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Abstract

Programs written in Haskell may fail at runtime with either a pattern match error, or with non-termination.
Both of these can be thought of as giving the value ⊥ as a result. Other forms of failure, for example heap
exhaustion, are not considered.

The first section of this document reviews previous work, including total functional programming and sized
types. Attention is paid to termination checkers for both Prolog and various functional languages.

The main result from work so far is a static checker for pattern match errors that allows non-exhaustive
patterns to exist, yet ensures that a pattern match error does not occur. It includes a constraint language
that can be used to reason about pattern matches, along with mechanisms to propagate these constraints
between program components.

The proposal deals with future work to be done. It gives an approximate timetable for the design and
implementation of a static checker for termination and pattern match errors.
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Chapter 1

Introduction

1.1 Total Programming

Programming, particularly in a functional style, can be thought of as writing down a specification for a
function. Normally programs correspond to partial functions (they may crash, or loop forever). However, it
may be desirable to restrict the class of programs allowed to ensure that those permitted are total.

Turner [Turner 04] argues convincingly that what is needed is a functional programming language in which
every program executes to completion, without raising an error. This language would then inherit a lot
of the mathematical properties that are currently lacking in Haskell. In the discipline of total functional
programming that Turner proposes it is impossible to write either programs that generate pattern match
errors or that do not terminate. Another way of describing this restriction is that ⊥ is removed from the
language.

1.2 Benefits of Totality

If a particular program is known to be unfailing, this provides a number of benefits. The most obvious is
that this knowledge allows the programmer to ignore the possibility of error conditions. The user will not
encounter such a situation. Testing does not have to be carried out to check for totality.

One of the first uses a totality checker would probably see in real life would be to help the understanding
of a programmer. Once a program has been written, usually it is the intention that it is total. Having
this property checked automatically draws attention to any areas of the program which do not follow this
assumption. These are likely to be the areas where bugs lurk.

To reason formally about a partial program requires the consideration of the ⊥ value at every point. If ⊥ is
known not to occur, then proofs can be simplified. In addition, certain source level transformations that are
suited to functional programs are more readily applicable.

Another use of a totality proof is that it can be used in a greater proof of correctness. Take an algorithm
for sorting a list of integers: alongside the proofs of orderedness and permutation, a proof of totality would
be desirable. If this part of the proof can be done automatically, then this is be of use.

A situation in which totality is particular useful is in embedded systems. In these systems, if a program
crashes it is usually not possible for the end user to reboot the device. This means that a higher level of
assurance is needed in the quality of the code.
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1.3. DRAWBACKS OF TOTALITY 5

A final benefit of totality relates to program optimization. If a compiler can determine that the program is
total then the choice of evaluation strategy, namely eager or lazy, is not an issue of correctness. If a program
is total, then under all evaluation strategies it will terminate. This means the compiler can pick the fastest or
most memory efficient evaluation strategy. In addition, error messages can be removed and certain functions
can make assumptions about their arguments, without requiring run-time tests.

1.3 Drawbacks of Totality

It is impossible in any computable framework to accept all total functions, yet reject all partial functions
[Turing 37]. If all functions must be total, then there must be an undecidable set of total functions that
cannot be described in this scheme.

There are also lots of functions that are not total, yet are still correct with respect to their specification.
Consider a Universal Turing Machine, this cannot be written in a total manner. Operating systems are also
non-terminating.

It is also likely that any scheme proposed will require refactoring of some programs. Programmers will have
to specify their program in a way that meets a certain set of criteria, rather than in a more natural way.
The programmer must then make the choice: is the effort spent refactoring the code worthwhile to obtain
the benefits of provable totality.

1.4 A Totality Checker

My research goal is a totality checker for the functional programming language Haskell [Peyton Jones 03].
One particular aspect which requires deep consideration is Haskell’s use of lazy evaluation – this complicates
both pattern matching and to a larger degree, termination.

As totality is undecidable, so my tool must err on the side of caution – only claiming totality when a complete
proof can be produced.



Chapter 2

Field Survey and Review

This review covers aspects of unfailing functional programming. The chapter starts off with the background
properties required to understand the material. Static analysis is then covered. Next a motivation is given for
total functional programming, followed by methods for ensuring termination, and for guaranteeing pattern
match safety.

2.1 Background

This section covers the properties of functional programming that are required to understand fully the follow-
ing sections. Where specific code fragments are given, usually this is done using the Haskell [Peyton Jones 03]
programming language.

2.1.1 Bottom ⊥

In Haskell, the semantic value for error is bottom, ⊥. It can be thought of that every type is augmented
with the additional ⊥ value. However, unlike normal values, ⊥ cannot be tested for. There are two different
ways in which the ⊥ value can be generated by a Haskell program, these are pattern match failure and
non-termination. Other functional languages, for instance ML, do distinguish between these two classes,
and allow the programmer to test for pattern match failure.

Pattern Match Failure

One example of possible pattern match failure is the head function, defined by the single equation:

head (x:xs) = x

Looking at the above equation, head is only defined if the argument is an application of a Cons constructor
when evaluated; it is undefined for the empty list. If an empty list is passed as the argument to head, then
an error such as Program error: pattern match failure: head [] will be printed.

6



2.1. BACKGROUND 7

Non-termination

One example of non-termination is a function non_term, defined by the single equation:

non_term x = non_term x

In this case, the function non_term will never return a value. The exact behaviour is implementation
dependent, sometimes a circular dependency will be detected at runtime, other times a stack overflow is
caused and in other cases the program will become unresponsive.

Detecting whether a function, when applied to a particular argument, will terminate is undecidable, and is
known as the halting problem [Turing 37].

2.1.2 Normal Form

An expression which can be rewritten or reduced at its root is called a redex. If no part of an expression
can be reduced any further, then it is said to be in Normal Form (NF). The expressions in a language such
as Haskell that are not redexes are applications of data constructors, unsaturated applications, literal values
and λ expressions.

A weaker form than normal form is called Weak Head Normal Form (WHNF). In this form the leftmost,
outermost expression cannot be reduced any further. This does not mean that the entire expression is in
normal form – one example of an expression in WHNF, but not NF, is (4 + 5) : [1..].

With functional programming languages, if there is more than one way to reduce an expression to a normal
form, then all reduction strategies will result in the same normal form. It has also been shown that should
a normal form exist, then the strategy of reducing the leftmost, outermost redex will find it. This strategy
corresponds to lazy evaluation. It should be noted that innermost reduction – the strategy taken by strict
languages – does not provide any guarantee about reaching a normal form should one exist.

2.1.3 Laziness

Programming languages can be divided into those which are strict and those which are lazy. In a strict
language, when a function call is made, the arguments are all evaluated to normal form, then the function
is executed until the result is in normal form. Typically a strict functional language will have certain non-
strict elements within it – for example Lisp [Steele 90] defines if, and and or as lazy in all but their first
arguments.

In contrast a lazy language doesn’t have any special built in lazy elements. Every function is lazy. When a
value is needed, it is then computed – if a value is never needed, it is never computed. This allows for the
possibility of infinite data structures – for example the infinite list of prime numbers.

Consider the following example, which generates the infinite list of natural numbers, and then outputs the
first 5 numbers.

nats = nats’ 0
where nats’ x = x : nats’ (x+1)

result = take 5 nats

Lazy evaluation of result yields [0,1,2,3,4]. Using strict evaluation, no result would ever be generated,
as every single natural number would have to be generated first.
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2.1.4 Higher Order

In higher order languages functions can be passed as arguments to other functions. This allows functions
such as:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Note that the type of the first argument f :: a -> b, is functional.

First-order languages do not permit functions to be passed as values. Most languages have some form
of higher-order expressions, for example the standard C [Ame 89] language does. However, in contrast to
Haskell, the C form of higher-order functions consists of passing named functions by address – there is no λ
construct. In C use of a higher-order function is a rarity, while in functional languages it is the norm.

Higher order functions allow greater reuse of components. Consider the definitions of sum and product.
They are both very similar, but in a first order language it is hard to abstract over them. This can be
achieved in Haskell using the following definitions:

sum = foldr1 (+)
product = foldr1 (*)

foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

2.1.5 Peano Numbers

Peano’s representation of the natural numbers uses the constant 0 and function S, where S(x) = x + 1.
For example number 4 is represented as S(S(S(S(0)))). It is possible, and perhaps more intuitive, to
uses these numbers instead of integers for most purposes in functional programming – a topic discussed in
[Runciman 89].

2.2 Static Analysis

Static analysis a term used to describe the analysis of a program, and determining properties about it, without
executing the code directly. It analyzes all branches of the code, and the analysis itself is guaranteed to
terminate. Static analysis is used for many purposes, including checking for safety of programs, and for
generating higher performance software. Much of the information in this section comes from [Mitchell 04].

Often in static analysis it is not possible to completely determine a property. In this circumstance, the
analysis can either ignore a potential problem, or generate a possibly false warning. The choice of which to
do depends on the purpose of the static analyzer.

There are many different models of static analysis, some of the more common ones are now described. More
information on this topic can be obtained from sources such as [Nielson 99].

In order to show the difference between the various following approaches, I will use the imperative-programming
example of calculating z = x×y without the use of multiplication, where all the variables are positive integers,
and x is destroyed. This can be done by the following code:
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��
[z = 0]1

��
[x > 0]2

yes

��

no //

[x = x− 1]3

��
[z = z + y]4BC@A

GF //

Figure 2.1: Multiplication example as a dataflow graph

[z = 0]1;
while ([x > 0]2) {

[x = x− 1]3;
[z = z + y]4;

}

2.2.1 Data Flow Analysis

For data-flow analysis, the program can be considered as a graph. Each statement in the program then
corresponds to a node, and the flow between the statements as directed arcs on this graph. Program
statements such as if and while lead to situations where two arcs either arrive at or leave a single node.
The example given above would translate into a graph as shown in Figure 2.1.

