine in the analysis program allows the use of the symbols
⇒ ∧ ∨ ¬ along with the literals true and false, and any individual terms, for example alias and test. The
data structure is parameterised by the terms given, and for the solver, these are treated as the 1

2
logic value.

To generate random expressions, I defined the atomic terms to be either Proof True or Proof False. These
both have no meaning to the solver, but can be evaluated to reach concrete boolean values at the end. These
were generated along with the allowed logic symbols.

49

Listing 7.3: QuickCheck Disjunctive Normal Form property

prop_dnf :: ProofBool -> Bool
prop_dnf (PB x) = f 0 (simplify x)

where
f i (POr x) | i < 1 = all (f 1) x
f i (PAnd x) | i < 2 = all (f 2) x
f i (Not x) | i < 3 = f 3 x

f _ (Pass _) = True
f _ (Fail _) = True
f _ (Proof _) = True
f _ _ = False

Listing 7.4: QuickCheck correctness property

prop_eq :: ProofBool -> Bool
prop_eq (PB x) = f x == f (simplify x)

where
f (POr x) = any f x
f (PAnd x) = all f x
f (Not x) = not (f x)
f (Imp x y) = not (f x) || (f y)
f (Pass _) = True
f (Fail _) = False
f (Proof x) = x

The output after simplification should be in disjunctive normal form, and this is checked by using the Quick
Check property given in listing 7.3. This code maintains a variable, i, which can only ever increase. As the
various connective symbols are reached, this counter is increased so that lower down connectives cannot be
duplicated.

The correctness of the simplification is checked by evaluating the pending values into real values, and then
applying all the operators, as shown in Listing 7.4. Just because prop_eq passes, this does not mean that in
this particular case the simplify function is correct. Because only two pending values are used, and only
two outcomes can result, it is quite possible that the simplify was wrong, yet correct by chance. However,
if this property fails then it is clear that the simplify function is flawed. As a result, a larger number of
these tests need to be performed, however because this is an automated process, this is not of particular
concern.

7.6.2 Example Testing

The most obvious method of testing the program was on the sample Pasta programs available to me. A
number of samples exist, including an ordered linked list, a queue and various tree structures. For each of
these samples, the analyser was run over it, and the results compared with manual analysis. Where failures
were found, these were investigated.

50

More details of the examples, their results, and a full analysis can be found in the following chapter.

7.6.3 Regression Testing

The final method of testing used was regression testing [3]. As failing examples were found, the minimal
failing example was extracted and placed in a separate file, shown in Appendix . Also, as the development
progressed and new features were able to be validated, small pieces of code exercising these features were
created and placed in the same file. By the end of development, a corpus of over 20 snippets of code was
available. The entire test suite could then be run automatically, and compared against the expected results.

7.7 Summary

The analysis program was implemented in accordance with the design section, using Haskell as an imple-
mentation language. Due to the mathematical nature of both the design and Haskell, the majority of the
implementation is just basic translation. Testing was done on the analysis program, which allow a level of
confidence to be asserted in its correctness.

51

Chapter 8:

Results and Evaluation

The program was implemented, and then executed on the various sample programs. This chapter discusses
the results, and any issues that were raised by the resulting implementation.

8.1 Criteria for Evaluation

The first task when is to define some criteria by which to assess the program. The aim of the static analysis
tool was to prove that a Pasta function is total. The tool is designed to generate proofs, so for any function
that cannot be proven, the tool will report a failure. This means that the primary evaluation criterion is
that the tool is indeed correct, and that no unsafe programs are reported as safe.

The program solves the halting problem for a restricted set of cases, and this means there are an infinite
number of safe programs for which the program will report failure. A much more interesting question is
how many programs that people will actually want to write, and can be expressed naturally in Pasta, are
erroneously reported as failures.

Given that there exist safe programs that cannot be proved safe by the analyser, in order to use the tool
effectively on a larger project, these procedures would need to be rewritten in such a way that proof is
possible. Therefore another criterion is how much additional restructuring or annotation is needed to take a
safe but failing example, and obtain a proof of correctness.

If the analysis fails, then the next question will always by “why?”. This means that another important
criterion is the quality of any error report, a terse No. is insufficient, as this does not allow the programmer
to take corrective action. The ideal analysis would pinpoint the exact statement which failed, along with
detailed reasons for its failure.

8.2 Linked List

The most basic pointer based data structure is a linked list, and therefore makes a good candidate to analyse
first. The linked list sample given in Section was analysed. The output from the backward analysis tool is
shown in Listing 8.5. 1

The system uses square brackets to show the preconditions at each stage, as they are hoisted over the
statements. The only possible source of confusion could be from the if statement – just before both the if
and else clauses the combined precondition is listed.

The first thing to note, is that the condition at the bottom of the sample is True, this is the initial condition
for the system – there are no preconditions to discharge after the function. The next thing is the True at
the top, this means that the program is safe. By looking at just the program, and not the conditions at all,
the abstract representation of Pasta in the program can be seen.

The while statement analysed at the top shows that the loop terminates, because it traverses down the
acyclic path composed of tail, using the variable s. The other point to note is that the loop is safe on
its own, i.e. the precondition is True. This is because any safety preconditions, namely that s :: cons, are

1Editorial changes have been made to the output of the program. These are purely formatting changes – no formulae have
been altered and the original meaning and layout is preserved.

52

Listing 8.5: Output of the analysis program for linked list insertion

[True]
Forward down: s::tail
Fixpoints on: [True]
while ((s::cons) && (s->head Less i)) {

[forard(s, s, tail) ∨ forward(s→ tail, s→ tail, tail)]
[(¬s::nil ∧ forward(s, s, tail)) ∨ (¬s::nil ∧ forward(s→ tail, s→ tail, tail)]
[(¬s::nil ∧ forward(s→ tail, s, tail)) ∨ (¬s::nil ∧ forward(s→ tail→ tail, s→ tail, tail))]
s = s->tail
[forward(s, s, tail) ∨ forward(s→ tail, s→ tail, tail)]

}
[True]
if ((s::nil) || (s->head Great i)) {

[True]
[True]
_s = new(cons)
[¬s::nil]
_s->head = i
[¬s::nil]
if (s::nil) {

[¬s::nil ∨ ¬s::nil]
[¬s::nil]
_s->tail = new(nil)
[True]

} else {
[(¬s::nil ∨ s::nil)]
[(¬s::nil ∧ ¬s::nil)]
_s->tail = new(cons)
[(¬s::nil ∧ ¬s→ tail::nil ∧ ¬s::nil)]
_s->tail->head = s->head
[(¬s::nil ∧ ¬s→ tail::nil ∧ ¬s::nil)]
_s->tail->tail = s->tail
[True]

}
[True]
s *=* _s
[True]

} else {
[True]
[True]

}
[True]

53

discharged in the loop guard. This is a very common pattern for loop construction, and the vast majority
do indeed fixed point on True.

8.3 Queue Analysis

After analysing a linked list, a good choice of data structure is the queue. This incorporates a linked list
of elements, but also allows insertion at the end, using starred assignment. The signatures of the methods
are given in Figure 8.14. This program defines a queue, where enqueue adds an element i to the end of the
queue, and dequeue removes the first element in the queue. The full code for these methods can be found
in Appendix .

Figure 8.14: Signatures of the methods for
a queue

queue acyclic(tail) {
nil();
cons(int head, ptr tail);
queue(ptr front, ptr rear);

}

makequeue(ptr q);
enqueue(int i, ptr q);
dequeue(ptr q);
main();

The first thing to note about this example is the makequeue
function. This performs initialisation required for the queue
data structure. The other thing is the queue subtype, this is
essentially a composite object, storing a pointer to both the
head and the tail. It is the programmers intention that the q
parameter to both enqueue and dequeue is of type queue, and
was constructed with makequeue. This is not however explicitly
stated in the code, merely as part of the documentation of this
interface.

I ran the analysis program over the four different procedures.
The results were as follows.

8.3.1 Make Queue

The makequeue procedure passes. This is not surprising, as the
parameter q is not actually used, other than to assign to. In a
language such as Ada, q would be an out parameter. Since the
function does not depend on q, and everything else is known, success is expected.

8.3.2 Main

The main procedure also passes, this is an example program which inserts and deletes items from the queue.
All the interfaces are called following the appropriate conventions, for example makequeue is called first. As
the program conforms to the interfaces, it is to be expected that the program is safe, as is proven.

8.3.3 Dequeue

The dequeue procedure deduces the precondition [¬q::cons ∧ ¬q::nil] which can be rewritten as q::queue.
This is reasonable, as the dequeue statement is only applicable to queue subtypes. In order to change
the program to make this procedure valid without any precondition, the body could be guarded with an
if (q::queue) { ... } statement. When this was done, the result of the analysis was a precondition of
True.

8.3.4 Enqueue

The enqueue procedure deduces the most complex precondition of all the procedures, being:

[¬q::cons ∧ ¬q::nil ∧ ¬alias(q, q→rear)]

54

The first two terms are equivalent to q::queue as for dequeue, and could be removed by introducing an if
statement to guard the procedure body. The alias predicate however is not so obvious. To see the reason
for this predicate, it is necessary to delve into the code behind the procedure.� �
enqueue(int i, ptr q) {

*q->rear = *cons(i,copy(q->rear));
q->rear = q->rear->tail;

}� �
This code creates a new node, using cons, which stores the value to be inserted. It then overwrites the
existing rear node, with the in-place starred assignment, thus ensuring that all the tail pointers are still
valid. The tail for this new node is a copy of the old tail node, which will in fact always be nil for
valid structures and hence copy(q->rear) could have been replaced with nil(). The next statement then
updates the rear to point to this newly created nil node.

Now let us consider what happens if the precondition suggested by the analysis fails to hold. That is,
alias(q, q→rear). Before the computation starts:
q //�� ���� ��queue

rear

RR

After the execution of the statement *q->rear = *cons(i,copy(q->rear));:

q //�� ���� ��cons
tail //�� ���� ��queue

rear

RR

Now the field selection q->rear is no longer safe, as q is of type cons and thus does not have a rear. This
would cause a crash.

It is possible to rewrite this procedure, in such a way that the results are identical when the data structure
is valid. If the structure is corrupt, then the procedure will not perform as intended, but will not cause a
program crash. The new version is:� �
enqueue(int i, ptr q) {

ptr rear = q->rear;
q->rear = copy(q->rear);
*rear = *cons(i,q->rear);

}� �
The result of analysing this program is that the condition about aliasing is removed, and merely the q::queue
condition remains, as expected. It is interesting to see what happens using the new code when alias(q, q→
rear).

The initial state is the same, namely:
q //�� ���� ��queue

rear

RR

After the ptr rear = q->rear statement:

55

q //�� ���� ��queue

rear

RR

rear

::ttttttttt

The statement q->rear = copy(q->rear) results in:
q //�� ���� ��queue rear //�� ���� ��queue

rear

RR

rear

::ttttttttt

And the final *rear = *cons(i,q->rear) gives:

q //�� ���� ��cons
tail //�� ���� ��queue

rear

RR

rear

::vvvvvvvvv

Figure 8.15: Method signatures for a binary
tree

tree acyclic(left, right) {
leaf();
fork(ptr left, int n, ptr right)

;
}

insert(int i, ptr t); delete(int i,
ptr t); main();

Figure 8.16: Method signatures for a
threaded tree

thread {
leaf();
branch(ptr prev, ptr left, int n

, ptr right, ptr next);
root(ptr first, ptr top, ptr

last);
}

maket(ptr t)
insert(int i, ptr t)
delete(int i, ptr t)
main()

While it is clear that this data structure is not a valid queue, the
procedure does perform correctly on valid queues, and safely
even on invalid queues. This satisfies the requirement of total-
ity, but not that the procedure performs according to specifi-
cation. Hopefully the graph analyser would detect a situation
such as this, being outside the scope of this project.

8.4 Tree

Another data structure based on pointers is a binary tree, in
which each number is held in order: all children on the left of a
node are lower, all to the right are higher. The type signature
and function signatures of this sample are shown in Figure 8.15.

In this example, all the procedures end up with the precondi-
tion True. The analysis does not present any problems, and
is dealt with easily by the program. The only point that may
be of note is that analysis of all the loops reaches a fixed point
with the precondition True.

8.5 Threaded Tree

Another pointer data structure is the threaded tree, this data
structure differs from the previous ones by maintaining two sets
of pointers to each node. This data structure can be thought of
as a cross between a doubly linked list and a binary tree, nodes
are stored both in order of insertion and in numerical order.
The other point to mention is that the implementation of the
threaded tree is significantly more complex than the previous
samples, and highlights some of the limitations of the analysis.
The method signatures are given in Figure 8.16 and the original
implementation is available in Appendix .

The threaded tree implementation has a container type, called
root which acts very much in a similar way to queue in the queue sample. The maket procedure performs

56

the required initialisation, very much like makequeue. Because of this similarity, many of the remarks about
the queue data structure hold. In particular, both insert and delete assume that t is of type root.

In the threaded tree, the assumption is also made that there is only one root. For example the following
code can be extracted from the insert procedure.� �
if (t->top::leaf)

...;
else {

t->right ...
}� �
Note that in the else branch, the code has assumed t->top::branch, because the documentation requires
t to be the only root. If this fragment was to occur inside a loop then an infinite precondition would
be generated, which would cause the analysis to fail. Fortunately, in this particular example, an explicit
::branch test is performed inside loops.

The next complexity within the threaded tree is the use of trichotomies to check for subtypes.� �
while (t->n < i && t->right::branch ||

t->n > i && t->left::branch)
{

if (t->n < i) t = t->right;
else t = t->left;

}� �
This code checks the value of t->n against i, and also checks that the required field is a branch. The fact
that t->right is a branch is then not required until the next iteration, when t->n is called in the guard.
This code relies on the fact that only one of t->n < i and t->n > i can be true, and hence the following
condition must also be true for the loop to have been entered.

The analysis program is capable of checking for this when trichotomies are enabled. If they are disabled,
then this code generates an infinite number of preconditions related to the t->n field selection, and fails the
analysis.

While this example is particularly complex, the analysis program does manage to prove all procedures, albeit
after modifications have been made. While the modifications are not extensive, they did require some thought
as to whether they would alter the meaning of the code. This highlights the disadvantage of modifications,
in proving the safety of the code its correctness may be lost.

8.6 Forward Analysis

The forward analysis program, as described in the design section, was also implemented. The performance
of this tool is now discussed, although the backward analysis showed itself to be superior in a large range of
cases, so forward analysis is only covered in brief.

The first point to mention about the forward analysis is that the program was significantly more complex
to write. This is partially because of Haskell being more suited to backward analysis, but even taking this
into account, a larger number of modules were required – each of which was significantly more complex.

57

For the backward analysis the only portion that required custom implementation was the oblig and update
statements. All other elements of backward analysis implemented standard functionality that could be found
in tools that did not do analysis.