Using the graph representation, equations are then set up to define the reaching definitions, where a variable
obtains its value from. Separate definitions are provided for the entry and exit to each node, allowing
the output to be modelled in terms of the input. For example, statement 2 does not modify the state so
RDentry(2) = RDexit(2). Before the program is executed, on entry to statement 1, none of the values have
a known reaching definition so RDentry(1) = {(x, ?), (y, ?), (z, ?)}. However, after statement 1 has been
executed RDexit(1) = {(x, ?), (y, ?), (z, 1)}. Note that the value associated with z is 1, corresponding to the
statement that set it, and not the value it was set to.

After these reaching definitions have been created, they are then solved to determine where a variables value
at any point comes from. This information can then help show what the value of the variable is, and how it
changes. In the course of solving the equations, it may be necessary to decrease the precision of the analysis,
to ensure termination.

2.2.2 Constraint Based Analysis

Constraint based analysis uses a similar graph representation to data flow analysis, however it focuses on
the node instead of its entry and exit points. Each statement is reformulated as a constraint, describing the
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effect of the node. These constraints are then solved using general constraint solving techniques. This type
of analysis seems to be more common when working with functional programs, and vast simplifications rely
on the the absence of side effects.

The example given for data-flow analysis could be reformulated as a constraint based problem. The exit
from the first statement can be represented as RDexit(1) ⊇ {(z, 1)}. Note the use of ⊇ as a constraint, many
of these can be generated and then solved to find a fixed point.

2.2.3 Forward Analysis

In this method the program is executed on a generic state, which represents all the possible states the
program could be in just after a particular statement. As the statements are executed, the state is modified,
and the end state can be used to deduce properties on. Where a statement can be executed more than once,
for example statement 3, the generic state must cater for all these possibilities.

Finding suitable abstractions for each variable is often specific to particular problems. One method often
used for numeric variables is range analysis, determining which variables may be between which values. For
example, after statement 1 has been executed 0 ≤ z ≤ 0, while all other variables are unknown.

2.2.4 Backwards Analysis

Backwards analysis takes a postcondition at the end of the procedure, and transforms it over all the state-
ments in reverse order to obtain a precondition. This is particularly useful when the exact properties required
at the end can be determined before analysis starts.

The disadvantage of using backward analysis compared to the other methods is that sometimes it becomes
counter intuitive. When an error is reached, it is not always easy to pinpoint where the error is – only that
it exists. On the other hand, forward analysis is generally able to give the precise statement which caused
the error.

Using backward analysis on the above example, if the postcondition for statement 4 was that z ≥ 0 then the
precondition would be z + y ≥ 0. When transformed over the entire program, z ≥ 0 would become y ≥ 0.
However, taking the postcondition z > 0 would generate y > 0 ∧ x > 0 as a precondition to the function.

2.3 Total Functional Programming

Total Functional Programming is about designing a new computer programming language, which from the
very lowest level has no possibility of runtime errors, or at a semantic level the value ⊥ is removed [Turner 04].
When performing proofs on functional programs currently the value bottom must be considered, and often
the resulting proofs are only valid if the computation completes successfully.

Take for example the well typed expression:

loop :: Int -> Int
loop n = 1 + loop n

It is tempting to manipulate this definition as if it were an equation, in the following steps.

loop n = 1 + loop n //from the definition
loop 1 = 1 + loop 1 //instantiate with 1 for n
loop 1 - loop 1 = 1 //subtract loop 1 from both sides
0 = 1 //using x - x = 0
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Unfortunately now a falsehood has been proven. If the definition being manipulated was known to be total,
then the above steps would have preserved correctness. In a partial language these type of manipulations
are not safe.

Checking for totality can be decomposed into two separate checks: checking for termination and checking
for pattern match safety.

2.4 Termination Arguments

There are many arguments for ensuring termination. Most rely on a decreasing value, which has a lower
bound and a minimum decrease at each step. Some of the more common termination arguments are presented
here.

2.4.1 Primitive Recursion

There is a strict subset of recursive functions over the natural numbers called primitive recursive. Every
function in this subset always terminates, however there are still many non-primitive recursive functions that
terminate. A basic primitive recursive function is defined as one of:

• The constant function 0

• The successor function S, from Peano Numbers

• The projection function Pn
i , which takes n arguments, and returns the ith argument

From these, some operators are defined to combine them. A function is primitive recursion if it can be
constructed from the basic functions, applying either composition or recursion a finite number of times.

Composition

Composition takes a primitive recursive function f , of arity i, and i primitive recursive functions of arity j
being g1, . . . , gi, and creates a function h of arity j where:

h(x1, . . . , xj) = f(g1(x1, . . . , xj), . . . , gi(x1, . . . , xj))

Recursion

Recursion takes a primitive recursive function f , of arity i, and a primitive recursive function g, of arity
i + 2, and creates a function h of arity i + 1 where:

h(0, x1, . . . , xi) = f(x1, . . . , xi)
h(S(n), x1, . . . , xi) = g(h(n, x1, . . . , xi), n, x1, . . . , xi)

This is the only form of recursion is allowed, and it can be seen that the first argument to n is monotonically
decreasing, with a lower bound, which ensures termination.
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Ackermann’s function

Despite the restriction in power of primitive recursion, most useful functions can be written in primitive
recursive form. One such function for which this is not the case is Ackermann’s function:

A(m,n) =

 n + 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) otherwise

This function cannot be rewritten in a primitive recursive manner, and it grows in size faster than any
primitive recursive function ever could. However, this is only a first order result. In a higher order language,
it is possible to automatically rewrite this to a primitive recursive form.

A Haskell implementation of Ackermann’s function following the above definition is:

ack 0 n = n+1
ack (m+1) 0 = ack m 1
ack m (n+1) = ack (m-1) (ack m n)

This definition can be converted automatically to:

ack 0 n = n+1
ack (m+1) n = ack’ (ack m) n

ack’ f 0 = f 1
ack’ f (n+1) = f (ack’ f n)

This second version is indeed primitive recursive. The original definition of ack uses nested structural
recursion, where one argument to the recursive function is the result of that function. All cases of nested
structural recursion can be automatically transformed into higher-order primitive recursive functions. In a
higher-order system all recursive functions whose totality can be proved in first order logic can be written
with primitive recursion [Turner 04].

2.4.2 Syntactic Termination

One way of guaranteeing a terminating function is for all recursive calls to have syntactic descent, provided
there are no infinite data structures.

length [] = 0
length (x:xs) = 1 + length xs

Turner suggests that this restriction “does not deprive us of any functions that we need” [Turner 04]. He
does note that refactoring is likely to be required. He also states that many definitions that are not primitive
recursive have an equivalent definition of the same time complexity which is.

Beyond Structural Recursion

It is possible to extend from using simple structural recursion to Walther Recursion [McAllester 96]; though
no more powerful than primitive recursion, it is often more convenient. The concept of Walther recursion is to
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go beyond the standard primitive recursive test of simply decrementing a natural number. Functions in this
scheme can either act as reducers or conservers. Reducers decrease some measure, for example subtraction on
natural numbers where both numbers are non-zero is a reducer. Conservers make no change to the measure,
for example id.

Unfortunately this is only semi-decidable, so a reduced class based on syntactic constraints has been defined.
In this scheme a projection can be used as either a reducer or a consumer. A projection takes some element
of data from a constructor, for example pred and tail and both projections.

A particular example of an operation that is well founded in Walther Recursion but not in Structural
Recursion is the fast exponentiation algorithm.

exp(x, n) =

 x if n = 1
exp(x2, n/2) if n is even
x× exp(x, n− 1) otherwise

Note that this uses n′ = n/2 as its termination guarantee – rather than the more standard n′ = n− 1. It is
instructive to give this in standard code, on natural numbers, and follow the termination argument.

data Nat = Z | S Nat
pred (S x) = x

exp x Z = S Z
exp x (S Z) = x
exp x n | isEven n = exp (x ^ 2) (div2 n)

| otherwise = exp x (pred n)

div2 (S Z) = Z
div2 (S (S x)) = S (div2 x)

The details of (^) are ignored here. The interesting thing to note is the proof of termination for exp is in
its second argument. The first two clauses for exp have no recursive call, and are therefore terminating.
The otherwise branch uses simple primitive recursive reduction. Using Walther recursion pred is classed
as a reducer, which shows that this equation is terminating. The most interesting case is that a termination
argument is needed to show that ∀n • n < div2 n, namely that div2 is a reducer.

The first equation of div2 can be seen to be a reducer, since the argument and result are both concrete
values, and the argument is greater than the result. The second equation is also reducing, and hence div2
is a reducer. This means the entire program is terminating by use of Walther recursion. Unfortunately, this
hides one important caveat. The function div2 is terminating, but it is not total. The application div2 Z
is undefined. In fact, div2 is never called in a situation where the first argument is zero, but if a simple
exhaustive pattern requirement is imposed, this does not help. Also note that if a equation had been given
of the form div2 Z = Z (as you might expect in a standard definition), then div2 would not be a reducer,
and the program would not be proved terminating.

While Walther recursion does increase the number of recognized definitions, there are still many natural
definitions of functions which can be written as primitive recursive functions, that are not accepted as
Walther recursive.

2.4.3 Data vs Codata

In a total functional programming language it would be nice to have potentially infinite data, along with
normal finite data. One particular area where this would be useful is for embedded systems. Often an
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embedded system can be modeled as a stream of inputs, and a stream of output – with a function sitting in
the middle generating the outputs based on the inputs. In this view, the stream of inputs and outputs are
both potentially infinite, so an infinite (and hence non-terminating) stream is required.

With codata [Telford 97], instead of having a requirement that the entire data structure must terminate, the
requirement is that the generation of any subsequent element must terminate. The computation is productive
– it never fails to perform needed further work. For example, a data structure for infinite linked lists, along
with the definition of the even numbers, could be given as:

codata CoList a = CoCons a (CoList a)
| CoNil

evens :: CoList Int
evens = f 2

where f x = CoCons x (f (x+2))

This definition will clearly produce an infinite list – there is no terminating case. It is however also possible
to show that this function will never stall; it is always possible to compute another element. The argument
for productivity would be formulated by noting that the first part of the result f x produces is CoCons x,
before recursing. This means that a CoCons constructor is always applied to a value at every step, therefore
evens is productive.

2.4.4 Sized Types

The idea behind sized types [Pareto 98, Hughes 96b] is very similar to that of total functional programming,
in that functional programs can be written in a manner which ensures termination. The way this is achieved
is by ensuring termination at the types level. The standard type system is expanded by including sizes of
items such as linked lists. Natural numbers are represented as Peano numbers. The size of the result of a
function is based on the size of its inputs, in a linear combination. For example, the type of append becomes:

append :: [x] -> [x] -> [x]
append :: a -> b -> a + b

The first line corresponds to the standard list type signature – taking two lists, and returning a third one.
The second line is the sized type definition, where a and b are the lengths of the two lists, and a + b is at
most the length of the result.

Most sized type checkers only permit linear constraints, and use upper bounds [Pareto 98]. For example the
filter function which takes a condition, and a list, and returns those items which meet the condition. The
derived type of filter states that it takes a list of size n and returns a list of size at most n.

Termination is then proved on each individual function, and composes upwards quite naturally.

To show the power and weaknesses of the sized types approach, take the functions insertion sort and quick
sort. Insertion sort could be defined by:

isort [] = []
isort (x:xs) = insert x (isort xs)

insert n [] = [n]
insert n (x:xs) = if n<=x then n:x:xs else x:insert n xs
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Figure 2.2: Termination Checkers

The sized types mechanism would first assign the type of insert as -> n -> n + 1 – namely it adds one
element to the list. Using this fact, it can derive that the type of isort is n -> n. These can all be seen on
a case by case basis.

Taking the more complex quick sort:

qsort [] = []
qsort (x:xs) = qsort l++[x]++qsort h

where l = filter (<= x) xs
h = filter (> x) xs

This definition relies on filter, which has the type -> n -> n. The sized type analysis discards too
much information to succeed. Within the types, this merely means that the length of the result of filter
is less than or equal to the length of its list argument. Following this through, l and h both have the type
n-1, where n is the length of (x:xs). This means that qsort then has a type of n -> n2, which cannot be
represented, so is changed to n -> w.

In the particular case of qsort, a human can deduce that length l plus the length of h equals the length of
x, but the sized types cannot. This is the deduction required to prove that the type of qsort is n -> n.

2.5 Termination Checkers

There are quite a few termination checkers for functional languages. Figure 2.2 classifies them by which
features they support. Some researches developing termination checkers invent their own language [Abel 98],
while others work on existing languages such as Lisp [Glenstrup 99], Haskell [Panitz 97] or Erlang [Giesl 01,
Armstrong 93].

It is not perfectly clear in all cases as to what is a termination checker. The Total Functional Programming
papers by Turner [Turner 04] specify an entirely new language which, as part of the compilation process, is
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checked for termination. This can either be seen as a compiler which checks that the program is well formed
according to the language definition, or it can be seen as a compiler and a termination checker.

From the diagram in Figure 2.2, it is easy to see that there has been quite a lot of work on languages with
pattern match failures. Almost every functional language has non-exhaustive pattern matching, and essential
functions such as head or car depend on this behaviour. Rather less work has been done on higher order
functional languages, although still a reasonable amount – again modeling the fact that most functional
languages have higher order features. When it comes to laziness, there is a distinct lack of termination
checkers; this may either be because the task is far harder, or because fewer functional languages are lazy.

When classifying the checkers, it is often not clear cut which properties a language has, or does not have.
Although [Panitz 97] does its checking on Haskell programs, and Haskell is a lazy language, it is not clear
whether this checker accepts programs that do not terminate if evaluated strictly. Also the treatment of
pattern match failure is varied: most checkers treat this as a successful termination – possibly not the
appropriate model, depending on the semantics of the language. Some checkers also disallow non-exhaustive
patterns entirely.

2.5.1 Prolog Termination Checkers

While there are some termination checkers for functional languages, when it comes to the logic programming
language Prolog [ISO 95], there are far more checkers available. The question then arises as to which of the
three properties discussed above appear in Prolog.

Non-Exhaustive Patterns

Prolog clearly has non-exhaustive patterns, for example List = [Head | Tail] will not unify if List is the
empty list (or in fact, any non-list type either). However, in Prolog this is not the same kind of error as in
a functional language. A failed unification is only a soft failure, and causes the computation to backtrack.

Higher Order

There is a literature on higher order logic programming [Naish 96]. Using the call/N primitive, it is possible
to write definitions such as filter in the following way:

filter(_P, [], []).
filter(P, A0.As0, As) :-

(call(P, A0) -> As = A0.As1 ; As = As1),
filter(P, As0, As1).

Lazy Evaluation

While Prolog is not lazy, it is not strict either, but implements a backtracking approach. This is similar to
lazy evaluation in many ways, and lazy evaluation can be encoded as free variables [Antoy 00]. It is also
possible to use lazy evaluation to encode backtracking, by generating a lazy list of successes [Wadler 85].

Termination Checkers

As mentioned earlier, there are many termination checkers for Prolog. Most of them attempt to find some size-
change measure, which can be used to prove termination. Prolog termination checkers are quite advanced,
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Figure 2.3: Tableau proof for termination of sum

with many tools using tabulation, constraint solvers and other complicated techniques. Out of various papers
has emerged a set of standard problems which solvers are checked on. It should be noted that no solver
successfully manages to discharge all of them. The standard set includes:

• List manipulations - map, reverse, append, concatenate, sort

• Peano numbers - equality, add, divide, greatest common divisor, Ackermann

• String functions - prefix, matching

• Graphs - graph colouring, path finding

• Parsing - parsing expressions, type checking

• Interpreters - boolean expressions

Unfortunately it appears that when encoding laziness and higher-order functions in Prolog, most of these
checkers seem to fail to find termination proofs.

2.5.2 A detailed look at TEA [Panitz 97]

Out of all the termination analyzers examined, the only one that could have been said to have any support
for all three properties is TEA, which operates on the Haskell programming language.

The way TEA works is by translating Haskell into a core language, which preserves the semantics but
has a simpler representation. After this it uses tableau proof [D’Agostino 99] to generate orderings over
various variables. When it finds errors, including those generated by pattern match failure, it treats them as
successful termination. TEA’s authors claim to have a “90% success rate” [Panitz 97] on programs, including
functions from the prelude, and those used to perform the analysis.

The type of termination that TEA checks for is normal form (NF) termination. A function f of arity i is NF-
terminating, if when given i arguments, v1, . . . , vi, all of which are in normal form, the result of f(v1, . . . , vi)
ends up in normal form. While this is one form of termination, it is a more natural definition for a strict
language. In a lazy language, something similar to WHNF termination would be more appropriate.

To take a simple example, the following definition of a function sum:

sum Nil = 0
sum (Cons x xs) = x + sum xs

is transformed into the tableau proof shown in Figure 2.3. For the sum function to terminate, there must be
an ordering under which T > T2. Since T was originally substituted, it can be replaced with Cons T1 T2 >
T2, which can be solved quite easily. The ordering in this case is that the value of a list is its length.
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2.6 Pattern Match Checking

The other side to the totality problem is that of checking that pattern match errors do not occur. Most
functional languages have some sort of case expression at their core – although they may present this in a
variety of ways. In Haskell for example, the if expression can be seen as a sugared case expression, and so
can pattern matching.

2.6.1 Simplifying Case Statements

Often case expressions are composite – testing for more than just one case at a time. For example, the
following expression:

case x of
[y] -> f y
_ -> g x

the first branch tests that the root of x is a Cons application, and that the tail of x is a Nil constructor.
This can be expanded to:

case x of
(y:ys) -> case ys of

(z:zs) -> g x
[] -> f y

[] -> g x

In this expanded expression all case expressions check the root constructor, and all case expressions are
exhaustive. A case matching error can then be modelled as a call to a special error primitive as the result.
Details of how to perform this conversion are covered in [Augustsson 85] and [Wadler 86].

2.6.2 Checking for exhaustiveness and usefulness

One way of alerting users to possible spurious pattern matches is by checking for exhaustiveness and useful-
ness.

notUseful (x:xs) = xs
notUseful [x] = []
notUseful [] = []

notExhaustive (Just x:xs) = Just x
notExhaustive [] = Nothing

The first function has a redundant second equation – if the argument is of the form [x], then it would have
already matched the first equation. Equations defining the second function are not exhaustive: for example,
if the argument is [Nothing] an error occurs.

The rationale behind flagging the first function as a probable error should be quite simple to understand:
the programmer would not have written the equation if they did not think it was needed, and this implies
that the programmer has misunderstood something.
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The second function is less obviously an error. Consider the function head; when written correctly this
would be flagged as non-exhaustive. While this may be a useful warning message, it is not as severe as the
redundancy error message.

These warnings are implemented in ML [Sestoft 96], using the internal compiler representation of the case
expressions. Another mechanism which is suitable for compilers which use alternative representations is
presented in [Maranget 05].

When trying to compile these examples using GHC 6.4 [The GHC Team 05], the second provokes a warn-
ing, but the first does not. There is a compile time flag which can be added and catches both, named
-fwarn-incomplete-patterns. However, the Bugs (12.2.1) section of the manual notes that the checks are
sometimes wrong, particularly with string patterns or guards, and that this part of the compiler “needs an
overhaul really” [The GHC Team 05].

These checks are local. If the function head is defined, then it raises a warning. No effort is made to check
the callers of head – this is an obligation left to the programmer.

2.6.3 Requiring Exhaustive Patterns

The pattern match failure problem could be solved by simply requiring all pattern matches to consider all
possible values – disallowing the natural definition of head, for example. Turner suggests that this would
“force you to pay attention to exactly those boundary cases which are likely to cause trouble” [Turner 04].