The exact figures for the size of each implementation are given below:
Analysis method Lines of code Number of modules Size of source
Backward analysis 930 9 32.9Kb
Forward analysis 1583 16 49.1Kb

The forward analysis was able to prove both the linked list and tree examples correct, and over and above
the backward analysis, was able to produce a generic state at each step. While this generic state was useful
for understanding the code, and the decisions reached by the analysis, in this setting it had only marginal
value. If this information could have been used by other processes, for example by an optimising compiler,
then this would have been a big point in favour of forward analysis.

One problem with the forward analysis was particularly highlighted during execution on the queue data
structure. In this case, where the backwards analysis gave clear and concise results, the forward analysis
simply failed. The reason for this is that the abstract state of the program was not able to discharge the
precondition, and, unlike the backward analysis, it could not tell what additional condition safety depended
on. In the end, it took guess work and experimentation to determine what sequence of inputs would result
in a crash. However, with the amended version of the queue, the program could be proved.

The final drawback in the forward analyser is the aliasing information. As shown in Chapter 4, if sufficient
aliasing information cannot be determined, then large portions of the abstract state have to be discarded.
The perfect forward analyser would therefore store everything that may be needed in the future, but this
would require unbounded amounts of storage. A compromise has to be achieved, which limits the program
severely. The backward analysis does not suffer from this problem, as essentially it first generates what
aliasing information would be useful, and then tries to see if it is true, removing redundant storage.

For these reasons, backward analysis appears to give superior results for the problem of determining totality.

8.7 Disjoint Subtypes

One particular feature of Pasta that has complicated the analysis are the container subtypes, for example
queue in the queue example. In the original Pasta there is a single pointer data type, with subtypes for
each constructor. If these subtypes were split into more than one data type then an alternative definition
for queue could be:� �
queue {

queue(node front, node rear);
}
node acyclic(tail) {

nil();
cons(int head, node tail);

}� �
All ptr keywords would then be removed, and replaced with one of these specialised subtypes. The type of
each variable could then be determined by the type checker, and this information could be used to remove
preconditions. The program would also better represent the intention of the user. In fact, in this particular
case the alias(q, q→ rear) precondition would be discharged, because q is of type queue, while q→ rear is
of type node, hence they are not aliased.

58

8.8 Runaway Non-termination

An interesting result occurs when a loop does not have an acyclic path to use for forward motion. Consider
the linked-list example, but without the acyclic(tail) statement in the signature. The following piece of
code cannot be proved to terminate:� �
ptr q = ...;
while (q::cons) {

q = q->tail;
}� �
This statement does not have an acyclic path, and in fact, if no acyclic definitions are given, then it is
impossible to prove a while statement correct. However, the analyser as originally designed tries to prove
that the loop still terminates. The generated precondition is an infinite chain:

q::nil ∨ q→ tail::nil ∨ q→ tail→ tail::nil ∨ . . .

This precondition is essentially the analysis program trying to prove that the loop comes to an end, without
using an acyclic argument. The problem with this is that clearly the condition does not reach a fixed point.
If this condition can be satisfied, then the number of iterations of the loop can be determined, and there is
likely to be a logic bug somewhere in the code.

To counteract this infinite precondition, and to make the loop fail gracefully, it was necessary to remove the
initial implications from the loop precondition. These were the statements that only required the loop to be
safe if the iteration was taken. However, the tail-chasing example shows that a more appropriate course of
action may be to assume the loop is always able to be executed.

The analysis with the implications removed is strictly less powerful than the initial one, in terms of what
can be validated. The only benefit of the second method is that the failure mode is more clear, and allows
better pinpointing of the error.

8.9 Performance

During the design and implementation of the static analyser, performance was never a key goal. However,
it is useful to see what the existing performance of the system is. To test the speed of the system, I ran the
analysis over the queue data structure discussed above. The analysis took 29 seconds, 17348614 reductions,
39750014 cells and required 16 garbage collections.

Almost half a minute for such a short program is quite poor performance. By executing various procedures
in isolation, it is possible to determine that over 27 seconds of this runtime are spent in the predicate logic
engine. All of this time is spent simplifying the logic, and converting to disjunctive normal form.

In order to investigate why this was taking such a large amount of time, I disabled the simplification logic,
means that no time was spent in the logic engine. With this change, the runtime increased significantly
as did the memory requirements. The reason for this is that many terms are generated, most of which are
removed by the simplifier. Without this simplifier, the precondition increases in size dramatically, and as
each statement is mapped over every predicate term, this increases the execution time.

During the development process, it was necessary to optimise the simplification engine for speed on more
than one occasion. As the execution time increased to a degree where simple examples became infeasible,
the simplifier was improved and this brought the execution times down dramatically.

59

The performance of the tool is currently unsatisfactory. However, since this is not an area that has been
investigated in any depth, this is not unreasonable.

8.10 Overall Results

The analysis program produced does indeed correctly determine whether a Pasta program is total or not.
Where examples are shown that do not pass the analysis, this is usually because of a legitimate safety
concern. Some programs require modification to allow proof (most commonly via the use of the acyclic
keyword), although this is usually relatively simple.

Where errors are raised they tend to be of a targeted nature, with a failing precondition that can be used to
engineer appropriate test cases. The output at each stage of the process can be viewed, although disjunctive
normal form is not necessarily the most appropriate for a human reader.

While there are many safe programs for which termination cannot be proved, these do not appear to corre-
spond to any common programming style or structure.

If any one area of the program was to be described as weaker than the others, it would be the loop analysis.
While in practice a fixed point seems to occur at True in almost every common case, this is not something
that can be relied upon. Also the problem of fixed pointing brings up the question of how many iterations
should be performed before failure is assumed. In this program, I found by experimentation that 3 iterations
was sufficient. Of course, it is always possible to engineer counter-examples to these observations.

8.11 Summary

The static analysis program produced accurately manages to determine safety over a range of typical pointer
programs. During the analysis real safety concerns were identified, and amended versions were produced.

60

Chapter 9:

Conclusions and Further Work

This chapter compares how the program matches the aims of the project, and the tasks for which the program
could be used in its existing form. Some future possible enhancements are also covered.

9.1 Existing Performance

The program as it currently is meets many of the initial objectives set out in the aims of the project. A
working analyser has been produced which can generate a proof that a procedure is total – both that it does
not crash and that it does terminate.

The one deviation from the initial aims of the project was the introduction of the acyclic keyword. An
unmodified Pasta program is unlikely to validate correctly, however the additional annotation is a relatively
small change if the data structure is well understood.

If a graph analyser was created, as is the intention, then when combined with this program guarantees of
termination, safety and correctness could be given. Using the associated Pasta to C convertor this proven
code could then be used in general purpose programs. This would provide very high levels of safety, in a
programming language that is used by many people, where safety is usually much harder to prove.

The program provides more assurances than tools such as Splint [14], while requiring less effort to apply
compared to approaches such as B [2]. Other tools such as SPARK [7] avoid aliasing, but this analysis
handles it in an automated manner, without being overly pessimistic. Uniquely for most static analysis
tools, proof of termination is given, with only minimal user input.

9.2 Compiler Optimisations

One use for the analysis program, other than the clear benefit of having safer code, would be for use in
an optimising compiler. For many programs, the cost of a runtime exception occurring is quite high. For
example, using the GCC [24] compiler, turning on C++ exception handling can cause the resulting program
to become up to 9 times larger. If it could be shown that no exceptions occurred, even just within certain
procedures, extra checks could be avoided.

For the statement x = y->field it is possible that if this code is safe, y could still be possibly more than
one subtype. This means that at runtime, the actual memory address of field will have to be computed
by looking at the subtype of y. If the subtype could be precisely determined, this extra level of indirection
could be avoided.

This last use would probably be more suited to forward analysis, as that would require only one pass to
determine information about all variables in the program.

9.3 Better Error Reporting

The tool currently uses disjunctive normal form for all predicates, and this is also the representation used to
display preconditions to the user. For a human, a more natural form would include additional operators such
as ⇒ and ⇔. In addition, where the program expands out brackets to achieve the standard representation,
a human reader would probably find fewer terms easier to comprehend and work with.

9.4 Removal of Annotations

61

Currently the Pasta programs require some additional annotations in order to be proved total. A worthy goal
would be trying to reduce these annotations in number, so that more programs worked without modification
in any way. The most obvious annotation to remove would be the acyclic notation, which could be
automatically computed in some circumstances.

Other annotations on the code relate to the disjoint subtypes, and by extending the language in this way,
programmers could write their intentions more directly. This would also allow more analysis to be performed
statically in the type checking phase, hopefully discovering more errors at an earlier stage.

9.5 Extended Language

The Pasta language as it currently stands is relatively simple compared to languages such as C and Ada.
Many constructs are missing, but one particular feature lacking is the concept of arrays. Also there are no
mathematical operations on integers, which would be useful for writing many programs.

As a result of these intentional omissions, various classes of errors are avoided. If the Pasta language was
extended to include these concepts, or an alternative language such as Ada was analysed, then additional
features would be required in addition to those currently in the analyser.

One interesting area for investigation would be whether the predicate solver and update/oblig pattern could
be preserved, or whether this would be insufficient. The current implementation model is particular concise
when determining the properties of statements, and this would be useful to maintain.

9.6 Forward Analysis

Forward analysis was both designed and implemented, and produced a fairly powerful analyser. While it did
have various limitations, by investigating other design options it is possible that these may be overcome. In
addition, forward analysis has some applications available to it which backward analysis lacks.

Finally, forward analysis allows the abstract state to be viewed after each statement. While this is not always
very helpful for fixing potential errors, it could be very useful for people trying to learn how a particular
procedure works.

9.7 Performance Improvements

The issue of performance has not been discussed in this document, and all procedures are implemented as
direct mathematical translations where possible, with no thought to speed. As a result, execution times for
short procedures can be in the range of minutes. In order to create a tool that would be useable on large
projects, a speedup would be required.

The first place to look for an increase in performance would be the predicate solver. From experiments it
appears that almost all the execution time is spent simplifying and rearranging formulae. The representation
used for the terms is linked lists, and many inefficient algorithms are applied to them. One example is the
simplification using the idempotence property p = p ∧ p, which is O(n2) where n is the length of the list.
Simple algorithms exist which achieve O(n log n), and by optimising further, this cost could be avoided every
time a term is simplified.

9.8 Procedure Isolation

The current design of the program expands all procedures inline to validate the main procedure. This
procedures a very large body of code, and in a large system, this is very likely to be infeasible. If each

62

procedure could be analysed in isolation, with the preconditions then used afterwards the system could then
be designed to scale linearly with the number of procedures.

63

Bibliography

[1] ISO/IEC 13568:2002. Information technology—Z formal specification notation—syntax, type system
and semantics. International Standard.

[2] Jean-Raymond Abrial. The B-Book – Assigning Programs to Meanings. Cambridge University Press,
December 1996.

[3] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul A. London. Incremental regression
testing. In Conference on Software Maintenance, pages 348–357, 1993.

[4] American National Standards Institute, 1430 Broadway, New York, NY 10018, USA. Military Standard
Ada Programming Language, February 17 1983. Also MIL-STD-1815A.

[5] American National Standards Institute, 1430 Broadway, New York, NY 10018, USA. American National
Standard Programming Language C, ANSI X3.159-1989, December 14 1989.

[6] American National Standards Institute, 1430 Broadway, New York, NY 10018, USA. Programming
Languages - C++ ISO/IEC 14882:1998(E), September 01 1998.

[7] John Barnes. High Integrity Software: The SPARK Approach. Addison Wesley, 2003.

[8] Roman Bartak. Constraint Programming: In Pursuit of the Holy Grail. Week of Doctoral Students,
pages 555–564, June 1999.

[9] David R Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and Structures. In ACM
SIGPLAN’90 Conference on Programmaing Language Design and Implementation, Jun 1990.

[10] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In International Conference of Functional Programming, 2000.

[11] Microsoft Corporation. Microsoft Visual Basic 6.0 Reference Library. Microsoft Press, August 1998.

[12] Coverity. SWAT. http://www.coverity.com/, 2004.

[13] Andy Chou et. al. Stanford Checker. http://marc.theaimsgroup.com/?l=linux-kernel&m=
104155431311370&w=2, 2003.

[14] David Evans and David Larochelle. Improving Security Using Extensible Lightweight Static Analysis.
IEEE Software, Jan/Feb 2002.

[15] M. Gerlek, M. Wolfe, and E. Stoltz. A reference chain approach for live variables, 1994.

[16] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Sun Microsys-
tems, second edition, 2000.

[17] Anthony Hall and Roderick Chapman. Correctness by Construction: Developing a Commercial Secure
System. IEEE Software, pages 18–25, Jan/Feb 2002.

[18] International Standards Organisation. Pascal ISO 7185, 1990.

[19] S. C. Johnson. Lint, a c program checker. Technical report, Bell Laboratories, July 1978.

[20] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge University
Press, first edition, 2003.

64

[21] William Landi and Barbara G. Ryder. A Safe Approximation Algorithm for Interprocedural Pointer
Aliasing. ACM SIGPLAN ’92, pages 235–248, 1992.

[22] John C Martin. Introduction to Languages and the Theory of Computation. McGraw Hill, second
edition, 1997.

[23] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer,
1999.

[24] GNU Project. GNU Compiler Collection. http://gcc.gnu.org/, 2004.

[25] Colin Runciman. Pasta Shell: Revision and First Implementation. Internal email memorandum, Septem-
ber 2002.

[26] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
ACM Transactions on Programming Languages and Systems, 24:217–298, May 2002.

[27] Alan Mathinson Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1937.

65

Appendix A:

Expanded List insert Procedure

This appendix gives a detailed translation of the linked list insertion procedure, both in standard Pasta and
the reduced version of Pasta. Details on the translation process can be found in section .

A.1 Standard Pasta

insert(int i, ptr s) {
while (s::cons && s->head < i) s = s->tail;
if (s::nil || s->head > i) *s = *cons(i,copy(s));

}

A.2 Reduced Pasta

insert(int i, ptr s) {
if (s::cons) {

t2 = s->head;
if (t2 < i) {

t1 = 1;
while (t1 == 1) {

s = s->tail;
if (s::cons) {

t3 = s->head;
if (t3 < i)

t1 = 1;
else

t1 = 0;
} else

t1 = 0;
}

}
}
if (s::nil) {

t4 = nil();
if (s::nil) {

t5 = nil();
*t4 = *t5;

} else {
t6 = cons();
t7 = s->head;
t6->head = t7;
t8 = s->tail;
t6->tail = t8;
*t4 = *t6;

}

t9 = cons();
t9->head = i;
t9->tail = t4;

*s = *t9;
} else {

t10 = s->head;
if (t10 > i) {

t11 = nil();
if (s::nil) {

t12 = nil();
*t11 = *t12;

} else {
t13 = cons();
t14 = s->head;
t13->head = t14;
t15 = s->tail;
t13->tail = t15;
*t11 = *t13;

}

t16 = cons();
t16->head = i;
t16->tail = t11;

*s = *t16;
}

}
}

66

Appendix B:

Queue Sample

This is the original code for the queue, with the safe modification in comments.