One way of rehabilitating the head function is to let each individual situation where head would have been
required perform its own case matching. If a function such as head is still required, then there are several
ways to rewrite it in a case complete version, some of which are discussed below.

Maybe wrapping

head :: [x] -> Maybe x
head [] = Nothing
head (x:xs) = Just x

Here the result is returned as a wrapped type. The disadvantage is that a case match must be used to check
for Nothing or Just. This style of programming is explored in [Spivey 90].

Error value

head :: x -> [x] -> x
head no [] = no
head no (x:xs) = x

In this version an additional parameter is passed in, being the value to return for failure. The failure value
must have the same type as the elements of the list.

Continuation passing

head :: z -> (x -> z) -> [x] -> z
head no yes [] = no
head no yes (x:xs) = yes x
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In this system yes is a function. If the list argument is non-empty, then the function is applied to the first
element. Otherwise the no value is returned. Note that the no value does not have to be the same type as
the elements of the list.

Discussion

One property that all of these functions have in common is that they change the type of head. This means
that existing code that calls head must be refactored to take this into account. All the approaches are useful
in different situations, with the Maybe approach being perhaps the least invasive in existing code.

2.6.4 Addition of error

In Total Functional Programming there are functions for which there is no sensible answer, for example n/0.
It is possible to augment the total language with a special error construct, which indicates that this value
can never arise. Starting from an initial total functional programming language, it is possible to add the
error keyword. There are no associated semantics with this keyword, and it is the analyzers job to check
that an error value cannot occur.

An analysis that checks for just this is presented [Telford 00]. This works by attempting to give subtypes to
expressions, and ensure that the error keyword cannot be reached.

2.6.5 Testing for ⊥

One widely used tool for testing properties in Haskell programs is QuickCheck [Claessen 00]. Properties
are written which the program must satisfy. By randomly generating data values, then exercising these
properties, this will likely provoke any pattern match errors. This can be combined with Chasing Bottoms
[Danielsson 04], a function which can test for ⊥. A generator can be given for the data, so an appropriate
subset of possible data values can be used.

Another option is to use lazy assertions [Chitil 03]. Assertions are embedded within Haskell programs, but
their evaluation is lazy, so does not affect the behaviour of the program. Asserting properties about the
shape of a data structure can trap potential pattern match errors at an earlier stage, even if a particular
execution does not trigger them.

These approaches all rely on checking at runtime, so the problem is that they are not complete (only specific
runs are checked) and their execution may be slow if multiple runs are required. Also, if automatically
generating suitable input is hard, certain classes of data structure may never be generated, and any errors
associated with them will go undetected.

2.6.6 Soft Typing

Another field of research which bares some similarities to the pattern match checking problem is that on
soft types [Aiken 91, Aiken 94]. This looks at assigning some static type information to a program in a
dynamically typed programming language. A lot of the work in this field is by Aiken, and concerns the
dynamically typed language FL [Backus 90].

The advantage of giving some static type to a dynamically typed language is that some runtime checks can be
removed, and certain specializations can be performed. Take for instance the multiplication function. When
multiplying two arbitrary numbers this is slower than when multiplying two integers, as most computers
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have a special integer multiplication instruction. If static type information can be recovered, then this
optimization can be taken.

The language representing type expressions at any point is a set of all possible constructors – including the
empty set, and the universal set. Types can be joined with union and intersection. In one paper [Aiken 94]
there is some notion of conditional types, which allows types to be dependent on the value and type of other
expressions.

Since individual constructors are represented, in this soft typing mechanism it is possible to differentiate
between a list (being both Cons and Nil), and an empty list (being just Nil). This gives the power to
statically check functions such as head.

A final important point about this approach is that if some area of the program cannot be assigned an
accurate type, it does not break down. Instead a most general type is assigned to this one specific area, and
the result of the program remains typed.

2.6.7 Type Analysis for XML

Outside of the functional programming literature there are other problems which are very similar to pattern
match failure detection – primarily those involving XML [Bray 04] and XSLT [Clark 99]. XML is a hier-
archical data structure, which can be though of as an algebraic data structure. XSLT is a transformation
language, with rules given to apply to various XML values. In XSLT there is no destructive assignment,
recursion is supported, a form of pattern matching is used – overall it can be seen as a first order functional
language.

A type specification of an XML document is written in a DTD (Document Type Definition), and can express
types such as a node of type html contains a head followed by a body. The paper [Tozawa 01] tackles a
subset of XSLT named XSLT0. The question the paper attempts to address is: Given a DTD for an output
document, and an XSLT0 transformation, what is the DTD for the input document?

The advantage of this knowledge is that a document can be checked to meet an output DTD without the
cost of transformation first, and the errors can be determined in the input (or source) document, which the
user wrote – not a document generated by a transformation.

The paper treats this as a question of backward type inference. A type is synthesized as a finite tree automa-
ton, and is deduced compositionally. Correctness proofs are presented, along with an efficient algorithm for
inference.

2.7 Conclusion

In the literature review I have presented quite a lot of work on termination checkers, but none have really
tackled the question of lazy termination with any satisfactory results. There has been some work on detecting
pattern match errors statically, but only in a very local context – not using a global program analysis.

The underlying theory of termination has been explored extensively, particularly in relation to Prolog. The
question of pattern match failure has not had the same depth of attention given to it, and that theory
requires further development. The work on soft typing and other type analysis seems relevant, but has not
been used for this particular purpose.

The other area that has not been explored concerns the needs of the programmers. If a programmer had a
mechanism for proving totality available, would they take it? Given that it may take a significant amount
of work to obtain the required proofs, at what point would the programmer stop? The only way to answer
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these questions is to make a totality checker available, and see just how much effort is required, and if this
has any measurable change in the way a programmer operates.



Chapter 3

Results

3.1 Overview

The majority of this section comes from a recently submitted paper [Mitchell 05]. The goal of this first stage
is to write a static checker for a Haskell subset which finds any non-exhaustive patterns that may cause a
runtime error.

3.1.1 Motivating Example

In order to show what this tool gives us, consider the following example:

risers :: Ord a => [a] -> [[a]]
risers [] = []
risers [x] = [[x]]
risers (x:y:etc) = if x <= y

then (x:s):ss
else [x]:(s:ss)

where (s:ss) = risers (y:etc)

In the third equation, the where matches the output of risers. If risers (y:etc) returns an empty list
this would cause a pattern match error. It takes a few moments to check this program manually – and a few
more to be sure one has not made a mistake!

Turning this program over to the checker developed in this paper, the output from the checker is:

> (risers (y:etc)):Cons
> True

The checker first decides that for the code to be safe the expression in the where must always be a non-empty
list. It then notices that if the argument in a riser application is a Cons, then so will the result be. This
satisfies it, and it returns True, guaranteeing that no pattern match errors will occur.

23
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E ::= arg m
| path E C m
| make C E1 · · ·En

| func f
| apply E0 E1 · · ·En

| case E0 of {C1 -> E1; · · · ; Cn -> En}
f is the name of a function
C is the name of a constructor
m is a positive integer

Figure 3.1: Abstract Syntax of expressions in reduced Haskell

3.2 Reduced Haskell

The full Haskell language is a bit unwieldy for analysis. In particular the syntactic sugar complicates analysis
by introducing more types of expression to consider. The checker works instead on a simplified language, a
core to which other Haskell programs can be reduced. This core language is a functional language, making
use of case expressions, function applications and algebraic data types. The abstract syntax of expressions
is given in Figure 3.1.

Example 1

data List = Cons | Nil

head = case #1 of Cons -> #1.Cons#1

reverse = rev #1 Nil

rev = case #1 of
Nil -> #2
Cons -> rev #1.Cons#2 (Cons #1.Cons#1 #2)

map = case #2 of
Nil -> Nil
Cons -> Cons (#1 #2.Cons#1) (map #1 #2.Cons#2)

�

Note that types and arities are not explicit. Also, there are no named data variables – all variables are
referred to by their relationship to an argument. For example, #1.Cons#2 refers to the second construct of
the Cons-constructed first argument. (From here onwards Cons#1 and Cons#2 will be written as head and
tail respectively, but this is purely to aid understanding for the human reader.)

This reduced language is not intended for people to program in. Rather programs in this language are
obtained by transforming programs in standard Haskell.

3.2.1 Values

The values in this reduced language consist only of algebraic data types, and functions. A value is either a
function, or a constructor and a list of component values. The type of a value can be deduced statically –
whether it is a function or an algebraic value, and in the second case, what are its possible constructors.
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plus x y = case x of
Positive -> case y of

Positive -> Positive
Zero -> Positive
Negative -> anyInt

Zero -> case y of
Positive -> Positive
Zero -> Zero
Negative -> Negative

Negative -> case y of
Positive -> anyInt
Zero -> Negative
Negative -> Negative

Figure 3.2: The plus function in reduced Haskell

There are no primitive data types. A type such as Int is modelled as data Int = Positive|Zero|Negative,
by replacing the primitively defined sections of the prelude. In this representation, the plus function can be
written as in Figure 3.2. The ‘magic’ symbol anyInt may evaluate to any of the Int constructors.

An alternative modelling would be using Peano numbers, perhaps with a flag to indicate negative vs positive
status. This would give more information, but could lead to an explosion in the size of the conditions.

The Char basic type can be modelled as an enumeration, since there are only a finite number of characters.
An alternative would be a reduced representation such as data Char = Upper | Lower | Digit | Other.

3.2.2 Expressions

Expressions in reduced Haskell are defined in Figure 3.1. Some are very similar to those in Haskell, although
none is quite the same:

arg m denotes the mth argument of the function in whose body it appears

path E C m follows the mth field of the expression E – which must be a value with constructor C. Static
typing and case expressions ensure that this is always a safe operation to perform.

make C E1 · · ·En creates a new data object, with the given fields, all the required fields must be supplied.

func f ; simply refers to a top level named function.

apply E0 E1 · · ·En applies function E0 to arguments E1 · · ·En. It is not necessary that all the arguments
to the function are supplied. E0 must evaluate to a function.

case E0 of {C1 -> E1; · · · ; Cn -> En} has patterns that are just single constructors with no binding
variables. If projections are needed they can be expressed using path. E0 must be an algebraic value.

Due to static typing of programs before translation, all expressions except case are incapable of causing any
error, apart from non-termination. The things that are lost in this reduced language include local definitions
such as where and let, deep patterns, complex case statements and lambda expressions. None of these add
any power to the language; they are merely convenient – even though to program without them would be
highly challenging.
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3.2.3 Converting from Haskell

A converter from a subset of Haskell to this reduced language is used as the main input mechanism for
the checking program. The main difference between the subset of Haskell and the reduced language is the
removal of all variable names as arguments to functions, and in case options – and the replacing of those
with variables and paths. These are relatively simple transformations.

A better target would be a converter from full Haskell. By combining a number of existing utilities, such
as Haskell All-In-One [Daumé III 03], and GHC’s ability to generate Core [Tolmach 01], after let lifting and
lambda floating one obtains a language very similar to that currently accepted by the checker.

3.2.4 Higher Order

The current checker is not fully higher order, but some higher order programs can be checked successfully.

The checker tries to eliminate higher order functions by specialization. A function can be specialized in its
nth argument if in all recursive calls this argument is invariant. (There are slight additional complications,
due to mutual recursion). Examples of common functions whose applications can be specialized in this way
include map, filter, foldr and foldl.

When a function can be specialized, the expression passed as the nth argument has all its free variables
passed as extra arguments, and is expanded in the specialized version. All recursive calls within the new
function are then renamed.

Example 2

map f xs = case xs of
Nil -> Nil
Cons a b -> Cons (f a) (map f b)

adds x n = map (add n) x

is transformed into:

map_adds n xs = case xs of
Nil -> Nil
Cons a b -> Cons (add n a) (map_adds n b)

adds x n = map_adds n x

�

Although this firstification approach is not complete by any means, it appears to be sufficient for a large
range of examples. Alternative methods are available for full firstification, such as that detailed by Hughes
[Hughes 96a].

3.3 A Constraint Language

In order to implement a checker that can ensure unfailing patterns, it is useful to have some way of expressing
classes of data values. For this purpose we introduce a constraint language by a few examples, followed by
a more formal description.



3.3. A CONSTRAINT LANGUAGE 27

Example 3

Consider the expression head α. The constraint that must hold for this expression to be safe is α:Cons.
This says that the expression α must reduce to an application of Cons, i.e. a non-empty list. �

Example 4

Consider the expression map head α. In this case the constraint is α.*tail.head:Cons. The part following
the α is a regular expression, with the * operator being applied prefix. If we apply any number (possibly
zero) of tails to α, then apply head, we reach a Cons. Values satisfying this constraint include [] and
[[1],[2],[3]], but not [[1],[]]. �

Constraints divide up into three parts – the subject, the path and the condition.

The subject in the above two examples was just α, representing any expression – including a call, a
construction or even a case.

The path is a regular expression over subtype selectors. A regular expression is defined as:

s + t union of regular expressions s and t
s.t concatenation of regular expressions s then t
∗s any number (possibly zero) occurrences of s
〈C, n〉 a constructor C and an integer n
λ the language is the set containing the empty string
φ the language is the empty set

The elementary regular expressions are of the form 〈C, n〉 where C is a constructor and n is its nth
field.

The condition is a set of constructors, which due to static type checking, must all be of the same type.

So the first example, α:Cons, could have been written more fully as α.λ:Cons – where λ is the regular
expression which describes the language consisting only of the empty word.

A constraint of the form α.r:c can also be expressed as a tuple 〈α, r, c〉. Using the tuple form is more
convenient when describing certain properties formally. The meaning of a constraint is defined by:

〈α, r, c〉 ⇔ (∀l ∈ L(r) • exists(α, l)⇒ constructor(α.l) ∈ c)

exists(e, l) =


True where #l = 0
constructor(e) = C ∧

exists(e.〈C, n〉, ω) where l = 〈C, n〉.ω
False otherwise

Where L(r) is the (possibly infinite) language represented by the regular expression r; exists returns true
if a value has a given path; and constructor gives the constructor used to create the data. Of course, since
L(r) is potentially infinite, this cannot be checked by enumeration.

If there are no expressions which can be found following any instance of the path, then the constraint is
vacuously true.
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Example 5

(A C C).B#1:C is true because in the expression A C C, there is no B#1 selector to follow (only A#1 and A#2
are available), and so no condition is applied. �

Another way in which a tautology can occur is if the condition lists all the constructors of a type. For
example, x:(Nil,Cons) is always true. Because of static typing, it must be the case that the type of x,
and the type of the conditions match. Furthermore, because the condition lists all possible constructors for
a list, it must either be the case that x is an application of one of them, or x has the value ⊥. If the ⊥
arose through an incomplete case statement, this would be picked up at the source. If the ⊥ is the result
of non-termination, then the case statement will never be executed, as the program will still be trying to
evaluate x, and hence no case error will be raised.

A final special case is α.φ:c, because the regular expression is φ, which is the empty language, this condition
is always true.

These constraints are used as atoms in a predicate language with conjunction and disjunction, so constraints
can be about several expressions and relations between them. The checker does not require a negation
operator. We also use the term constraint to refer to logical formulae with constraints as atoms.

3.4 Determining the Constraints

The checker’s job is to generate constraints, and then propagate them round the program, transforming
them as necessary. If the end result is True, then the system is free from pattern match errors. If it is False,
then the system may give rise to pattern errors. The checker is conservative.

3.4.1 The Initial Constraints

The first step of the checker is to determine an initial set of constraints by detecting all non-exhaustive case
statements.

Example 6

For the following definition of head

head = case #1 of Cons -> #1.head

the generated constraint is head#1:Cons. �

In general, a case expression:

case α of
Sel1 -> val1

. . .
Seln -> valn

produces the condition α : (Sel1,Sel2,. . .,Seln). Of course, if the case alternatives are exhaustive, then
this can be simplified to True.

All case expression in the program are found, their initial constraints are found, and these are joined together
with conjunction.
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If α is a complex expression, and not a simple argument reference, then it must be replaced with an equivalent
expression on arguments. The process of transforming from a constraint on an expression, to one only on
arguments is a kind of backward analysis (see §3.4.3).

If a constraint on an argument to a function is generated, where the function has a recursive call, then the
constraint must have a fixed point found (see §3.4.4).

3.4.2 Transforming the constraints

Once a set of initial constraints has been generated, they are transformed. At each stage the constraints
are expressed as a logical formula, where each atom is a constraint, and every subject of a constraint is an
argument reference.

For each constraint f#n in turn, the checker searches for every function call of f, and gets the expression
corresponding to its nth argument. On this expression, it sets the existing constraint. This argument is then
transformed using a backward analysis (see §3.4.3), until a constraint on arguments is found.

Example 7

Given that head#1:Cons, if the program contains the expression:

f = head (g #1)

Then the derived constraint is (g f#1):Cons. i.e. the expression passed as head’s first argument must be a
Cons. �

If the subject of a constraint is an argument to the main function, this cannot be discharged, and is output
to the user. In certain cases, either through the checker being conservative, or through a genuine coding
error, it is possible that a condition that evaluates to False can be generated. These are also recorded as
errors, and reported to the user.

At each stage of the computation constraints obtained are reported to the user, to help determine the steps
the checker performed. Eventually the constraint becomes either True or False, and the checker terminates.

3.4.3 Backward Analysis

Backward analysis is the process which takes a constraint in which the subject is a compound expression,
and changes it to a combination of constraints over arguments only. This process is denoted by a function
ϕ(α, r, c) where α is the expression, r is the path and c is the condition. This function is detailed in figure
3.3. In order to denote the evaluation of an expression into a value, there is a relation D, which is not defined
in this paper.

The arg rule is quite simple: the only thing that changes is that the argument is qualified before being
put in the condition. In every expression, all the arg references can be qualified with the name of the
function they appear in. For example, in the body of the function f, arg n is qualified to f#n.

The path rule says that if a constraint is satisfied on the expression used at the end the path, then following
this bit of the path will give the constraint.

The make rule is more complex. The condition must be true on the constructor used in the make expression
if λ is in the language represented by the regular expression. This corresponds precisely to the empty
word property (ewp) [Conway 71], and can be calculated structurally on the regular expression. For
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ϕ(argn, r, c)→ qual(n).r : c

ϕ(E, r, c)→ 〈E′, r′, c′〉
ϕ(pathE C m, r, c)→ 〈E′, 〈C,m〉.r′, c′〉

ϕ(E1,
∂r

∂〈C,1〉 , c)→ E′
1, · · · , ϕ(En, ∂r

∂〈C,n〉 , c)→ E′
n

ϕ(makeC E1 · · ·En)→ (λ ∈ L(r)⇒ C ∈ c) ∧ E1 ∧ · · · ∧ En

ϕ(DJE0K, r, c)→ P
P [〈arg1, r1, c1〉/ϕ(E1, r1, c1), · · · , 〈argn, rn, cn〉/ϕ(En, rn, cn)]→ P ′

ϕ(applyE0 E1 · · ·En, r, c)→ P ′

C = {x|type(x) = type(C1)}
P = (ϕ(E, λ,C\C1) ∨ ϕ(E1, r, c)) ∧ · · · ∧ (ϕ(E, λ,C\Cn) ∨ ϕ(En, r, c))

ϕ(caseEof{C1− >E1; · · · ;Cn− >En}, r, c)→ P

Figure 3.3: Specification of backward analysis, ϕ

each of the arguments to the data structure, it must be true that the condition holds when the derivative
of the regular expression with respect to that constructor and argument position is taken. This is
denoted by the ∂r/∂〈C, i〉. The differentiation method is based on that described in [Conway 71].