−− version 2.0

queue acyclic(tl) acyclic(front,rear) {
nil();
cons(int hd, ptr tl);
queue(ptr front, ptr rear);

}

makeq(ptr q) {
ptr d = nil();
*q = *queue(d, d);

−−To cause a failure in the original version
−−just uncomment the following line
−− q−>rear = q;
}

enq(int i, ptr q) {
−−Modified version
−− ptr rear = q−>rear;
−− q−>rear = copy(q−>rear);
−− ∗rear = ∗cons(i,q−>rear);

−−Original version
*q->rear = *cons(i,copy(q->rear));
q->rear = q->rear->tl;

}

deq(ptr q) {
if (q->front::cons) q->front = q->front->tl;

}

main() {
ptr qe = nil();
makeq(qe);
enq(1,qe); enq(2,qe);
deq(qe); deq(qe); enq(0, qe);

}

67

Appendix C:

Thread Tree Sample

This is the original code for the threaded tree, without any modifications.

thread {
leaf();
branch(ptr prev, ptr left, int n, ptr right, ptr next);
root(ptr first, ptr top, ptr last);

}

maket(ptr t) {
ptr l = leaf();
*t = *root(l,l,l);
t->first = t;
t->last = t;

}

insert(int i, ptr t) {
if (t->top::leaf)
{

t->first = t->top;
t->last = t->top;
*t->top = *branch(t,leaf(),i,leaf(),t);

}
else
{

t = t->top;
while (t->n < i && t->right::branch ||

t->n > i && t->left::branch)
{

if (t->n < i) t = t->right;
else t = t->left;

}
if (t->n < i)
{

*t->right = *branch(t,leaf(),i,leaf(),t->next);
if (t->next::branch)

t->next->prev = t->right;
else

t->next->last = t->right;
t->next = t->right;

}
else if (t->n > i)
{

*t->left = *branch(t->prev,leaf(),i,leaf(),t);
if (t->prev::branch)

t->prev->next = t->left;
else

t->prev->first = t->left;

68

t->prev = t->left;
}

}
}

delete(int i, ptr t) {
t = t->top;
while (t::branch && t->n != i)
{

if (t->n < i)
t = t->right;

else
t = t->left;

}
if (t::branch)
{

while ((t->left::branch || t->right::branch) &&
t->next::branch)

{
if (t->right::branch)
{

t->n = t->next->n;
t->next->n = i;
t = t->next;

}
else
{

t->n = t->prev->n;
t->prev->n = i;
t = t->prev;

}
}
if (t->prev::branch)

t->prev->next = t->next;
else

t->prev->first = t->next;
if (t->next::branch)

t->next->prev = t->prev;
else

t->next->last = t->prev;
*t = *leaf();

}
}

main() {
ptr t = leaf();
maket(t);
insert(2,t); insert(1,t); insert(3,t);
delete(2,t); delete(1,t);

}

69

A
p
p
e
n
d
ix

D
:

R
e
g
re

ss
io

n
T
e
st

s

T
he

fo
llo

w
in

g
ar

e
re

gr
es

si
on

te
st

s
th

at
w

er
e

us
ed

to
ch

ec
k

th
e

pr
og

ra
m

du
ri

ng
de

ve
lo

pm
en

t.
T

he
te

st
s

th
at

st
ar

t
w

it
h
f
a
i
l

ar
e

in
st

an
ce

s
w

he
re

th
e

an
al

ys
is

pr
og

ra
m

sh
ou

ld
no

t
be

ab
le

to
pr

ov
e

th
e

pr
ec

on
di

ti
on

s.

−
−

P
en

ne
T
es

t
Su

it
e

−
−

T
es

t’
s

fo
r

th
e

P
en

ne
va

lid
at

io
n

pr
og

ra
m

s
t
r
u
c
t

ac
y
cl

ic
(
q
)

{
n
i
l
(
)
;

c
o
n
s
(
in

t
n
,

p
tr

p
,

p
tr

q
)
;

} m
a
i
n
(
)

{
}

−
−

B
A

SI
C

T
E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

ba
si

c
ap

pl
ic

at
io

n
of

th
e

lo
op

st
ru

ct
ur

es
an

d
ve

ry
si

m
pl

e
in

fo
rm

at
io

n
flo

w

t
e
s
t
e
m
p
t
y
(
p
tr

p
)

{
} t
e
s
t
i
f
(
p
tr

p
)

{
if

(
p
:
:
c
o
n
s
)

p
=

p
-
>
q
;

} t
e
s
t
w
h
i
l
e
(
p
tr

p
)

{
w

h
il
e

(
p
:
:
c
o
n
s
)

p
=

p
-
>
q
;

} t
e
s
t
e
l
s
e
(
p
tr

p
)

{
if

(
p
:
:
n
i
l
)

p
=

p
;

el
se

p
=

p
-
>
q
;

} −
−

C
O

M
P
O

U
N

D
T

E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

te
st

s
w
he

re
th

er
e

ar
e

m
or

e
th

an
on

e
co

nd
it
io

na
l
va

ri
ab

le
t
e
s
t
i
f
a
n
d
(
p
tr

p
)

{
if

(
p
:
:
c
o
n
s

&
&

p
-
>
n

<
1
2
)

p
=

p
-
>
q
;

} t
e
s
t
w
h
i
l
e
a
n
d
(
p
tr

p
)

{
w

h
il
e

(
p
:
:
c
o
n
s

&
&

p
-
>
n

<
1
2
)

p
=

p
-
>
q
;

} −
−

A
SS

IG
N

M
E
N

T
T

E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

re
qu

ir
es

kn
ow

le
dg

e
ab

ou
t
as

si
gn

m
en

t
to

be
pr

op
og

at
ed

a
s
s
i
g
n
v
a
r
(
p
tr

r
)

{
if

(
r
:
:
c
o
n
s
)

{
p
tr

p
=

r
;

p
=

p
-
>
p
;

}
} a
s
s
i
g
n
c
t
o
r
(
p
tr

q
)

{
p
tr

p
=

c
o
n
s
(
0
,

q
,

q
)
;

p
=

p
-
>
p
;

}

70

a
s
s
i
g
n
c
t
o
r
d
e
e
p
(
p
tr

q
)

{
if

(
q
:
:
c
o
n
s
)

{
p
tr

p
=

c
o
n
s
(
0
,

q
,

q
)
;

p
=

p
-
>
p
-
>
p
;

}
} a
s
s
i
g
n
v
a
r
d
e
e
p
(
p
tr

q
)

{
if

(
q
:
:
c
o
n
s
)

{
p
tr

p
=

c
o
n
s
(
0
,

q
,

q
)
;

p
-
>
p

=
c
o
n
s
(
0
,

q
,

q
)
;

p
=

p
-
>
p
-
>
p
;

}
} a
s
s
i
g
n
s
t
a
r
c
t
o
r
(
p
tr

q
)

{
*
q

=
*
c
o
n
s
(
0
,

q
,

q
)
;

q
=

q
-
>
p
;

} a
s
s
i
g
n
t
r
i
c
k
(
p
tr

q
)

{
q

=
c
o
n
s
(
0
,

q
,

q
)
;

*
q
-
>
p

=
*
c
o
n
s
(
0
,

q
,

q
)
;

−
−

on
ly

tr
ue

be
ca

us
e

if
q

w
as

ov
er

w
ri

tt
en

,
th

en
q

is
st

il
l
a

co
ns

q
=

q
-
>
p
;

} −
−

T
R

IC
H

O
T

O
M

Y
T

E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

re
qu

ir
e

tr
ic

ho
to

m
y

in
fo

rm
at

io
n

t
r
i
c
h
o
t
o
m
y
(
in

t
n
,

p
tr

q
)

{
if

(
n

>
0
)

{

if
(
n

<
=

0
)

n
=

q
-
>
n
;

}
} −
−

C
R

A
SH

T
E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

al
l
of

th
es

e
re

su
lte

d
in

a
cr

as
h

in
th

e
an

al
ys

is
pr

og
ra

m
at

so
m

e
po

in
t

t
e
s
t
b
a
s
i
c
(
p
tr

p
)

{
if

(
p
:
:
c
o
n
s
)

p
=

p
-
>
q
;

w
h
il
e

(
p
:
:
c
o
n
s
)

p
=

p
-
>
q
;

if
(
p
:
:
n
i
l
)

p
=

p
;

el
se

p
=

p
-
>
q
;

} −
−

FA
IL

T
E
ST

S
−
−
−
−
−
−
−
−
−
−
−
−
−

−
−

al
l
of

th
es

e
SH

O
U

L
D

fa
il,

or
th

e
ev

al
ua

to
r

is
w
ro

ng
..
.

f
a
i
l
a
(
p
tr

p
)

{
p
tr

x
=

p
-
>
p
;

} f
a
i
l
d
e
a
d
(
p
tr

p
)

{
w

h
il
e

(
p
:
:
c
o
n
s

&
&

p
:
:
n
i
l
)

{
}

} f
a
i
l
i
n
f
(
p
tr

p
)

{
w

h
il
e

(
p
:
:
c
o
n
s

|
|

p
:
:
n
i
l
)

{
}

}

71

A
p
p
e
n
d
ix

E
:

S
o
u
rc

e
C

o
d
e

T
he

fo
llo

w
in

g
so

ur
ce

co
de

co
m

es
fr

om
th

e
ba

ck
w

ar
d

an
d

fo
rw

ar
d

an
al

ys
is

pr
og

ra
m

s.
O

nl
y

se
le

ct
ed

m
od

ul
es

ar
e

in
cl

ud
ed

he
re

,
th

os
e

w
hi

ch
pe

rf
or

m
th

e
co

m
pl

ex
an

d
in

te
re

st
in

g
se

ct
io

ns
.

E
.1

S
ta

te
m

e
n
t

A
b
st

ra
ct

io
n

T
hi

s
m

od
ul

e
pe

rf
or

m
s

ab
st

ra
ct

io
n

on
th

e
P
as

ta
la

ng
ua

ge
.

W
hi

le
th

is
m

od
ul

e
is

us
ed

fo
r

th
e

ba
ck

w
ar

d
an

al
ys

is
,a

ve
ry

si
m

ila
r

m
od

ul
e

is
pr

es
en

t
in

th
e

fo
rw

ar
d

an
al

ys
is

.

m
o
d
u
le

A
b
s
t
r
a
c
t
(
A
b
s
t
r
a
c
t
(
.
.
)
,
a
b
s
t
r
a
c
t
)

w
h
er

e

im
p
or

t
M

ay
b
e

im
p
or

t
G
e
n

im
p
or

t
"
.
.
/
k
e
r
n
e
l
/
S
y
n
t
a
x
.
h
s
"

im
p
or

t
"
.
.
/
k
e
r
n
e
l
/
V
a
l
u
e
T
y
p
e
.
h
s
"

im
p
or

t
S
y
n
t
a
x
E
x

d
at

a
A
b
s
t
r
a
c
t

=
L
o
o
p

In
t
E
x
p
r

[
A
b
s
t
r
a
c
t
]

|
C
h
o
i
c
e

E
x
p
r

[
A
b
s
t
r
a
c
t
]

[
A
b
s
t
r
a
c
t
]

|
A
s
s
i
g
n

L
o
c
a
t
i
o
n

L
o
c
a
t
i
o
n

|
S
t
a
r

L
o
c
a
t
i
o
n

L
o
c
a
t
i
o
n

|
N
u
m
b
e
r

L
o
c
a
t
i
o
n

In
t

|
N
e
w

L
o
c
a
t
i
o
n

N
a
m
e

d
er

iv
in

g(
E
q
)

in
st

an
ce

S
h
ow

A
b
s
t
r
a
c
t

w
h
er

e
−
−

w
it
h

di
sc

ar
de

d
ch

ild
re

n
sh

ow
(
L
o
o
p

i
c
o
n
d

b
o
d
y
)

=
"
L
o
o
p
:
"

+
+

sh
ow

i
+
+

"
(
"

+
+

s
h
o
w
E
x
p
r

c
o
n
d

+
+

"
)
"

sh
ow

(
C
h
o
i
c
e

c
o
n
d

_
_
)

=
"
B
o
t
h

(
"

+
+

s
h
o
w
E
x
p
r

c
o
n
d

+
+

"
)
"

−
−

ot
he

rs

sh
ow

(
A
s
s
i
g
n

x
y
)

=
s
h
o
w
L
o
c

x
+
+

"
=

"
+
+

s
h
o
w
L
o
c

y
sh

ow
(
S
t
a
r

x
y
)

=
s
h
o
w
L
o
c
x

+
+

"
*
=
*

"
+
+

s
h
o
w
L
o
c

y
sh

ow
(
N
u
m
b
e
r

x
n
)

=
s
h
o
w
L
o
c

x
+
+

"
=

"
+
+

sh
ow

n
sh

ow
(
N
e
w

x
n
a
m
e
)

=
s
h
o
w
L
o
c

x
+
+

"
=

n
e
w
(
"

+
+

n
a
m
e

+
+

"
)
"

−
−

sh
ow

ev
er

yt
hi

ng
,
w
it
h

ni
ce

in
de

nt
in

g
sh

ow
L
is

t
=

sh
ow

S
tr

in
g

.
u
n
li
n
es

.
g

w
h
er

e
f

:
:

A
b
s
t
r
a
c
t

-
>

[
S
tr

in
g]

f
(
C
h
o
i
c
e

c
o
n
d

t
r
u
e

f
a
l
s
e
)

=
[
"
i
f

(
"

+
+

s
h
o
w
E
x
p
r

c
o
n
d
+
+

"
)

{
"
]

+
+

g
t
r
u
e

+
+

if
n
u
ll

f
a
l
s
e

th
en

[
"
}
"
]

el
se

[
"
}

e
l
s
e

{
"
]

+
+

g
f
a
l
s
e

+
+

[
"
}
"
]

f
(
L
o
o
p

i
c
o
n
d

b
o
d
y
)

=
[
"
l
o
o
p
:
"

+
+

sh
ow

i
+
+

"
(
"

+
+

s
h
o
w
E
x
p
r

c
o
n
d

+
+
"
)

{
"
]

+
+

g
b
o
d
y

+
+

[
"
}
"
]

f
x

=
[
sh

ow
x
]

g
:
:

[
A
b
s
t
r
a
c
t
]

-
>

[
S
tr

in
g]

g
x

=
m

ap
(
"

"
+
+
)

(
co

n
ca

t
(
m

ap
f

x
)
)

72

a
b
s
t
r
a
c
t

:
:

P
r
o
g
r
a
m

-
>
O
p
e
r
a
t
i
o
n

-
>

[
A
b
s
t
r
a
c
t
]

a
b
s
t
r
a
c
t

p
r
o
g

o
p

=
a
b
s
s

p
r
o
g

(
o
p
B
o
d
y

o
p
)