After differentiating a regular expression with respect to an input symbol, the result can be thought
of as the regular expression that would match the rest of the string. This can be used to test for
membership in the following way:

ω ∈ L(r) = ewp(r) where #ω = 0
a.ω ∈ L(r) = w ∈ L(∂r/∂a) where a ∈ Σ ∧ ω ∈ Σ∗

If no string starting with this input symbol could be accepted then the result of the differentiation is
φ. So α.φ : c is always true, matching the semantics of the constraints quite nicely.

The apply rule uses the result of backward analysis applied to the function to find preconditions on the
arguments. While this is fine in theory, it is not necessarily terminating – in fact the naive application
of this rule to any function with a recursive call will loop forever. To combat this, if a function is
already in the process of being evaluated with the same constraint, its result is given as true, and the
recursive arguments are put into a special pile to be examined later on.

The reason for automatically assuming that any constraint on the result of a function in the process of
being evaluated is true can be best demonstrated with an example. Consider the following function:

f x = case x of
A a -> f a
B b -> b

Consider a constraint (f x).r:c. If f x does not meet the imposed constraint, then the part that is
responsible cannot be f a, because the success or failure of f a is equal to that of f x. If then b meets
the conditions, f x will succeed – meaning that the constraint on f a is true. Note what this means
in the following function:

f x = f x
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Any constraint with f x as the subject is always true. Regardless of what case selection is applied to
f x, there will never be a crash. The reason for the lack of a case error may be entirely down to a
non-termination error, but for the purposes of a a pattern match error checker, this is acceptable.

The case rule is the final one. For each case alternative, the generated condition says either the value
being selected on is always of a different constructor (so this particular alternative is never executed),
or the right hand side of the alternative is safe given the conditions for this expression. So if the checker
can prove a given alternative in a case is never taken, it can ignore that alternative.

3.4.4 Obtaining a Fixed Point

We have noted that if a function is in the process of being evaluated, and its value is asked for again with
the same constraints, then the call is deferred. After backwards analysis has been performed on the result of
a function, there will be a constraint in terms of the arguments, along with a set of recursive calls. If these
recursive calls had been analyzed further, then the checking computation would not have terminated.

Example 8

mapHead xs = case xs of
Nil -> Nil
Cons a b -> Cons (head a) (mapHead b)

The function mapHead is exactly equivalent to map head. Running the checker over this function, the con-
straint generated is mapHead#1.head:Cons, and the only recursive call noted is mapHead #1.tail. Observe
that the constraint only mentions the first element in the list, while the desired constraint would mention
them all. In effect mapHead has been analyzed without considering any recursive applications.

Having obtained this constraint and recursive call, the checker attempts to find a fixed point. It does this by
noting that the first argument in the recursive call is #1.tail. The notation used for this is #1 ←[ #1.tail.
What predicate would have to be satisfied if n recursive calls to the function were performed? Denoting this
predicate as Pn, where P0 is the initial constraint:

Pn+1 = Pn ∧ Pn[#1/#1.tail]

For the mapHead function:

P0 = #1:Cons
P1 = #1:Cons ∧ #1.tail:Cons
P2 = #1:Cons ∧ #1.tail:Cons ∧ #1.tail.tail:Cons

The checker attempts to find a fixed point P∞ such that:

Pn = Pn+1 ⇒ P∞ = Pn

However, in this example there is no fixed point. If a fixed point cannot be established, the system has
special rules for dealing with a limited set of common circumstances.

For mapHead we have #1 ←[ #1.tail, so #1∞ = #1.*tail. With this knowledge the constraint can be
written by replacing #1 with #1∞. We then obtain the desired constraint, that mapHead#1.*tail.head:Cons.
�
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In general if an expression exists of the form #i ←[ #i.path then #i∞ = #i.*(path). A special case is
where path is λ. In this case #i∞ = #i.

While these special-case rules handle many directly recursive functions, they do not work for all.

Example 9

Consider the function reverse written using an accumulator:

reverse x = reverse2 x Nil

reverse2 x y = case x of
Cons a b -> reverse2 b (Cons a y)
Nil -> y

Argument #1 follows the pattern #1 ←[ #1.tail, but we also have #2 ←[ Cons #1.head #2. If the pro-
gram being analyzed contained main x = map head (reverse x), the part of the condition that applies to
reverse2#2 before the fixed pointing is reverse2#2.*tail.head:Cons.

In this case a second rule for obtaining a fixed point is needed. This second rule handles recursive calls of
the form

#i ←[ C x1 · · · xn #i

The positions of #i and x within C can be reordered, with R(x) giving the position of any variable. The
constraint must be #i.r:c, with ∂r/∂〈Ctor, R(#i)〉 = r. In this case, P∞ is defined to be:

(λ ∈ L(r)⇒ C ∈ c) ∧
n∧

i=1

〈xi, 〈C, R(xi)〉.
∂r

∂〈C, R(xi)〉
, c〉

In the reverse example the final condition is, as expected:

reverse2#1.*tail.head:Cons ∧ reverse2#2.*tail.head:Cons

�

3.5 Some Simple Examples

Now that the system has been specified, let’s see how far it can take us. The following examples are all based
on standard prelude functions. Most use the List data type, but could equally use any other data type.

Programs are written in the subset of Haskell accepted by the tool – with the exception of the syntactic list
sugar (: and []), which the tool does not support. For the examples in this paper, removal of list sugar
was performed manually, and then specialization and other transformations were performed automatically
by the checker. Outputs are shown with ASCII symbols converted to their mathematical equivalents, but
results are essentially as given by the checker. The lines in the result are prefixed with >, the last line is the
final result, and all lines before that correspond to stages of the checking process. In each case the check is
run on the main function.

The examples are in order of increasing complexity.

Example 10
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head x = case x of
Cons a b -> a

main x = head x
> head#1:Cons
> False[main#1:Cons]

This simple example requires only initial constraint generation, and a simple propagation. �

Example 11

list x = case x of
(a:as) -> head x : tail x
_ -> []

main x = list x
> head#1:Cons ∧ tail#1:Cons
> True

In this example list is about as useful as id, but it does show some nice features of the system. Even
though internally list uses the non-exhaustive functions head and tail, the checker is able to tell that
their arguments are not the empty list. This example shows the use of non-exhaustive components in a
program which is proved to be free from pattern match errors. �

Example 12

main x = map head x
> head#1:Cons
> map_head#1.*tail.head:Cons
> False[main#1.*tail.head:Cons]

This example shows specialization generating a new function map_head, fixed pointing being applied to map,
and the constraints being propagated through the system. �

Example 13

main x = map head (reverse x)
-- reverse x is defined with an accumulator
> head#1:Cons
> map_head#1.*tail.head:Cons
> False[main#1.*tail:Cons ∨ main#1.*tail.head:Cons]

This result may at first seem surprising. The first disjunct of the condition says that applying tail any
number of times to main#1 (also known as x) the result must always be a Cons, in other words must be
infinite. This guarantees case safety because reverse is tail strict, so if an infinite list is passed in, no result
will ever be produced, and a case error will not occur. The second disjunct says, less surprisingly, that the
list before it is reversed must be a list where every element is a non-empty list. �

Example 14

main x = main2 (map box x)
main2 x = map head (reverse x)
box x = [x]
> head#1:Cons
> map_head#1.*tail.head:Cons
> main2#1.*tail:Cons ∨ main2#1.*tail.head:Cons
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> True

The same constraint as for the previous example is generated. It is solved by mapping box over the list. The
second condition evaluates to true, so the first becomes irrelevant. �

Example 15

main x = main2 (repeat x)
main2 x = map head (reverse x)
repeat x = x : repeat x
> head#1:Cons
> map_head#1.*tail.head:Cons
> main2#1.*tail:Cons ∨ main2#1.*tail.head:Cons
> True

Although the constraints in this example are identical to those above, they have been solved in a very
different way. In this case the checker spots that repeat generates an infinite list, so the program will loop
forever and not cause an error. �

Example 16

main x = tails x
tails x = foldr tails2 [[]] x
tails2 x y = (x:head y) : y
> head#1:Cons
> tails2#2:Cons
> fold_tails2#2.*tail.tail:Cons ∨ fold_tails2#1:Cons
> True

This final example uses a fold to calculate the tails function. But as the auxiliary tails2 makes use of head
– it is not (at first glance) free from pattern match errors. The first two lines of the output are simply moving
the constraint around. The third line is the interesting one. In this line the checker gives two alternative
conditions for case safety – either the first argument is a Cons, or the list is either zero length or it is infinite.
The way the requirement for zero or infinite length is encoded is by the *tail.tail. If the list is of zero
length, then there are no tails, and no words in the regular expression language match. If however, there
is one tail, then that tail, and all successive tails must be Cons. This is an argument for saying either the
foldr does not call its function argument because it immediately takes the zero case, or the foldr recurses
infinitely, and therefore the function is never called. Either way, because the initial argument to foldr is a
Cons, and because tails2 always returns a Cons, the second part of the condition can be satisfied. �

3.6 Properties of the system

This section explores the boundaries of the system, what the current checker can, and cannot, solve.

3.6.1 Correctness

What does it mean for the checker to be correct? If an application of main is evaluated and its argument
constraints are satisfied, then the program will not fail with a pattern match error. One special case is that
if the constraint is True, then the program is always safe.

The checker proceeds in steps. If it can be shown that the first step is correct, and that the transformation
at each stage preserves correctness, then the checker is sound. This is an argument by induction.
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The first stage is easy to show correct – the checker considers all non-exhaustive pattern matches, which are
all the possible causes of a pattern match error, and the generated constraints are all that is required.

The fixed point stage is either successful in a finite number of iterations, or a safe approximation is generated.
The approximations are done on a case by case basis, and each case can be checked for correctness individually.
This process is also conservative: if all else fails the approximation is False, which is always safe.