0

ty
p
e

V
a
r
R
e
n
a
m
e

=
(
N
a
m
e

-
>
N
a
m
e
)

a
b
s
s

:
:

P
r
o
g
r
a
m

-
>

C
o
m
m
a
n
d

-
>

In
t
-
>

[
A
b
s
t
r
a
c
t
]

a
b
s
s

p
r
o
g

(
W
h
i
l
e

x
y
)
d

=
[
L
o
o
p

d
x

(
a
b
s
s

p
r
o
g

y
(
d
+
1
)
)
]

a
b
s
s

p
r
o
g

(
I
f

x
t

f
)

d
=

[
C
h
o
i
c
e

x
(
a
b
s
s

p
r
o
g

t
(
d
+
1
)
)

f
’
]

w
h
er

e
f
’

=
if

is
Ju

st
f

th
en

a
b
s
s

p
r
o
g

(
fr

om
Ju

st
f
)

(
d

+
1
)

el
se

[
]

a
b
s
s

p
r
o
g

(
B
l
o
c
k

d
e
c
l
c
o
m
m
)

d
=

co
n
ca

t
(
m

ap
f

d
e
c
l
)

+
+

co
n
ca

t
(
m

ap
g

c
o
m
m
)

w
h
er

e
t
o
R
e
n

=
m

ap
f
i
e
l
d
N
a
m
e

(
co

n
ca

t
(
m

ap
d
e
c
l
F
i
e
l
d
s

d
e
c
l
)
)

v
a
r
R
e
n

x
=

if
x

‘
el

em
‘

t
o
R
e
n

th
en

x
+
+

sh
ow

d
el

se
x

f
(
D
e
c
l

f
l
d
s

e
x
p
s
)

=
p
l
l
a
s
s
i
g
n

p
r
o
g

(
m

ap
(
L
o
c

.
(
:
[
]
)

.
v
a
r
R
e
n

.
f
i
e
l
d
N
a
m
e
)

f
l
d
s
)

e
x
p
s

g
x

=
a
b
s
s

p
r
o
g

(
r
e
n
C
o
m
m

v
a
r
R
e
n

x
)

(
d
+
1
)

a
b
s
s

p
r
o
g

(
C
a
l
l

n
a
m
e

x
s
)

d
=

a
b
s
s

p
r
o
g

(
B
l
o
c
k

[
D
e
c
l

p
a
r
a
m
s

x
s
]

[
b
o
d
y
]
)

d
w

h
er

e
(
O
p
e
r
a
t
i
o
n

(
S
t
r
u
c
t

_
p
a
r
a
m
s
)

b
o
d
y
)

=
fr

om
Ju

st
(

f
i
n
d
O
p

p
r
o
g

n
a
m
e
)

a
b
s
s

p
r
o
g

(
x

:
=

y
)

d
=

p
l
l
a
s
s
i
g
n

p
r
o
g

x
y

a
b
s
s

p
r
o
g

s
t
m
t

d
=

er
ro

r
(
"
Z
i
t
i
.
A
b
s
t
r
a
c
t
.
a
b
s
,

u
n
r
e
c
o
g
n
i
s
e
d

s
t
a
t
e
m
e
n
t
:

"
+
+

sh
ow

s
t
m
t
)

p
l
l
a
s
s
i
g
n

:
:

P
r
o
g
r
a
m

-
>
[
E
x
p
r
]

-
>

[
E
x
p
r
]

-
>

[
A
b
s
t
r
a
c
t
]

−
−

op
ti
m

iz
e

th
e

co
m

m
on

ca
se

(a
ls
o

re
du

ce
s

ou
tp

ut
co

m
pl

ex
it
y)

p
l
l
a
s
s
i
g
n

p
r
o
g

[
L
o
c

x
]

[
y
]

=
a
s
s
i
g
n

p
r
o
g

x
y

p
l
l
a
s
s
i
g
n

p
r
o
g

[
S
t
r

(
L
o
c
x
)
]

[
y
]

=
a
s
s
i
g
n

p
r
o
g

x
y

p
l
l
a
s
s
i
g
n

p
r
o
g

l
o
c
s

e
x
p
s
=

co
n
ca

t
a

+
+

b
w

h
er

e
(
a
,

b
)

=
u
n
zi

p
(
zi

p
W

it
h

f
l
o
c
s

e
x
p
s
)

f
(
S
t
r

l
o
c
)

(
S
t
r

e
x
)

=
g
S
t
a
r

l
o
c

e
x

f
l
o
c

e
x

=
g

A
s
s
i
g
n

l
o
c
e
x

g
c
t
o
r

(
L
o
c

l
o
c
)

e
x

=
(
a
s
s
i
g
n

p
r
o
g

l
o
c
’

e
x
,

c
t
o
r

l
o
c

l
o
c
’
)

w
h
er

e
l
o
c
’

=
a
d
d
P
r
e

"
_
"

l
o
c

a
s
s
i
g
n

:
:

P
r
o
g
r
a
m

-
>

L
o
c
a
t
i
o
n

-
>

E
x
p
r

-
>

[
A
b
s
t
r
a
c
t
]

a
s
s
i
g
n

p
r
o
g

l
o
c

(
L
o
c

e
)
=

[
A
s
s
i
g
n

l
o
c

e
]

a
s
s
i
g
n

p
r
o
g

l
o
c

(
S
t
r

e
)
=

a
s
s
i
g
n

p
r
o
g

l
o
c
’

e
+
+

[
S
t
a
r

l
o
c

l
o
c
’
]

w
h
er

e
l
o
c
’

=
a
d
d
P
r
e

"
_
"

l
o
c

a
s
s
i
g
n

p
r
o
g

l
o
c

(
C
o
n

n
a
m
e

e
s
)

=
N
e
w

l
o
c

n
a
m
e

:
co

n
ca

t
(

zi
p
W

it
h

f
a
l
l
F
i
e
l
d
s

e
s
)

w
h
er

e
a
l
l
F
i
e
l
d
s

=
m

ap
f
i
e
l
d
N
a
m
e

(
s
t
r
u
c
t
F
i
e
l
d
s

(
g
e
t
S
t
r
u
c
t

p
r
o
g

n
a
m
e
)
)

73

f
l

e
=

a
s
s
i
g
n

p
r
o
g

(
l
o
c

+
+

[
l
]
)

e

a
s
s
i
g
n

p
r
o
g

l
o
c

(
C
p
y

e
)

=
s
t
m
t
s

+
+

f
(
s
i
g
S
t
r
u
c
t
s

(
p
r
o
g
S
i
g

p
r
o
g
)
)

w
h
er

e
(
l
o
c
’
,

s
t
m
t
s
)

=
g
e
t
L
o
c
p
r
o
g

(
a
d
d
P
r
e

"
_
"

l
o
c
)

e

f
[
x
]

=
g

x
f

(
x
:
x
s
)

=
[
C
h
o
i
c
e

(
K
i
n
l
o
c
’

(
s
t
r
u
c
t
N
a
m
e

x
)
)

(
g

x
)

(
f

x
s
)
]

g
x

=
N
e
w

l
o
c

(
s
t
r
u
c
t
N
a
m
e

x
)

:
m

ap
(
h

.
f
i
e
l
d
N
a
m
e

)
(
s
t
r
u
c
t
F
i
e
l
d
s

x
)

w
h
er

e
h

x
=

A
s
s
i
g
n

(
l
o
c

+
+
[
x
]
)

(
l
o
c
’

+
+

[
x
]
)

a
s
s
i
g
n

p
r
o
g

l
o
c

(
V
a
l

(
N

n
u
m
)
)

=
[
N
u
m
b
e
r

l
o
c

n
u
m
]

a
s
s
i
g
n

p
r
o
g

l
o
c

e
x
p
r

=
er

ro
r
(
"
Z
i
t
i
.
A
b
s
t
r
a
c
t
.
a
s
s
i
g
n
,

u
n
r
e
c
o
g
n
i
s
e
d

a
s
s
i
g
n
m
e
n
t
:
"

+
+

sh
ow

l
o
c

+
+

"
:
=

"
+
+

sh
ow

e
x
p
r
)

g
e
t
L
o
c

:
:

P
r
o
g
r
a
m

-
>

L
o
c
a
t
i
o
n

-
>

E
x
p
r

-
>

(
L
o
c
a
t
i
o
n
,

[
A
b
s
t
r
a
c
t
]
)

g
e
t
L
o
c

p
r
o
g

l
o
c

(
L
o
c

x
)

=
(
x
,

[
]
)

g
e
t
L
o
c

p
r
o
g

l
o
c

e
x
p
r

=
(
l
o
c
,

a
s
s
i
g
n

p
r
o
g

l
o
c

e
x
p
r
)

a
d
d
P
r
e

:
:

S
tr

in
g

-
>

L
o
c
a
t
i
o
n

-
>

L
o
c
a
t
i
o
n

a
d
d
P
r
e

p
r
e

l
o
c

=
[
p
r
e
+
+

j
o
i
n
M
i
d

"
-
"

l
o
c
]

r
e
n
L
o
c

:
:

V
a
r
R
e
n
a
m
e

-
>

L
o
c
a
t
i
o
n

-
>

L
o
c
a
t
i
o
n

r
e
n
L
o
c

v
(
l
:
l
o
c
)

=
v

l
:
l
o
c

r
e
n
E
x
p
r
s

v
x
s

=
m

ap
(
r
e
n
E
x
p
r

v
)

x
s

r
e
n
E
x
p
r

:
:

V
a
r
R
e
n
a
m
e

-
>
E
x
p
r

-
>

E
x
p
r

r
e
n
E
x
p
r

v
(
L
o
c

l
o
c

)
=

L
o
c

(
r
e
n
L
o
c

v
l
o
c
)

r
e
n
E
x
p
r

v
(
C
o
n

n
x
s

)
=
C
o
n

n
(
m

ap
(
r
e
n
E
x
p
r

v
)

x
s
)

r
e
n
E
x
p
r

v
(
C
p
y

x
)

=
C
p
y
(
r
e
n
E
x
p
r

v
x
)

r
e
n
E
x
p
r

v
(
V
a
l

v
a
l

)
=

V
a
l

v
a
l

r
e
n
E
x
p
r

v
(
S
t
r

x
)

=
S
t
r
(
r
e
n
E
x
p
r

v
x
)

r
e
n
E
x
p
r

v
(
R
e
l

x
r

y
)

=
R
e
l

(
r
e
n
E
x
p
r

v
x
)

r
(
r
e
n
E
x
p
r

v
y
)

r
e
n
E
x
p
r

v
(
K
i
n

l
o
c

n
)

=
K
i
n

(
r
e
n
L
o
c

v
l
o
c
)

n
r
e
n
E
x
p
r

v
(
O
r

x
s

)
=

O
r
(
r
e
n
E
x
p
r
s

v
x
s
)

r
e
n
E
x
p
r

v
(
A
n
d

x
s

)
=

A
n
d

(
r
e
n
E
x
p
r
s

v
x
s
)

r
e
n
C
o
m
m

:
:

V
a
r
R
e
n
a
m
e

-
>
C
o
m
m
a
n
d

-
>

C
o
m
m
a
n
d

r
e
n
C
o
m
m

v
(
x

:
=

y
)

=
r
e
n
E
x
p
r
s

v
x

:
=

r
e
n
E
x
p
r
s

v
y

r
e
n
C
o
m
m

v
(
I
f

a
x

y
)

=
I
f

(
r
e
n
E
x
p
r

v
a
)

(
r
e
n
C
o
m
m

v
x
)

(
if

is
N

ot
h
in

g
y

th
en

N
ot

h
in

g
el

se
Ju

st
(
r
e
n
C
o
m
m

v
(

fr
om

Ju
st

y
)
)
)

r
e
n
C
o
m
m

v
(
W
h
i
l
e

a
x
)

=
W
h
i
l
e

(
r
e
n
E
x
p
r

v
a
)

(
r
e
n
C
o
m
m

v
x
)

r
e
n
C
o
m
m

v
(
C
a
l
l

n
a
m
e

x
s
)
=

C
a
l
l

n
a
m
e

(
r
e
n
E
x
p
r
s

v
x
s
)

r
e
n
C
o
m
m

v
(
B
l
o
c
k

d
e
c

c
o
m
)

=
B
l
o
c
k

(
m

ap
f

d
e
c
)

(
m

ap
(

r
e
n
C
o
m
m

v
)

c
o
m
)

w
h
er

e
f

(
D
e
c
l

f
l
d
s

e
x
p
s
)

=
D
e
c
l

f
l
d
s

(
r
e
n
E
x
p
r
s

v
e
x
p
s

)

E
.2

P
re

d
ic

a
te

E
n
g
in

e

T
hi

s
m

od
ul

e
m

an
ag

es
th

e
pr

ed
ic

at
e

lo
gi

c
st

at
em

en
ts

,
in

cl
ud

in
g

si
m

pl
ify

in
g

an
d

di
sp

la
yi

ng
th

em
.

It
is

re
qu

ir
ed

by
th

e
ba

ck
w

ar
d

an
al

ys
is

pr
og

ra
m

on
ly

.