At each stage, if the input constraint is correct, then the output constraint must be too. Since the program
first finds all callers to functions with constraints on them, and moves the constraint on to their arguments,
the constraint is preserved. The backward analysis proceeds case by case, so again it can be shown to be
correct.

3.6.2 Unconditional Success

If all case expressions have exhaustive patterns, the checker determines the program is safe. This is entirely
independent of the structure of the code – higher order, laziness, monads – all of these are entirely ignored
by the checker. Many total programming approaches [Turner 04, Hughes 96b] demand exhaustive patterns
from the outset, perhaps using this checker that restriction could be relaxed?

3.6.3 Laziness

Haskell is a lazy language. In this section we consider three functions. In a lazy language all three execute
without error; in a strict language only one does. Currently the checker only discharges the first (which is
strict). With modifications, the second could be solved. Significant work would be required to prove the
final example.

It is important to remember that if a program is safe under strict evaluation, then it is also safe under lazy
evaluation. Because of this, the checker remains sound.

Example 17

main x = case null x of
True -> []
False -> tail x

Checking this function, which can be thought of as a safe variant of tail, gives the result True. The
constraint derived and its simplification are as follows:

> ((null x):False ∨ True) ∧
((null x):True ∨ x:Cons)

> (null x):True ∨ x:Cons
> x:Nil ∨ x:Cons
> x:(Nil,Cons)
> True

Either the False branch will not be taken because (null x):True, or it is safe, because x:Cons. By
backward analysis (null x):True is equivalent to x:Nil. The two constraints can be collapsed into one,
x:(Nil,Cons). Because all constructors are covered, this constraint simplifies to True. �

Example 18

The next function to consider is equivalent, but defined in a different way.
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main x = cond (null x) [] (tail x)

cond c t f = case c of
True -> t
False -> f

The checker generates the constraint x:Cons, because if that is not the case then tail x will fail. Un-
fortunately, the checker does not see under what conditions f is evaluated. This might be solved with an
additional forward analysis pass, which tries to determine the situations in which an expression will be used.
In this case inlining would also bring the condition to the surface, and allow it to be satisfied. �

Example 19

main x = head [x, head []]

Now main is an obfuscated version of id. The checker returns False. Evaluation of head [] would cause
the system to crash if evaluated, and there is no conditional guarding this expression, so the checker does
not realize that it will not be evaluated. As head acts as a projection, discarding a portion of its input, we
need a more sophisticated analysis. �

3.6.4 Higher Order Functions

The current system can only check higher order functions if they can be reduced to first order versions by
a simple specialization procedure. This includes many commonly used higher order functions such as map,
filter, foldr and foldl.

One place where specialization falls down is when functions are placed inside a data structure, such as a list.

Example 20

applyAll :: [a -> a] -> a -> a
applyAll [] x = x
applyAll (f:fs) x = f (applyAll fs x)

We cannot specialize applyAll. However, if all functions appearing in applyAlls arguments have exhaustive
patterns, the checker succeeds. For example, if applyAll [sin, cos] x is the only application, the program
passes. Because none of the named functions have non-exhaustive patterns, the system does not even attempt
to analyze inside applyAll.

However, a non-exhaustive function in an applyAll argument does not necessarily cause the checker to fail.
Consider the application applyAll [(/ 3), sin, cos]. In this case the function (/) is not exhaustive:
if its second argument is 0, then the function crashes. But as the second argument is known to be 3, the
system succeeds without any higher order analysis. �

A point-free programming style also poses problems. Take for instance the following function:

Example 21

odd :: (Integral a) => a -> Bool
odd = not . even

As this definition does not mention the argument, it is hard to assert things about it. This style of program-
ming is very common, however it can typically be removed very easily. For example:
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odd x = not (even x)

The current checker requires manual arity raising, but it can be automated in common cases without much
effort. �

3.6.5 Fixed Pointing

The final major part of the system that limits what the checker can do is the fixed pointing. If a function
makes no recursive calls, or if the predicate at the point when a recursive call is made is True, there is no
problem.

More interesting to explore are functions where the checker tries but fails to find a fixed point.

Example 22

intersperse x y = case x of
Nil -> y
Cons a b -> Cons a (intersperse y b)

main x = map head (intersperse x x)

The checker gives the output False [Could not fixed point intersperse]. The reason is that in the
recursive call it reaches the situation where #1 ←[ #2 and #2 ←[ #1.tail, for which an approximation is
not defined. It is possible to unfold the program one level to produce:

intersperse2 x y = case x of
Nil -> y
Cons x1 xs -> Cons x1
(case y of

Nil -> xs
Cons y1 ys -> Cons y1 (intersperse2 xs ys)

)

main x = map head (intersperse2 x x)
> main#1.*tail.head:Cons

In this new program #1 ←[ #1.tail and #2 ←[ #2.tail, and the checker does indeed obtain a fixed point.
1 �

Example 23

Another example where fixed pointing fails is derived from a function in Clausify [Runciman 93], modified
to create a minimal failing case. A naive version is first presented, followed by the accumulating version
which the checker rejects.

data Data = A Data Data | B | C

allB x = case x of
A a1 a2 -> allB a1 ++ allB a2
B -> [x]

1Although currently the tool does not give the expression shown above, it does give one which is equivalent, but longer (4
constraints, with accompanying predicates). This is purely a weakness in the predicate and regular expression simplifiers, and
so the reduced version has been given, by performing manual simplification.
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The application context requires (allB x).*tail.head:B and the generated condition is x.*(A#1+A#2):(A,B),
which is indeed correct. It may seem strange that the constraint is :(A,B), but disallows A in the result.
However, consider a value – if it is an A then because of A#1+A#2 it would have both its inner elements
followed. Eventually it must reach a B, or be a non-terminating sequence of As – both of which are allowed
by this constraint, and both of which are safe.

However, this version of allB is O(n2) in the length of the result list; by using an accumulator, an O(n)
version can be obtained.

allB x = allB2 x []

allB2 x y = case x of
A a1 a2 -> allB2 a1 (allB2 a2 y)
B -> x:y

Unfortunately, this definition has a recursive call such that #2 ←[ allB2 #1.A#2 #2, which cannot be ap-
proximated under the current fixed pointing scheme. �

Clearly the current fixed pointing system is a key limitation. One way to improve it would be to add a
backward analysis step if the result is not immediately of a form that can be fixed pointed. This requires
further work, but in our experience most recursive functions that cause fixed pointing problems can be
refactored to avoid them.

3.7 Case Studies

Our goal is to check standard Haskell programs, and to provide useful feedback to the user. To test the
checker against those objectives this section looks at several example Haskell programs. The programs were
all written some time ago, for other purposes.

3.7.1 Adjoxo

The Adjoxo program is an adjudicator for a noughts and crosses game. The user supplies a file, formatted in
a certain way, and the program parses this file and determines who has won a game, or if the game is a draw.
There are only two non-exhaustive pattern matches (or instances where non-exhaustive prelude functions
are called), and these are discussed separately.

One incomplete pattern match is the opp function, defined as:

opp :: Char -> Char
opp ’O’ = ’X’
opp ’X’ = ’O’

This function is used to report who has won. If a loss is detected then the message printed is that the
opposite person has won. The generated constraint for opp is opp#1:(’O’,’X’), as expected.

The opp function is called from report, with the player as second argument. It is only invoked when the
first argument is Loss, so the generated condition is report#1:(Win,Draw) ∨ report#2:(’O’,’X’). In all
calls to report, the second argument is a literal ’X’ or ’O’, so the constraint is satisfied.

A second source of pattern failure is a use of foldr1, with the constraint foldr1#2:Cons, in the following
expression:
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if gridFull ap pp then Draw
else foldr1 bestOf

(map moveval (([1..9] ‘dif‘ ap) ‘dif‘ pp))

The gridFull and dif functions are defined by:

gridFull ap pp = length ap + length pp == 9

dif [] ys = []
dif xs [] = xs
dif xs@(x:xs’) ys@(y:ys’) =

case compare x y of
LT -> x : dif xs’ ys
EQ -> dif xs’ ys’
GT -> dif xs ys’

Backward analysis applied to the map application results in the condition (([1..9] ‘dif‘ ap) ‘dif‘
pp):Cons. Backwards analysis is then applied to dif, yielding the constraint that the result of dif is a
Cons.

At this point the analysis starts to break down. Currently the function compare is modelled as returning any
of LT, GT and EQ. Hence the initial constraint is dif#1:Cons, and the recursive calls give #1 ←[ #1.tail,
#1 ←[ #1 and #2 ←[ #2.tail. The checker concludes that dif#1.*tail:Cons – the first argument must be
infinite. Without any knowledge of the values this is a reasonable deduction, but too much information has
been lost for the analysis to complete successfully.

However, the program can be refactored so that it checks successfully. If the list passed to foldr1 is empty,
then the grid is full, and this check can be used directly instead of calling gridFull.

case (([1..9] ‘dif‘ ap) ‘dif‘ pp) of
[] -> Draw
xs -> foldr1 bestOf (map moveval xs)

Now dif is not even examined.

3.7.2 Soda

The Soda program solves word search problems. A grid of letters is given, along with words to look for, in
any direction, including diagonals.

The program has three initial non-exhaustive patterns. Two are solved with relative ease. But the final one
deserves a little more discussion.

The first and easiest non-exhaustive pattern is a use of tail, which can be satisfied directly by looking at
the case structure.

The next instance of incomplete patterns is in the diagonals function:

diagonals [r] = map (:[]) (reverse r)
diagonals (r:rs) = zipinit (reverse r) ([]:diagonals rs)

The checker generates the constraint that diagonals#1:Cons. When a fixed point is attempted, because
the argument in the recursive call of diagonals is already known to be a Cons, no additional conditions are
generated. This constraint is propagated to applications of diagonals:
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dr = diagonals grid
ur = diagonals (reverse grid)

These give the condition that grid is non-empty, and in the second call, that grid may be either non-empty
or infinite – which can be simplified to just non-empty. A quick check of grid shows it to be a constant data
structure, which is indeed non-empty.