74

m
o
d
u
le

P
r
o
o
f

w
h
er

e

im
p
or

t
G
e
n

im
p
or

t
L
is

t
im

p
or

t
M

ay
b
e

d
at

a
P
r
o
o
f

x
=

P
a
s
s

S
tr

in
g

|
F
a
i
l

S
tr

in
g

|
P
A
n
d

[
P
r
o
o
f

x
]

|
P
O
r

[
P
r
o
o
f

x
]

|
I
m
p

(
P
r
o
o
f

x
)

(
P
r
o
o
f

x
)

|
N
o
t

(
P
r
o
o
f

x
)

|
P
r
o
o
f

x
d
er

iv
in

g(
E
q
,

O
rd

,
S
h
ow

)

f
r
o
m
P
r
o
o
f

(
P
r
o
o
f

x
)

=
x

i
s
L
o
g
i
c

:
:

P
r
o
o
f

x
-
>

B
o
ol

i
s
L
o
g
i
c

(
P
a
s
s

_
)

=
T
ru

e
i
s
L
o
g
i
c

(
F
a
i
l

_
)

=
T
ru

e
i
s
L
o
g
i
c

(
P
A
n
d

_
)

=
T
ru

e
i
s
L
o
g
i
c

(
P
O
r

_
)

=
T
ru

e
i
s
L
o
g
i
c

(
N
o
t

_
)

=
T
ru

e
i
s
L
o
g
i
c

(
I
m
p

_
_
)

=
T
ru

e
i
s
L
o
g
i
c

_
=

F
al

se

i
s
P
a
s
s

:
:

P
r
o
o
f

x
-
>

B
o
ol

i
s
P
a
s
s

(
P
a
s
s

_
)

=
T
ru

e
i
s
P
a
s
s

_
=

F
al

se

i
s
F
a
i
l

(
F
a
i
l

_
)

=
T
ru

e
i
s
F
a
i
l

_
=

F
al

se

i
s
O
r

(
P
O
r

_
)

=
T
ru

e
i
s
O
r

_
=

F
al

se

i
s
N
o
t

(
N
o
t

_
)

=
T
ru

e
i
s
N
o
t

_
=

F
al

se

d
e
N
o
t

(
N
o
t

x
)

=
x

m
a
p
P
r
o
o
f

:
:

(
P
r
o
o
f

x
-
>
P
r
o
o
f

x
)

-
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
m
a
p
P
r
o
o
f

f
(
P
a
s
s

s
)

=
P
a
s
s

s
m
a
p
P
r
o
o
f

f
(
F
a
i
l

s
)

=
F
a
i
l

s
m
a
p
P
r
o
o
f

f
(
P
A
n
d

x
)

=
f
(
P
A
n
d

(
m
a
p
P
r
o
o
f
s

f
x
)
)

m
a
p
P
r
o
o
f

f
(
P
O
r

x
)

=
f

(
P
O
r

(
m
a
p
P
r
o
o
f
s

f
x
)
)

m
a
p
P
r
o
o
f

f
(
N
o
t

x
)

=
f

(
N
o
t

(
m
a
p
P
r
o
o
f

f
x
)
)

m
a
p
P
r
o
o
f

f
(
I
m
p

x
y
)

=
f
(
I
m
p

(
m
a
p
P
r
o
o
f

f
x
)

(
m
a
p
P
r
o
o
f

f
y

)
)

m
a
p
P
r
o
o
f

f
x

=
f

x

m
a
p
P
r
o
o
f
s

:
:

(
P
r
o
o
f

x
-
>
P
r
o
o
f

x
)

-
>

[
P
r
o
o
f

x
]

-
>

[
P
r
o
o
f

x
]

m
a
p
P
r
o
o
f
s

f
=

m
ap

(
m
a
p
P
r
o
o
f

f
)

m
a
p
V
a
l
u
e

:
:

(
x

-
>

P
r
o
o
f
x
)

-
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
m
a
p
V
a
l
u
e

f
x

=
m
a
p
P
r
o
o
f
g

x
w

h
er

e
g

x
=

if
i
s
L
o
g
i
c

x
th

en
x

el
se

f
(
f
r
o
m
P
r
o
o
f

x
)

g
e
t
V
a
l
u
e

:
:

P
r
o
o
f

x
-
>

[
x
]

g
e
t
V
a
l
u
e

(
P
r
o
o
f

x
)

=
[
x
]

g
e
t
V
a
l
u
e

(
P
A
n
d

x
)

=
g
e
t
V
a
l
u
e
s

x
g
e
t
V
a
l
u
e

(
P
O
r

x
)

=
g
e
t
V
a
l
u
e
s

x
g
e
t
V
a
l
u
e

(
N
o
t

x
)

=
g
e
t
V
a
l
u
e

x
g
e
t
V
a
l
u
e

(
I
m
p

x
y
)

=
g
e
t
V
a
l
u
e

x
+
+

g
e
t
V
a
l
u
e

y
g
e
t
V
a
l
u
e

_
=

[
]

g
e
t
V
a
l
u
e
s

=
co

n
ca

t
.

m
ap

g
e
t
V
a
l
u
e

s
i
m
p
l
i
f
y

:
:

(
S
h
ow

x
,

O
rd

x
)

=
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
−
−

ve
rs

io
n

2
−

fu
ll

di
sj

un
ct

iv
e

no
rm

al
fo

rm
O

r(
A

nd
(N

ot
(x

))
)

s
i
m
p
l
i
f
y

x
=

(
r
e
d
u
c
e

.
r
e
d
u
c
e
A
d
v

.
r
e
d
u
c
e

.
t
o
D
n
f

.
r
e
d
u
c
e

75

.
r
e
m
I
m
p
)

x

r
e
d
u
c
e
A
d
v

:
:

(
S
h
ow

x
,

O
rd

x
)

=
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
r
e
d
u
c
e
A
d
v

x
=

m
a
p
P
r
o
o
f
f

x
w

h
er

e −
−

a
v

(a
ˆ

c)
−

>
a

−
−

a
v

a
−

>
T
ru

e
f

(
P
O
r

x
s
)

=
if

is
Ju

st
r
e
s

th
en

P
a
s
s

(
fr

om
Ju

st
r
e
s
)

el
se

P
O
r

(
f
i
l
t
e
r
B
y

f
x
s
)

w
h
er

e
r
e
s

=
n
e
g
D
u
p
e

x
s

f
x

=
al

l
(
\
y

-
>

n
ot

(
y

‘
p
s
u
b
s
e
t
‘

x
)
)

x
s

−
−

a
ˆ

a
ˆ

b
−

>
Fa

ls
e

f
(
P
A
n
d

x
s
)

=
if

is
Ju

st
r
e
s

th
en

F
a
i
l

(
fr

om
Ju

st
r
e
s

)
el

se
P
A
n
d

x
s

w
h
er

e
r
e
s

=
n
e
g
D
u
p
e

x
s

f
x

=
x

n
e
g
D
u
p
e

x
s

=
if

n
u
ll

r
e
s

th
en

N
ot

h
in

g
el

se
Ju

st
(

sh
ow

(
h
ea

d
r
e
s
)
)

w
h
er

e
r
e
s

=
in

te
rs

ec
t
(
m

ap
d
e
N
o
t

n
o
t
s
)

j
u
s
t

(
n
o
t
s
,

j
u
s
t
)

=
p
ar

ti
ti

on
i
s
N
o
t

x
s

p
s
u
b
s
e
t

(
P
A
n
d

x
)

(
P
A
n
d
y
)

=
x

‘
s
u
b
s
e
t
‘

y
&
&

le
n
gt

h
x

<
le

n
gt

h
y

p
s
u
b
s
e
t

x
(
P
A
n
d

y
)

=
[
x
]

‘
s
u
b
s
e
t
‘

y
&
&

l
e
n
G
t
1

y
p
s
u
b
s
e
t

x
y

=
F
al

se

t
o
D
n
f

:
:

(
S
h
ow

x
,

O
rd

x
)

=
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
t
o
D
n
f

x
=

m
a
p
P
r
o
o
f

(
f
.

r
e
d
u
c
e
)

(
d
o
w
n
N
o
t

x
)

w
h
er

e −
−

m
ov

e
al

l
N

ot
ex

pr
es

si
on

s
to

th
ei

r
lo

w
es

t
le

ve
l

d
o
w
n
N
o
t

(
N
o
t

(
N
o
t

x
)
)

=
x

d
o
w
n
N
o
t

(
N
o
t

(
P
A
n
d

x
)
)

=
P
O
r

(
m

ap
(
d
o
w
n
N
o
t

.
N
o
t
)

x
)

d
o
w
n
N
o
t

(
N
o
t

(
P
O
r

x
)
)

=
P
A
n
d

(
m

ap
(
d
o
w
n
N
o
t

.
N
o
t
)

x
)

d
o
w
n
N
o
t

(
P
A
n
d

x
)

=
P
A
n
d

(
m

ap
d
o
w
n
N
o
t

x
)

d
o
w
n
N
o
t

(
P
O
r

x
)

=
P
O
r

(
m

ap
d
o
w
n
N
o
t

x
)

d
o
w
n
N
o
t

x
=

x

f
(
P
A
n
d

x
)

=
g

o
r
s

a
n
d
s
−
−

er
ro

rS
(P

O
r

(g
or

s
[P

A
nd

an
ds

])
)
−
−

if
nu

ll
or

s
th

en
PA

nd
an

ds
el

se
to

D
nf

(P
O

r
(g

or
s

[P
A

nd
an

ds
])

)
w

h
er

e
(
o
r
s
,

a
n
d
s
)

=
p
ar

ti
ti

on
i
s
O
r

(
h
o
i
s
t

f
x
)

g
[
]

a
n
d
s

=
P
A
n
d

(
h
o
i
s
t

f
a
n
d
s
)

g
(
P
O
r

o
:
o
r
s
)

a
n
d
s

=
(
t
o
D
n
f

.
r
e
d
u
c
e
)

(
P
O
r

(
m

ap
(
\
x

-
>

P
A
n
d

[
x
,
r
e
s
]
)
o
)
)

w
h
er

e
r
e
s

=
g

o
r
s

a
n
d
s

f
(
P
A
n
d

x
)

=
Ju

st
x

f
_

=
N

ot
h
in

g

f
(
P
O
r

x
)

=
P
O
r

(
h
o
i
s
t

f
x
)

w
h
er

e
f

(
P
O
r

x
)

=
Ju

st
x

f
_

=
N

ot
h
in

g

f
x

=
x

−
−

ba
si

c
si

m
pl

ifi
ca

ti
on

te
ch

ni
qu

es
r
e
d
u
c
e

:
:

(
S
h
ow

x
,

O
rd

x
)

=
>

P
r
o
o
f

x
-
>

P
r
o
o
f

x
r
e
d
u
c
e

x
=

m
a
p
P
r
o
o
f
f

x
w

h
er

e
f

(
N
o
t

(
N
o
t

x
)
)

=
x

f
(
P
A
n
d

x
s
)

=
s
i
m
p
A
n
d
O
r

x
s

T
ru

e
f

(
P
O
r

x
s
)

=
s
i
m
p
A
n
d
O
r

x
s

F
al

se
f

(
N
o
t

(
P
a
s
s

s
)
)

=
F
a
i
l

s

76

f
(
N
o
t

(
F
a
i
l

s
)
)

=
P
a
s
s
s

f
x

=
x

r
e
m
I
m
p

:
:

P
r
o
o
f

x
-
>

P
r
o
o
f

x
r
e
m
I
m
p

x
=

m
a
p
P
r
o
o
f

f
x

w
h
er

e
f

(
I
m
p

x
y
)

=
P
O
r

[
N
o
t
x
,

y
]

f
x

=
x

s
i
m
p
A
n
d
O
r

x
s

i
s
A
n
d

=
if

n
u
ll

x
s

th
en

(
if

i
s
A
n
d

th
en

P
a
s
s

el
se

F
a
i
l
)

"
-

n
o
n
e
-
"

el
se

if
n
ot

(
n
u
ll

o
n
e
L
)

th
en

h
ea

d
o
n
e
L

el
se

if
n
u
ll

m
a
n
y
L

th
en

h
ea

d
r
e
s

el
se

if
l
e
n
E
q
1

m
a
n
y
L

th
en

h
ea

d
m
a
n
y
L

el
se

(
if

i
s
A
n
d

th
en

P
A
n
d

el
se

P
O
r
)

m
a
n
y
L

w
h
er

e
o
n
e
L

=
fi
lt

er
o
n
e

r
e
s

m
a
n
y
L

=
fi
lt
er

(
n
ot

.
m
a
n
y
)

r
e
s

r
e
s

=
s
o
r
t
U
n
i
q
u
e

(
h
o
i
s
t
(
h

i
s
A
n
d
)

x
s
)

h
T
ru

e
(
P
A
n
d

x
s
)

=
Ju

st
x
s

h
F
al

se
(
P
O
r

x
s
)

=
Ju

st
x
s

h
_

_
=

N
ot

h
in

g

m
a
n
y

=
i
s
A
n
d
P
a
s
s

i
s
A
n
d

o
n
e

=
i
s
A
n
d
P
a
s
s

(
n
ot

i
s
A
n
d
)

i
s
A
n
d
P
a
s
s

T
ru

e
(
P
a
s
s

_
)

=
T
ru

e
i
s
A
n
d
P
a
s
s

F
al

se
(
F
a
i
l

_
)

=
T
ru

e
i
s
A
n
d
P
a
s
s

_
_

=
F
al

se

h
o
i
s
t

:
:

(
x

-
>

M
ay

b
e

[
x
]
)

-
>

[
x
]

-
>

[
x
]

h
o
i
s
t

f
[
]

=
[
]

h
o
i
s
t

f
(
x
:
x
s
)

=
(
if

is
Ju

st
r
e
s

th
en

(
+
+
)

(
fr

om
Ju

st
r
e
s
)

el
se

(
:
)

x
)

(
h
o
i
s
t

f
x
s
)

w
h
er

e
r
e
s

=
f

x

E
.3

B
a
ck

w
a
rd

E
x
e
cu

ti
o
n

E
n
g
in

e

T
hi

s
m

od
ul

e
an

al
ys

es
th

e
ac

tu
al

st
at

em
en

ts
,

in
cl

ud
in

g
th

e
u
p
d
a
t
e

an
d
o
b
l
i
g

ro
ut

in
es

.
It

is
th

e
m

ai
n

lo
gi

c
be

hi
nd

th
e

ba
ck

w
ar

d
an

al
ys

is
pr

og
ra

m
.

m
o
d
u
le

Z
i
t
i
(
z
i
t
i
)

w
h
er

e

im
p
or

t
"
.
.
/
k
e
r
n
e
l
/
S
y
n
t
a
x
.
h
s
"

im
p
or

t
"
.
.
/
k
e
r
n
e
l
/
V
a
l
u
e
T
y
p
e
.
h
s
"

im
p
or

t
P
r
o
o
f

im
p
or

t
A
b
s
t
r
a
c
t

im
p
or

t
L
is

t
im

p
or

t
S
y
n
t
a
x
E
x

im
p
or

t
M

ay
b
e

im
p
or

t
G
e
n

im
p
or

t
D
e
b
u
g

im
p
or

t
A
n
n
o
t

−
−

D
R

IV
E
R

−
−
−
−
−
−
−
−
−

z
i
t
i

:
:

P
r
o
g
r
a
m

-
>

[
A
b
s
t
r
a
c
t
]

-
>

[
A
n
n
o
t
]

z
i
t
i

p
r
o
g

s
t
m
t

=
e
x
e
c
l

p
r
o
g

s
t
m
t

(
P
a
s
s

"
I
n
i
t
i
a
l

c
o
n
d
i
t
i
o
n
"

)

77

−
−

a
lis

t
of

an
no

ta
ti
on

es
m

us
t
ha

ve
an

ob
lig

at
io

n
at

ei
th

er
en

d
e
x
e
c
l

:
:

P
r
o
g
r
a
m

-
>

[
A
b
s
t
r
a
c
t
]

-
>

P
r
o
o
f
O

-
>

[
A
n
n
o
t
]

e
x
e
c
l

p
r
o
g

s
t
m
t

p
r
o
o
f
=

f
(
re

ve
rs

e
s
t
m
t
)

[
A
n
n
o
t

p
r
o
o
f
]

w
h
er

e
f

[
]

a
n
n

=
a
n
n

f
(
x
:
x
s
)

a
n
n

=
f

x
s

(
r
e
s

+
+

a
n
n
)

w
h
er

e
r
e
s

=
e
x
e
c

p
r
o
g

x
(
p
r
e
C
o
n
d

a
n
n
)

e
x
e
c

:
:

P
r
o
g
r
a
m

-
>

A
b
s
t
r
a
c
t

-
>

P
r
o
o
f
O

-
>

[
A
n
n
o
t
]

e
x
e
c

p
r
o
g

(
C
h
o
i
c
e

c
o
n
d
t
r
u
e

f
a
l
s
e
)

p
r
o
o
f

=
[
A
n
n
o
t

(
p
r
u
n
e

(
P
A
n
d

[
t
r
u
e
C
,

f
a
l
s
e
C
]
)
)
,
x
]

w
h
er

e
x

=
A
n
n
o
t
I
f

c
o
n
d

(
A
n
n
o
t
t
r
u
e
C
:
t
r
u
e
B
)

(
A
n
n
o
t

f
a
l
s
e
C

:
f
a
l
s
e
B
)

t
r
u
e
B

=
e
x
e
c
l

p
r
o
g

t
r
u
e
p
r
o
o
f

f
a
l
s
e
B

=
e
x
e
c
l

p
r
o
g

f
a
l
s
e

p
r
o
o
f

t
r
u
e
C

=
p
r
u
n
e

(
b
o
o
l
E
x
p
r
p
r
o
g

c
o
n
d

(
p
r
e
C
o
n
d

t
r
u
e
B
)
)

f
a
l
s
e
C

=
p
r
u
n
e

(
b
o
o
l
E
x
p
r

p
r
o
g

(
n
o
t
E
x
p
r

c
o
n
d
)

(
p
r
e
C
o
n
d

f
a
l
s
e
B
)
)

e
x
e
c

p
r
o
g

(
L
o
o
p

id
c
o
n
d

b
o
d
y
)

p
r
o
o
f

=
[

A
n
n
o
t

(
if

is
N

ot
h
in

g
r
e
s

th
en

F
a
i
l

"
L
o
o
p

d
o
e
s

n
o
t

f
i
x
p
o
i
n
t
"

el
se

p
r
u
n
e

(
P
A
n
d

f
i
x
p
)
)
,

(
if

is
N

ot
h
in

g
r
e
s

th
en

A
n
n
o
t
L
p

c
o
n
d

N
ot

h
in

g
(
R

ig
h
t
(
ta

ke
3

p
r
o
o
f
s
)
)

el
se

A
n
n
o
t
L
p

c
o
n
d

f
w
d
V
a
r

(
L
ef

t
(
la

st
f
i
x
p
)
)

) (
h
ea

d
a
n
n
o
t
s
)

]
w

h
er

e −
−

th
e

va
lu

e
af

te
r

th
e

lo
op

ha
s

do
ne

th
e

te
rm

in
at

io
n

p
r
o
o
f
’

=
p
r
u
n
e

(
t
r
u
e
E
x
p
r

p
r
o
g

(
n
o
t
E
x
p
r

c
o
n
d
)

p
r
o
o
f

)

Ju
st

f
i
x
p

=
r
e
s

r
e
s

=
f
i
x

(
ta

ke
3

p
r
o
o
f
s
)

p
r
o
o
f
s

=
p
r
o
o
f
’

:
m

ap
(
p
r
u
n
e

.
m
a
p
V
a
l
u
e

d
o
n
e
L
o
o
p

.
p
r
e
C
o
n
d
)

a
n
n
o
t
s

a
n
n
o
t
s

=
f

(
p
r
u
n
e

(
P
A
n
d
[
p
r
o
o
f
’
,

l
o
o
p
C
o
n
d
]
)
)

w
h
er

e
f

x
=

r
e
s

:
f

(
p
r
e
C
o
n
d
r
e
s
)

w
h
er

e
r
e
s

=
e
v
a
l

x

e
v
a
l

:
:

P
r
o
o
f
O

-
>

[
A
n
n
o
t
]

e
v
a
l

p
=

A
n
n
o
t

r
1

:
A
n
n
o
t

r
2

:
r
e
s

w
h
er

e
r
1

=
if

i
s
A
n
y
L
o
o
p

‘
e
l
e
m
B
y
‘

g
e
t
V
a
l
u
e

r
2

th
en

r
1
t

el
se

F
a
i
l

"
N
o

f
o
r
w
a
r
d

m
o
t
i
o
n
"

r
1
t

=
p
r
u
n
e

(
b
o
o
l
E
x
p
r

p
r
o
g

c
o
n
d

r
2
)

r
2

=
p
r
u
n
e

(
m
a
p
V
a
l
u
e

r
e
L
o
o
p

(
p
r
e
C
o
n
d

r
e
s
)
)

r
e
s

=
e
x
e
c
l

p
r
o
g

b
o
d
y

p

f
w
d
V
a
r

=
i
f
N
o
t
h
i
n
g

r
e
s

(
l
o
c
,

n
a
m
e
s
)

w
h
er

e
(
Ju

st
(
F
w
d
L
o
o
p

_
_

l
o
c

n
a
m
e
s
)
)

=
r
e
s

r
e
s

=
fi
n
d

i
s
A
n
y
L
o
o
p

(
g
e
t
V
a
l
u
e

(
p
r
e
C
o
n
d

(
a
n
n
o
t
s

!
!

(
le

n
gt

h
f
i
x
p

-
1
)
)
)
)

−
−

al
l
th

e
po

ss
ib

le
va

ri
ab

le
s

w
hi

ch
co

ul
d

be
us

ed
l
o
o
p
C
o
n
d

=
P
O
r

(
F
a
i
l

"
N
o
f
o
r
w
a
r
d

m
o
t
i
o
n
"

:
m

ap
P
r
o
o
f

(
fi
lt
er

i
s
A
n
y
L
o
o
p

(
g
e
t
V
a
l
u
e

(
p
r
e
C
o
n
d

(
e
v
a
l

(
P
A
n
d

[
p
r
o
o
f
’
,

l
o
o
p
C
o
n
d
P
r
e
]
)
)
)
)
)
)

l
o
o
p
C
o
n
d
P
r
e

=
P
O
r

[
f
n

v
a
r
|
f
n
<
-
n
e
w
L
o
o
p
s
,

v
a
r
<
-

p
o
s
V
a
r
s
]

p
o
s
V
a
r
s

=
(
n
u
b

.
co

n
ca

t)
(
m

ap
(
ta

il
.

in
it

s)
(

g
e
t
L
o
c
A
b
s
t
r
a
c
t
s

b
o
d
y
)
)

n
e
w
L
o
o
p
s

=
m

ap
(
\
x

y
-
>

P
r
o
o
f

(
F
w
d
L
o
o
p

id
y

y
(

p
r
o
p
A
c
y
c
l
i
c

x
)
)
)

(
s
i
g
P
r
o
p
s

(
p
r
o
g
S
i
g

p
r
o
g
)
)

78

−
−

au
xi

lia
ry

fu
nc

ti
on

s
fo

r
te

st
in

g
th

e
F
w
dL

oo
p

co
nd

it
io

ns
i
s
A
n
y
L
o
o
p

(
F
w
d
L
o
o
p

i
l
2
l
1

n
a
m
e
s
)

=
i

=
=

id
i
s
A
n
y
L
o
o
p

_
=

F
al

se

d
o
n
e
L
o
o
p

x
=

if
i
s
A
n
y
L
o
o
p

x
th

en
P
a
s
s

"
F
w
d
L
o
o
p
"

el
se

P
r
o
o
f

x

r
e
L
o
o
p

s
@
(
F
w
d
L
o
o
p

i
l
2
l
1

n
a
m
e
s
)

|
i

=
=

id
=

if
(
l
1

=
=

in
it

l
2
)

&
&

(
la

st
l
2

‘
el

em
‘

n
a
m
e
s
)

th
en

P
r
o
o
f

(
F
w
d
L
o
o
p

i
l
1

l
1

n
a
m
e
s
)

el
se

F
a
i
l

(
sh

ow
s
)

r
e
L
o
o
p

x
=

P
r
o
o
f

x

e
x
e
c

p
r
o
g

s
t
m
t

p
r
o
o
f

=
[
A
n
n
o
t

(
p
r
u
n
e

p
r
o
o
f
’
)
,

A
n
n
o
t
A
b

s
t
m
t

] w
h
er

e
p
r
o
o
f
’

=
P
A
n
d

[
o
b
l
i
g
p
r
o
g

s
t
m
t
,

m
a
p
V
a
l
u
e

(
u
p
d
a
t
e

p
r
o
g

s
t
m
t
)

p
r
o
o
f
]

−
−

co
nd

it
io

ns
th

at
m

us
t
ho

ld
as

a
re

su
lt

of
an

ex
pr

es
si

on
c
o
n
d
E
x
p
r

:
:

E
x
p
r

-
>

P
r
o
o
f
O

c
o
n
d
E
x
p
r

(
K
i
n

x
n
a
m
e
)
=

P
r
o
o
f

(
T
e
s
t

x
n
a
m
e
)

c
o
n
d
E
x
p
r

(
N
K
i
n

x
n
a
m
e
)
=

N
o
t

(
c
o
n
d
E
x
p
r

(
K
i
n

x
n
a
m
e
)
)

c
o
n
d
E
x
p
r

(
R
e
l

(
L
o
c

x
)
o
p

(
L
o
c

y
)
)

=
P
r
o
o
f

(
R
e
l
a
t
i
o
n

x
o
p

y
)

c
o
n
d
E
x
p
r

(
R
e
l

(
L
o
c

x
)
o
p

(
V
a
l

(
N

y
)
)
)

=
P
r
o
o
f

(
R
e
l
N
u
m

x
o
p

y
)

c
o
n
d
E
x
p
r

(
R
e
l

(
V
a
l

(
N
x
)
)

o
p

(
L
o
c

y
)
)

=
P
r
o
o
f

(
R
e
l
N
u
m

y
(

n
o
t
R
e
l

o
p
)

x
)

−
−

us
e

D
e

M
or

ga
ns

la
w

to
m

ak
e

no
t
th

e
lo

w
es

t
te

rm
n
o
t
E
x
p
r

:
:

E
x
p
r

-
>

E
x
p
r

n
o
t
E
x
p
r

(
A
n
d

x
)

=
O
r

(
m

ap
n
o
t
E
x
p
r

x
)

n
o
t
E
x
p
r

(
O
r

x
)

=
A
n
d

(
m

ap
n
o
t
E
x
p
r

x
)

n
o
t
E
x
p
r

(
K
i
n

x
n
a
m
e
)

=
N
K
i
n

x
n
a
m
e

n
o
t
E
x
p
r

(
R
e
l

x
o
p

y
)

=
R
e
l

x
(
n
o
t
R
e
l

o
p
)

y
n
o
t
E
x
p
r

(
N
K
i
n

x
n
a
m
e
)

=
K
i
n

x
n
a
m
e

−
−

C
om

po
un

d
ex

pr
es

si
on

,
in

cl
ud

es
&

&
or
||

c
o
m
p
E
x
p
r

:
:

(
E
x
p
r

-
>

P
r
o
o
f
O

-
>

P
r
o
o
f
O
)

-
>

E
x
p
r

-
>

P
r
o
o
f
O

-
>

P
r
o
o
f
O

c
o
m
p
E
x
p
r

f
(
A
n
d

[
x
]

)
p
r
o
o
f

=
c
o
m
p
E
x
p
r

f
x

p
r
o
o
f

c
o
m
p
E
x
p
r

f
(
O
r

[
x
]

)
p
r
o
o
f

=
c
o
m
p
E
x
p
r

f
x

p
r
o
o
f

c
o
m
p
E
x
p
r

f
(
A
n
d

(
x
:
x
s
)
)
p
r
o
o
f

=
c
o
m
p
E
x
p
r

f
x

(
c
o
m
p
E
x
p
r

f
(

A
n
d

x
s
)

p
r
o
o
f
)

c
o
m
p
E
x
p
r

f
(
O
r

(
x
:
x
s
)
)

p
r
o
o
f

=
P
A
n
d

[
c
o
m
p
E
x
p
r

f
x

p
r
o
o
f
,

c
o
m
p
E
x
p
r

f
(
n
o
t
E
x
p
r

x
)
(
c
o
m
p
E
x
p
r

f
(
O
r

x
s
)

p
r
o
o
f
)

]

c
o
m
p
E
x
p
r

f
c
o
n
d

p
r
o
o
f

=
f

c
o
n
d

p
r
o
o
f

b
o
o
l
E
x
p
r

:
:

P
r
o
g
r
a
m

-
>

E
x
p
r

-
>

P
r
o
o
f
O

-
>

P
r
o
o
f
O

b
o
o
l
E
x
p
r

p
r
o
g

=
c
o
m
p
E
x
p
r
f

w
h
er

e
f

c
o
n
d

p
r
o
o
f

=
P
A
n
d

[
o
b
E
x
p
r

p
r
o
g

c
o
n
d
,

I
m
p

(
c
o
n
d
E
x
p
r

c
o
n
d
)

(
m
a
p
V
a
l
u
e

(
u
p
d
a
t
e
E
x
p
r

c
o
n
d
)

p
r
o
o
f
)
]

t
r
u
e
E
x
p
r

:
:

P
r
o
g
r
a
m

-
>

E
x
p
r

-
>

P
r
o
o
f
O

-
>

P
r
o
o
f
O

t
r
u
e
E
x
p
r

p
r
o
g

=
c
o
m
p
E
x
p
r
f

w
h
er

e
f

c
o
n
d

p
r
o
o
f

=
P
A
n
d

[
o
b
E
x
p
r

p
r
o
g

c
o
n
d
,

m
a
p
V
a
l
u
e

(
u
p
d
a
t
e
E
x
p
r

c
o
n
d
)

p
r
o
o
f
]

−
−

O
B
L
IG

A
T

IO
N

S
−
−
−
−
−
−
−
−
−
−
−
−
−
−

o
b
l
i
g

:
:

P
r
o
g
r
a
m

-
>

A
b
s
t
r
a
c
t

-
>

P
r
o
o
f
O

o
b
l
i
g

p
r
o
g

(
A
s
s
i
g
n

l
1

l
2
)

=
P
A
n
d

[
o
b
L
o
c

p
r
o
g

l
1
,

o
b
L
o
c

79

p
r
o
g

l
2
]

o
b
l
i
g

p
r
o
g

(
S
t
a
r

l
1

l
2
)

=
P
A
n
d

[
o
b
L
o
c

p
r
o
g

l
1
,

o
b
L
o
c

p
r
o
g

l
2
]

o
b
l
i
g

p
r
o
g

(
N
u
m
b
e
r

l
o
c
_
)

=
o
b
L
o
c

p
r
o
g

l
o
c

o
b
l
i
g

p
r
o
g

(
N
e
w

l
o
c

_
)
=

o
b
L
o
c

p
r
o
g

l
o
c

o
b
l
i
g

p
r
o
g

x
=

er
ro

r
(
"
U
n
h
a
n
d
l
e
d

o
b
l
i
g

f
o
r

"
+
+

sh
ow

x
)

o
b
E
x
p
r

:
:

P
r
o
g
r
a
m

-
>

E
x
p
r

-
>

P
r
o
o
f
O

o
b
E
x
p
r

p
r
o
g

x
=

P
A
n
d

(
m

ap
(
o
b
L
o
c

p
r
o
g
)

(
g
e
t
L
o
c
E
x
p
r

x
)
)

o
b
L
o
c

:
:

P
r
o
g
r
a
m

-
>

L
o
c
a
t
i
o
n

-
>

P
r
o
o
f
O

o
b
L
o
c

p
r
o
g

l
o
c

=
P
A
n
d
(
m

ap
f

(
in

it
s
l
o
c
)
)

w
h
er

e
f

[
]

=
P
a
s
s

"
"

f
[
_
]

=
P
a
s
s

"
"

f
l
o
c

=
o
b
S
e
l
e
c
t
o
r

p
r
o
g
(
in

it
l
o
c
)

(
la

st
l
o
c
)

o
b
S
e
l
e
c
t
o
r

:
:

P
r
o
g
r
a
m
-
>

L
o
c
a
t
i
o
n

-
>

N
a
m
e

-
>

P
r
o
o
f
O

o
b
S
e
l
e
c
t
o
r

p
r
o
g

v
a
r

s
e
l

=
N
o
t

(
P
O
r

(
f

f
a
l
s
e
)
)
−
−

P
O

r
(N

ot
(P

O
r

(f
fa

ls
e)

)
:
f
tr

ue
)

w
h
er

e
f

x
s

=
m

ap
(
P
r
o
o
f

.
T
e
s
t

v
a
r
)

x
s

(
t
r
u
e
,

f
a
l
s
e
)

=
p
ar

ti
ti

on
(
\
x

-
>

s
e
l

‘
el

em
‘

t
y
p
e
S
e
l
e
c
t
o
r
s

p
r
o
g

x
)

(
p
r
o
g
T
y
p
e
N
a
m
e
s

p
r
o
g
)

−
−

U
P
D

A
T

E
S

−
−
−
−
−
−
−
−
−
−

u
p
d
a
t
e

:
:

P
r
o
g
r
a
m

-
>

A
b
s
t
r
a
c
t

-
>

O
b
l
i
g

-
>

P
r
o
o
f
O

u
p
d
a
t
e

p
r
o
g

(
N
e
w

l
n
)
p

=
ca

se
p

of
s
@
(
T
e
s
t

l
’

n
’
)

-
>

if
l

=
=

l
’

th
en

p
o
r
f

(
n

=
=

n
’
)

(
sh

ow
s
)

el
se

P
r
o
o
f

p
s
@
(
A
l
i
a
s

x
y
)

|
x

=
=

y
-
>

P
a
s
s

(
sh

ow
s
)

s
@
(
A
l
i
a
s

x
y
)

|
x

=
=

l
|
|

y
=
=

l
-
>

F
a
i
l

(
sh

ow
s
)

x
-
>

P
r
o
o
f

x

u
p
d
a
t
e

p
r
o
g

(
N
u
m
b
e
r

l
v
)
p

=
ca

se
p

of
R
e
l
N
u
m

l
’

o
p

v
’

|
l

=
=

l
’

-
>

p
o
r
f

(
r
u
n
R
e
l

v
o
p

v
’
)

(
sh

ow
"
R
e
l
N
u
m

"
+
+

sh
ow

v
+
+

"
"

+
+

sh
ow

o
p

+
+

"
"

+
+

sh
ow

v
’
)

R
e
l
a
t
i
o
n

l
1

o
p

l
2

|
l

=
=
l
2

-
>

P
r
o
o
f

(
R
e
l
N
u
m

l
1

o
p

v
)

R
e
l
a
t
i
o
n

l
1

o
p

l
2

|
l

=
=
l
1

-
>

P
r
o
o
f

(
R
e
l
N
u
m

l
2

(
n
o
t
R
e
l

o
p
)

v
)

_
-
>

P
r
o
o
f

p

u
p
d
a
t
e

p
r
o
g

(
A
s
s
i
g
n

l
1

l
2
)

p
=

ca
se

p
of

x
-
>

P
r
o
o
f

(
m
a
p
L
o
c
O
b
l
i
g
(
r
e
n
L
o
c

l
1

l
2
)

p
)

u
p
d
a
t
e

p
r
o
g

(
S
t
a
r

l
1

l
2
)
p

=
ca

se
p

of
x

-
>

f
(
n
u
b

(
g
e
t
L
o
c
O
b
l
i
g

p
)
)

(
P
r
o
o
f
p
)

w
h
er

e
f

:
:

[
L
o
c
a
t
i
o
n
]

-
>

P
r
o
o
f
O

-
>

P
r
o
o
f
O

f
[

]
p

=
p

f
(
x
:
x
s
)

p
=

P
A
n
d

[
I
m
p

(
P
r
o
o
f

(
A
l
i
a
s

x
l
1
)
)

(
f

x
s

r
e
n
)
,

I
m
p

(
N
o
t

(
P
r
o
o
f

(
A
l
i
a
s

x
l
1
)
)
)

(
f

x
s

p
)
]

w
h
er

e
r
e
n

=
m
a
p
V
a
l
u
e

(
P
r
o
o
f

.
m
a
p
L
o
c
O
b
l
i
g

(
r
e
n
L
o
c

x
l
2
)
)

p

u
p
d
a
t
e

p
r
o
g

a
b
s
s

o
b

=
er

ro
r
(
"
U
n
h
a
n
d
l
e
d

u
p
d
a
t
e

(
"

+
+

sh
ow

a
b
s
s

+
+

"
)

(
"

+
+

sh
ow

o
b

+
+

"
)
"
)

u
p
d
a
t
e
E
x
p
r

:
:

E
x
p
r

-
>

O
b
l
i
g

-
>

P
r
o
o
f
O

u
p
d
a
t
e
E
x
p
r

(
N
K
i
n

l
n
)

p
=

ca
se

p
of

s
@
(
T
e
s
t

l
’

n
’
)

-
>

if
l

=
=

l
’

th
en

p
o
r
f

(
n

/
=

n
’
)

(
sh

ow
s
)

el
se

P
r
o
o
f

p
_

-
>

P
r
o
o
f

p

u
p
d
a
t
e
E
x
p
r

(
K
i
n

l
n
)

p
=

ca
se

p
of

s
@
(
T
e
s
t

l
’

n
’
)

-
>

if
l

=
=

l
’

th
en

p
o
r
f

(
n

=
=

n
’
)

(
sh

ow
s
)

el
se

P
r
o
o
f

p

80

_
-
>

P
r
o
o
f

p

{− up
da

te
E
xp

r
(R

el
x

op
(N

um
y)

)
p

=
ca

se
p

of
s@

(R
el

N
um

x’
op

’
n’

)
|x

=
=

x’
&

&
op

’
=

=
op

−
>

P
as

s
(s

ho
w

s)
s@

(R
el

N
um

x’
op

’
n’

)
|x

=
=

x’
&

&
op

’
=

=
no

tR
el

op
−

>
Fa

il
(s

ho
w

s)
−

>
P
ro

of
p

−
}

u
p
d
a
t
e
E
x
p
r

(
R
e
l

x
o
p

y
)

p
=

ca
se

p
of

_
-
>

P
r
o
o
f

p

u
p
d
a
t
e
E
x
p
r

e
x
p
r

o
b

=
er

ro
r
(
"
U
n
h
a
n
d
l
e
d

u
p
d
a
t
e
E
x
p
r

(
"

+
+

sh
ow

e
x
p
r

+
+

"
)

(
"

+
+

sh
ow

o
b

+
+

"
)
"
)

p
o
r
f

T
ru

e
x

=
P
a
s
s

x
p
o
r
f

F
al

se
x

=
F
a
i
l

x

−
−

H
E
L
P
E
R

−
−
−
−
−
−
−
−
−

r
e
n
L
o
c

:
:

L
o
c
a
t
i
o
n

-
>
L
o
c
a
t
i
o
n

-
>

L
o
c
a
t
i
o
n

-
>

L
o
c
a
t
i
o
n

r
e
n
L
o
c

f
r
o
m

t
o

v
a
l

=
if

ta
ke

l
e
n
F
r
o
m

v
a
l

=
=

f
r
o
m

th
en

t
o

+
+

d
ro

p
l
e
n
F
r
o
m

v
a
l

el
se

v
a
l

w
h
er

e
l
e
n
F
r
o
m

=
le

n
gt

h
f
r
o
m

g
e
t
L
o
c
A
b
s
t
r
a
c
t
s

=
co

n
ca

t
.

m
ap

g
e
t
L
o
c
A
b
s
t
r
a
c
t

g
e
t
L
o
c
A
b
s
t
r
a
c
t

:
:

A
b
s
t
r
a
c
t

-
>

[
L
o
c
a
t
i
o
n
]

{− ge
tL

oc
A

bs
tr
ac

t
(C

he
ck

lo
c

na
m

e)
=

[lo
c]

ge
tL

oc
A

bs
tr
ac

t
(K

no
w

lo
c

na
m

e)
=

[lo
c]

−
}

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
L
o
o
p

id
e
x
p
r

a
b
s
s
)

=
g
e
t
L
o
c
E
x
p
r
e
x
p
r

+
+

g
e
t
L
o
c
A
b
s
t
r
a
c
t
s

a
b
s
s

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
C
h
o
i
c
e

e
x
p
r

a
b
s
1

a
b
s
2
)

=
g
e
t
L
o
c
E
x
p
r

e
x
p
r

+
+

g
e
t
L
o
c
A
b
s
t
r
a
c
t
s

a
b
s
1

+
+

g
e
t
L
o
c
A
b
s
t
r
a
c
t
s

a
b
s
2

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
A
s
s
i
g
n

l
1

l
2
)

=
[
l
1
,

l
2
]

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
S
t
a
r

l
1
l
2
)

=
[
l
1
,

l
2
]

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
N
u
m
b
e
r

l
o
c

id
)

=
[
l
o
c
]

g
e
t
L
o
c
A
b
s
t
r
a
c
t

(
N
e
w

l
o
c
n
a
m
e
)

=
[
l
o
c
]

p
r
u
n
e

:
:

P
r
o
o
f
O

-
>

P
r
o
o
f
O

p
r
u
n
e

x
=

s
i
m
p
l
i
f
y

(
m
a
p
V
a
l
u
e

f
x
)

w
h
er

e
f

a
@
(
A
l
i
a
s

x
y
)

|
x

=
=

y
=

P
a
s
s

(
sh

ow
a
)

f
x

=
P
r
o
o
f

x

E
.4

F
o
rw

a
rd

E
x
e
cu

ti
o
n

E
n
g
in

e

T
hi

s
m

od
ul

e
an

al
ys

es
th

e
ac

tu
al

st
at

em
en

ts
,a

nd
m

ap
s

th
e

ab
st

ra
ct

st
at

e
ov

er
ea

ch
st

at
em

en
t.

It
is

th
e

m
ai

n
lo

gi
c

be
hi

nd
th

e
fo

rw
ar

d
an

al
ys

is
pr

og
ra

m
.

m
o
d
u
le

C
h
e
c
k
(
c
h
e
c
k
,

E
r
r
o
r
(
.
.
)
)

w
h
er

e

im
p
or

t
K
n
o
w

im
p
or

t
A
b
s
t
r
a
c
t

im
p
or

t
"
g
e
n
e
r
a
l
/
G
e
n
"

im
p
or

t
O
p
t
s

im
p
or

t
"
.
.
/
k
e
r
n
e
l
/
S
y
n
t
a
x
"

im
p
or

t
L
is

t

81

im
p
or

t
M

ay
b
e

im
p
or

t
S
y
n
t
a
x
E
x

d
at

a
E
r
r
o
r

=
U
n
s
a
f
e

L
o
c
a
t
i
o
n
K
n
o
w

|
S
a
f
e

L
o
c
a
t
i
o
n

|
M
a
y
L
o
o
p

A
b
s
t
r
a
c
t

|
D
e
f
L
o
o
p

A
b
s
t
r
a
c
t

|
N
o
L
o
o
p

A
b
s
t
r
a
c
t

(
M

ay
b
e

L
o
c
a
t
i
o
n
)

|
D
e
a
d

A
b
s
t
r
a
c
t

K
n
o
w

|
F
i
x
F
a
i
l

A
b
s
t
r
a
c
t

|
D
e
b
u
g

A
b
s
t
r
a
c
t

K
n
o
w
(
M

ay
b
e

K
n
o
w
)

|
R
e
t
u
r
n

K
n
o
w

|
C
o
m
m
e
n
t

S
tr

in
g

in
st

an
ce

S
h
ow

E
r
r
o
r

w
h
er

e
sh

ow
(
U
n
s
a
f
e

n
a
m
e

k
)

=
"
U
N
S
A
F
E
:

"
+
+

s
h
o
w
L
o
c

n
a
m
e

+
+

"
#

"
+
+

sh
ow

k
sh

ow
(
S
a
f
e

n
a
m
e

)
=

"
s
a
f
e
:

"
+
+

s
h
o
w
L
o
c

n
a
m
e

sh
ow

(
M
a
y
L
o
o
p

a
)

=
"
M
A
Y
L
O
O
P
:

"
+
+

sh
ow

a
sh

ow
(
D
e
f
L
o
o
p

a
)

=
"
D
E
F
L
O
O
P
:

"
+
+

sh
ow

a
sh

ow
(
N
o
L
o
o
p

a
n
a
m
e
)

=
"
n
o
l
o
o
p
:

"
+
+

sh
ow

a
+
+

"
"

+
+

(
if

is
Ju

st
n
a
m
e

th
en

s
h
o
w
L
o
c

(
fr

om
Ju

st
n
a
m
e
)

el
se

"
C
A
N
’
T

l
o
o
p
"
)

sh
ow

(
D
e
a
d

a
k

)
=

"
D
E
A
D
:

"
+
+

sh
ow

a
+
+

"
"

+
+

sh
ow

k
sh

ow
(
F
i
x
F
a
i
l

a
)

=
"
F
I
X
F
A
I
L
:

"
+
+

sh
ow

a
sh

ow
(
D
e
b
u
g

a
k
1

k
2
)

=
"
d
e
b
u
g
:

"
+
+

sh
ow

a
+
+

"
|

<
"

+
+

sh
ow

k
1

+
+

"
>

=
<
"

+
+

s
h
o
w
M
a
y

k
2

+
+

"
>
"

sh
ow

(
R
e
t
u
r
n

k
)

=
"
r
e
t
u
r
n
:
"

+
+

sh
ow

k
sh

ow
(
C
o
m
m
e
n
t

s
)

=
"
-
-

"
+
+
s

s
h
o
w
M
a
y

N
ot

h
in

g
=

"
<
n
o
t
h
i
n
g
>
"

s
h
o
w
M
a
y

(
Ju

st
x
)

=
sh

ow
x

i
s
S
a
f
e

:
:

E
r
r
o
r

-
>

B
o
ol

i
s
S
a
f
e

(
S
a
f
e

_
)

=
T
ru

e
i
s
S
a
f
e

(
N
o
L
o
o
p

_
_
)

=
T
ru

e
i
s
S
a
f
e

_
=

F
al

se

i
s
D
e
b
u
g

:
:

E
r
r
o
r

-
>

B
o
ol

i
s
D
e
b
u
g

(
D
e
b
u
g

_
_

_
)

=
T
ru

e
i
s
D
e
b
u
g

_
=

F
al

se

−
−

th
is

st
at

e
is

m
ai

nt
ai

ne
d

at
ev

er
y

ch
k

fu
nc

ti
on

po
si

ti
on

−
−

M
ay

be
K

no
w

is
N

ot
hi

ng
if

yo
u

ca
n’

t
re

ac
h

th
is

po
in

t
(b

re
ak

ju
st

be
fo

re
),

or
Ju

st
x

if
va

lid
kn

ow
le
dg

e
−
−

M
ay

be
K

no
w

is
th

e
br

ea
k

kn
ow

le
dg

e,
if

av
ai

la
bl

e
−
−

[[
Lo

ca
ti
on

]]
is

a
lis

t
of

va
ri

ab
le

s
w
it
h

fo
rw

ar
d

m
om

en
tu

m
,
w
hi

ch
ha

ve
n’

t
be

en
de

st
ro

ye
d

−
−

he
ad

Lo
ca

ti
on

is
th

e
lis

t
of

th
e

cu
rr

en
t
lo

op
−
−

ta
il

Lo
ca

ti
on

is
th

e
hi

er
ar

ch
ic

al
lo

op
s

−
−

if
M

ay
be

th
en

br
ea

k
w
as

en
co

un
te

re
d,

he
nc

e
no

fo
rw

ar
d

re
qu

ir
ed

−
−

[E
rr

or
]
is

a
lis

t
of

er
ro

rs
th

at
ha

ve
be

en
ge

ne
ra

te
d

ty
p
e

C
h
k
S
t
a
t
e

=
(
M

ay
b
e

K
n
o
w
,

M
ay

b
e

K
n
o
w
,

[
M

ay
b
e

[
L
o
c
a
t
i
o
n
]
]
,

[
E
r
r
o
r
]
)

c
h
e
c
k

:
:

S
i
g
n
a
t
u
r
e

-
>

[
A
b
s
t
r
a
c
t
]

-
>

[
E
r
r
o
r
]

c
h
e
c
k

s
i
g

x
s

=
fi
lt

er
f

e
r
r
s

+
+

[
R
e
t
u
r
n

k
n
o
w
]

w
h
er

e
(
Ju

st
k
n
o
w
,

N
ot

h
in

g,
_
,

e
r
r
s
)

=
c
h
k
L
i
s
t
(
n
e
w

s
i
g
)

[
Ju

st
[
]
]

x
s

f
x

=
(
i
s
S
a
f
e

x
=
=

>
o
p
t
A
l
l
T
e
s
t
s
)

&
&

(
i
s
D
e
b
u
g

x
=
=

>
o
p
t
T
r
a
c
e
)

−
−

re
tu

rn
w
ha

t
yo

u
kn

ow
,
w
ha

t
yo

u
br

ok
e

ou
t
kn

ow
in

g,
er

ro
rs

ge
ne

ra
te

d
c
h
k
L
i
s
t

:
:

K
n
o
w

-
>

[
M

ay
b
e

[
L
o
c
a
t
i
o
n
]
]

-
>

[
A
b
s
t
r
a
c
t
]

-
>

C
h
k
S
t
a
t
e

−
−

si
m

pl
e

ca
se

s
−
−

br
ea

k
on

it
s

ow
n

as
se

rt
s

br
ea

k
m

us
t
be

th
e

la
st

en
tr

y
in

a
lis

t
c
h
k
L
i
s
t

k
n
o
w

v
a
r
s

[
B
r
e
a
k
]

=
(
N

ot
h
in

g,
Ju

st
k
n
o
w
,

N
ot

h
in

g
:

ta
il

v
a
r
s
,

[
]
)

c
h
k
L
i
s
t

k
n
o
w

v
a
r
s

[
x

]
=

a
n
n
o
t
a
t
e

k
n
o
w

v
a
r
s

x
c
h
k
L
i
s
t

k
n
o
w

v
a
r
s

[
]

=
(
Ju

st
k
n
o
w
,

N
ot

h
in

g,
v
a
r
s
,

[
]
)

82

−
−

an
d

m
or

e
co

m
pl

ex
c
h
k
L
i
s
t

k
n
o
w

v
a
r
s

(
x
:
x
s
)

=
(
k
2
,

j
o
i
n
M
K
n
o
w

b
1

b
2
,

v
2
,

e
1
+
+

e
2
)

w
h
er

e
(
Ju

st
k
1
,

b
1
,

v
1
,

e
1
)

=
a
n
n
o
t
a
t
e

k
n
o
w

v
a
r
s

x
(

k
2
,

b
2
,

v
2
,

e
2
)

=
c
h
k
L
i
s
t

k
1

v
1

x
s

−
−

ad
d

de
bu

g
an

no
ta

ti
on

s
ar

ou
nd

th
e

kn
ow

st
at

em
en

t
a
n
n
o
t
a
t
e

k
n
o
w

v
a
r
s

x
=
(
k
,

b
,

v
,

D
e
b
u
g

x
k
n
o
w

k
:
e
)

w
h
er

e
(
k
,

b
,

v
,

e
)

=
c
h
k

k
n
o
w
v
a
r
s

x

j
o
i
n
M
K
n
o
w

=
j
o
i
n
M
a
y
b
e

jo
in

j
o
i
n
M
V
a
r
s

v
1

v
2

=
m

ap
(
u
n
cu

rr
y

(
j
o
i
n
M
a
y
b
e

in
te

rs
ec

t)
)

(
zi

p
v
1

v
2
)

n
u
l
l
V
a
r
s

v
a
r
s

=
m

ap
(
co

n
st

(
Ju

st
[
]
)
)

v
a
r
s

n
u
l
l
R
e
s

k
n
o
w

v
a
r
s

=
n
u
l
l
R
e
s
E
r
r

k
n
o
w

v
a
r
s

[
]

n
u
l
l
R
e
s
E
r
r

k
n
o
w

v
a
r
s

e
r
r

=
(
Ju

st
(
c
l
e
a
r

k
n
o
w
)
,

N
ot

h
in

g,
n
u
l
l
V
a
r
s

v
a
r
s
,

e
r
r
)

−
−

ch
ec

k
a

si
ng

le
it
em

at
a

ti
m

e
c
h
k

:
:

K
n
o
w

-
>

[
M

ay
b
e

[
L
o
c
a
t
i
o
n
]
]

-
>

A
b
s
t
r
a
c
t

-
>

C
h
k
S
t
a
t
e

c
h
k

k
n
o
w

v
a
r
s

(
B
o
t
h

t
e
s
t

a
b
)

=
if

is
N

ot
h
in

g
k
n
1

th
en

a
2

el
se

if
is

N
ot

h
in

g
k
n
2

th
en

a
1

el
se

(
j
o
i
n
M
K
n
o
w

k
1

k
2
,

j
o
i
n
M
K
n
o
w

b
1

b
2
,

j
o
i
n
M
V
a
r
s

v
1

v
2

,
e
1
+
+
e
2
)

w
h
er

e
(
k
n
1
,

k
n
2
)

=
i
f
f

k
n
o
w

t
e
s
t

a
1
@
(
k
1
,

b
1
,

v
1
,

e
1
)

=
c
h
k
L
i
s
t

(
fr

om
Ju

st
k
n
1
)

v
a
r
s

a

a
2
@
(
k
2
,

b
2
,

v
2
,

e
2
)

=
c
h
k
L
i
s
t

(
fr

om
Ju

st
k
n
2
)

v
a
r
s

b

−
−

D
E
B
U

G
c
h
k

k
n
o
w

v
a
r
s

(
D
o
P
t
r

a
s
s
i
g
n
)

=
(
Ju

st
(
c
l
e
a
r

k
n
o
w
)
,

N
ot

h
in

g,
Ju

st
(
f

a
s
s
i
g
n
)

:
n
u
l
l
V
a
r
s
(
ta

il
v
a
r
s
)
,

[
]
)

w
h
er

e
f

(
l
,

A
s
i
g
n

l
2
)

=
if

(
l

=
=

in
it

l
2
)

&
&

(
la

st
l
2

‘
el

em
‘

a
c
y
c
l
i
c
)

th
en

[
l
]

el
se

[
]

a
c
y
c
l
i
c

=
s
o
r
t
U
n
i
q
u
e

(
co

n
ca

t
(
m

ap
p
r
o
p
A
c
y
c
l
i
c

(
s
i
g
P
r
o
p
s

(
g
e
t
S
i
g

k
n
o
w
)
)
)
)

c
h
k

k
n
o
w

v
a
r
s

(
V
a
r

f
i
e
l
d
)

=
(
Ju

st
(
d
e
c
l
a
r
e

f
i
e
l
d

k
n
o
w
)
,

N
ot

h
in

g,
v
a
r
s
,

[
]
)

c
h
k

k
n
o
w

v
a
r
s

(
C
a
l
l
F
u
n
c
_

_
)

=
n
u
l
l
R
e
s

k
n
o
w

v
a
r
s

c
h
k

k
n
o
w

v
a
r
s

(
T
e
s
t

v
a
l
)
=

(
Ju

st
k
n
o
w
,

N
ot

h
in

g,
v
a
r
s
,

e
r
r

) w
h
er

e
e
r
r

=
if

t
e
s
t

v
a
l

k
n
o
w

th
en

[
S
a
f
e

v
a
l
]

el
se

[
U
n
s
a
f
e

v
a
l

k
n
o
w
]

−
−

th
e

m
os

t
co

m
pl

ex
ca

se
−
−

tr
y

w
it
h

w
ha

t
yo

u
kn

ow
,
an

d
th

en
tr

y
ag

ai
n

w
it
h

w
ha

t
yo

u
m

ay
kn

ow
c
h
k

k
n
o
w

v
a
r
s

l
o
o
p
@
(
L
o
o
p
x
s
)

=
(
Ju

st
b
r
,

N
ot

h
in

g,
v
r
,

e
r
)

w
h
er

e
(
b
r
,

v
r
,

e
r
)

=
if

o
p
t
L
o
o
p

=
=

O
p
t
L
o
o
p
M
i
n
i
m
a
l

th
en

f
M
i
n

k
n
o
w

o
p
t
L
o
o
p
B
o
u
n
d

el
se

f
M
a
x

f
M
i
n

k
n
o
w

n
=

if
is

N
ot

h
in

g
c
o
n
t

th
en

(
fr

om
Ju

st
b
re

ak
,

v
a
r
s
,

e
r
r
s

+
+

[
N
o
L
o
o
p
l
o
o
p

N
ot

h
in

g]
)

el
se

if
is

N
ot

h
in

g
b
re

ak
th

en
(
c
l
e
a
r

k
n
o
w
,

n
u
l
l
V
a
r
s

v
a
r
s
,

e
r
r
s

+
+

[
D
e
f
L
o
o
p

l
o
o
p
]
)

el
se

if
n

=
=

0
th

en
(
c
l
e
a
r

k
n
o
w
,

n
u
l
l
V
a
r
s

v
a
r
s
,

e
r
r
s

+
+

[
F
i
x
F
a
i
l

83

l
o
o
p
]
)

el
se

if
k
n
o
w
’

=
=

k
n
o
w

th
en

(
fr

om
Ju

st
b
re

ak
,

v
a
r
s
,

e
r
r
s

+
+

i
n
f
V
a
r
s

v
)

el
se

f
M
i
n

(
fr

om
Ju

st
c
o
n
t
)

(
n
-
1
)

w
h
er

e
(
c
o
n
t
,

b
re

ak
,

v
:
v
a
r
s
,

e
r
r
s
)

=
c
h
k
L
i
s
t

k
n
o
w

(
Ju

st
[
]
:
v
a
r
s
)

x
s

k
n
o
w
’

=
jo

in
(
fr

om
Ju

st
c
o
n
t
)

k
n
o
w

f
M
a
x

=
er

ro
r
"
T
o
d
o
"

i
n
f
V
a
r
s

:
:

M
ay

b
e

[
L
o
c
a
t
i
o
n
]

-
>

[
E
r
r
o
r
]

i
n
f
V
a
r
s

N
ot

h
in

g
=

er
ro

r
"
N
o

v
a
r
i
a
b
l
e
s

p
r
e
s
e
r
v
e
d
,

h
e
n
c
e

m
u
s
t

b
r
e
a
k
"

i
n
f
V
a
r
s

(
Ju

st
[
]

)
=

[
M
a
y
L
o
o
p

l
o
o
p
]

i
n
f
V
a
r
s

(
Ju

st
(
x
:
x
s
)
)

=
[
N
o
L
o
o
p

l
o
o
p

(
Ju

st
x
)
]

c
h
k

k
n
o
w

v
a
r
s

x
=

er
ro

r
(
"
C
h
k
:

"
+
+

sh
ow

x
)

84

Appendix F:

Pasta Language Definition

This section lists the EBNF (Extended Backus-Naur form) grammar for Pasta. The issue of whitespace
has been ignored. In between all expressions may be white space, or comments which start with ”--” and
continue until the end of the line.

The following syntax is used:

[...] apply zero or one times

[...]* apply zero or more times

[...]+ apply one or more times

... | ... choose one of the alternatives

"..." use the literal characters enclosed

(...) used for grouping

letter ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |
"n" | "o" | "p" | "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

fields ::= field | fields "," field
names ::= name | names "," name
terms ::= term | terms "," term
lhsExprs ::= lhsExpr | lhsExprs "," lhsExpr
rhsExprs ::= rhsExpr | rhsExprs "," rhsExpr

program ::= signature [operation]+

signature ::= name [property]* "{" [struct ";"]* "}"

struct ::= name "(" [fields] ")"

property ::= acyclic "(" names ")"

field ::= ("int" | "ptr") name

operation ::= struct block

block ::= "{" [declaration]* [command]* "}"

declaration ::= fields "=" terms ";"

command ::= lhsExprs "=" rhsExprs ";"
| "if" "(" condition ")" command ["else" command]

85

| "while" "(" condition ")" command
| block
| name "(" [terms] ")" ";"

lhsExpr ::= ["*"] location

rhsExpr ::= ["*"] term

prop ::= location "::" name
| term rel term
| "(" condition ")"

conprop ::= prop | conprop "&&" prop

condition ::= conprop | condition "||" conprop

location ::= name | location "->" name

term ::= name "(" terms ")"
| location
| value

rel ::= "==" | "!=" | "<" | "<=" | ">=" | ">"

name ::= letter | name letter

value ::= digit | value digit

86