The final, most complex instance of non-exhaustive patterns is:

zipinit [] ys = ys
zipinit (x:xs) (y:ys) = (x : y) : zipinit xs ys

This function, zipinit, fails if the first argument is a Cons and the second is a Nil. The checker obtains
the fixed point zipinit#1.*tail:Nil ∨ zipinit#2.*tail:Cons. The first disjunct can be simplified to
zipinit#1:Nil. The condition now reads: either the first argument is an empty list, or the second argument
is an infinite list. Both alternatives are indeed safe, but both miss the point. The accurate condition is that
the length of the first argument must be less than or equal to the length of the second argument. This
condition cannot be derived in the current constraint framework.

Information is lost in the fixed pointing: the two recurrences to be fixed are #1 ←[ #1.tail and #2 ←[
#2.tail; these expand to #1.*tail and #2.*tail. A more accurate constraint would be #1.tailn and
#2.tailn, where the n’s are constrained to be the same length. Unfortunately this cannot be represented
by a finite expression in the constraint language.

Following the accurate constraint backwards, it eventually becomes apparent that in grid :: [[Char]],
each element of the outer list must be a list of the same length. This condition took some substantial thought
to derive, and is beyond the ability of the checker.

Once again, we can resort to a simple refactoring, adding an extra equation to the definition zipinit:

zipinit (x:xs) [] = []

Now the program checks without any problems. An additional benefit is that if the grid is changed, say by
deleting the two bottom right elements, the program does not crash. The original program fails, but with
the modified version of zipinit the correct answer is given.

3.7.3 Clausify

The Clausify program has been around for a very long time, since at least 1990. It has made its way into the
nofib benchmark suite [Partain 92], and was the focus of several papers on heap profiling [Runciman 93].
It parses logical propositions and puts them in clausal form.

We ignore the parser and jump straight to the transformation of propositions. The main pipeline is:

clauses = concat . map disp . unicl . split . disin . negin . elim

and the data structure is:

data Formula =
Sym Char |
Not Formula |
Dis Formula Formula |
Con Formula Formula |
Imp Formula Formula |
Eqv Formula Formula
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Each of these stages takes a proposition and returns an equivalent version – for example the elim stage
replaces implications with disjunctions and negation. Each stage eliminates certain expressions, so that
future stages do not have to consider them. Despite most of the stages being designed to deal with a
restricted class of propositions, the only function which contains a non-exhaustive pattern match is in the
clause definition.

clause p = clause’ p ([] , [])
where
clause’ (Dis p q) x = clause’ p (clause’ q x)
clause’ (Sym s) (c,a) = (insert s c , a)
clause’ (Not (Sym s)) (c,a) = (c , insert s a)

The checker generates large constraint formulae containing many expressions such as (Dis#1+Dis#2). Di-
rectly motivated by this example, a special shorthand has been introduced to output C#? to mean the
(C#1+C#2). This translation is only performed during output function – internally the conditions remain
the same.

For the last five stages of clausify the checker generates the following constraints:

> clause’#1.*Dis#?:(Dis,Sym,Not) ∧ clause’#1.*Dis#?.Not#1:Sym

> clause#1.*Dis#?:(Dis,Sym,Not) ∧ clause#1.*Dis#?.Not#1:Sym

> unicl’#1.*Dis#?:(Dis,Sym,Not) ∧ unicl’#1.*Dis#?.Not#1:Sym

> foldr_unicl#2.*tail.head.*Dis#?:(Dis,Sym,Not) ∧
foldr_unicl#2.*tail.head.*Dis#?.Not#1:Sym

> unicl#1.*tail.head.*Dis#?:(Dis,Sym,Not) ∧ unicl#1.*tail.head.*Dis#?.Not#1:Sym

These constraints give accurate and precise requirements for a case error not to occur at each stage, and
are very useful. When the condition is propagated back over the split function, the result becomes less
pleasing. An error occurs in fixed pointing, for reasons discussed in §3.6.5. The original definition of split:

split p = split’ p []
where

split’ (Con p q) a = split’ p (split’ q a)
split’ p a = p : a

can be transformed by the removal of the accumulator

split (Con p q) = split p ++ split q
split p = [p]

This second version is accepted by the checker, which generates the condition:

>
(

split#1.*Con#?:(Con,Dis,Sym,Not) ∧
split#1.*Con#?.Dis#?.*Dis#?:(Dis,Sym,Not) ∧
split#1.*Con#?.*Dis#?.Not#1:Sym

)

These constraints can be read as follows: the outer structure of a propositional argument to split is any
number of nested Con constructors; the next level is any number of nested Dis constructors; at the innermost
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level there must be either a Sym, or a Not containing a Sym. That is, propositions are in conjunctive normal
form.

The one part of this constraint that may be unexpected is the Dis#?.*Dis#? part of the regular expression
in the 2nd conjunct. A natural constraint might be *Con#?.*Dis#?:(Dis,Sym,Not), but consider what this
means. Take as an example the value Con Sym Sym. This value meets all 3 conjunctions generated by the
tool, but does not meet this new constraint: the path has the empty word property, the root of the value
can no longer be a Con constructor.

The next function encountered is disin which shifts disjunction inside conjunction. The version in the nofib
benchmark has following equation in its definition:

disin (Dis p q) =
if conjunct dp || conjunct dq
then disin (Dis dp dq)
else (Dis dp dq)

where
dp = disin p
dq = disin q

Unfortunately, when expanded out this gives the call disin (Dis (disin p) (disin q)), which does not
have a fixed point under the present scheme. Refactoring is required to enable this stage to succeed. Fortu-
nately, in [Runciman 93] a new version of disin is given, which is vastly more efficient than this one, and
(as a happy side effect) is also accepted by the checker.

At this point in the story a crisis occurs. Although a constraint is calculated for the new disin, this constraint
is approximately 15 printed pages long! Initial exploration suggests that there are missed opportunities to
simplify regular expressions.

3.7.4 Execution Times

The checker is still a prototype – no profiling has been performed, and neither has much thought been given
to efficiency. Even so, checking all the short examples is virtually instant. On a Pentium 4 2GHz machine,
with 1Gb of RAM, running Linux, and compiling the checker with GHC 5.04.2, the elapsed times for the
examples in §3.5 (all in seconds):

0.018, 0.018, 0.021, 0.021, 0.022, 0.021, 0.020

The motivating example given in the introduction, risers, took 0.007 seconds. Adjoxo took 0.037 seconds.
Soda took 0.032 seconds. Clausify took 0.047 seconds up until after the constraint for split had been
determined. When run until after disin 126Kb of output is generated in 3.192 seconds.

3.8 Conclusions

A static checker for potential pattern match errors in Haskell has been specified and implemented. This
checker is capable of determining the preconditions under which a program can execute and not raise a
pattern match error. A range of small examples has been investigated successfully, along with several larger
examples. Where programs cannot be checked directly, various refactoring steps have been shown that can
increase the checker’s success rate.

The checker does not take account of laziness in its analysis, but we suspect that this is not a severe limitation.
While counterexamples can be constructed, they are not of a very natural style.
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The checker relies on specialization to remove higher order functions. Where higher order functions do
remain, provided they do not have any pattern match failures, the remaining part of the program can be
checked.

The checker is fully polymorphic, and very little concern is given to types. It does not handle classes, but
these can be transformed away without vast complication.



Chapter 4

Proposal

4.1 Motivation

In order to set into context the work I intend to do, it is useful to set out the overall goals. My primary aim
is to create a static checker for Haskell 98. If the checker reports that a program is safe, this will guarantee
that particular program is unfailing. This primarily means that the program will not fail with a pattern
match error, and that it will terminate.

My hope is that with future work this checker could become a standard part of a Haskell toolkit – including
compilers, debuggers and static checkers.

4.2 Common Infrastructure

I am hoping to build two checking mechanisms – a pattern match checker and a termination checker. While
these do different tasks, I hope that underneath they will share a common infrastructure.

The following goals are both short term and long term – to enable the checking to proceed, a short term
version of most of these elements is needed. To increase the quality of the checkers it will then be necessary
to investigate each element individually, and improve them.

Reduction to a Haskell core The full Haskell language is too big to analyze, so a reduced one will be
designed, along with a convertor from Haskell 98. This work has already been started upon in §3.2,
but needs further development.

Program Transformation There are many program transformations that can be applied to ease the analy-
sis. Some of these include specialization, lambda lifting, let floating and inlining of functions. It is
likely that other transformations could also be useful.

Regular Expression Simplification Various problems covered in the results chapter require a firm un-
derstanding of regular expressions. Some work has already been done in the area of regular expression
simplification [Mitchell 03], but more work is required. Ideally properties such as regular expression
equality should be derivable, without generating finite state machines.

Predicate Simplification The predicates managed by the systems to be developed will become large. As
such, as robust predicate simplifier is required, which can combine simplifications on atomic terms with
those using standard boolean logic identities.

44
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4.3 Pattern Match Checker

An initial pattern match checker has been written, and is detailed in the results section. This tool is at an
early stage of development, but is a good base to build upon.

The following tasks follow on from this work.

Diagnosis The checker should output fuller traces that can be manually verified. Currently the predicate
at each stage is given, without any record of how it was obtained, or what effect any individual step
had.

Proof The checker has not been formally proved with respect to any semantics. This is required to give
confidence that the interpretation given to a program by the checker matches that of the compiler/in-
terpretter.

Theory The central algorithms of the checker can be made more powerful. The current framework has a lot
of untapped power. A forward analysis pass could make the system more lazy. A better fixed pointing
procedure could perhaps make additional use of backward analysis.

Safety Annotations I hope to generate automatically information about the prelude functions, and under
what circumstances they are safe. This would make a useful reference.

User Assertions Currently the system derives constraints based upon non-exhaustive case statements. In
some circumstances the programmer has stronger requirements in mind. By accepting user annotations,
the program could then check these elements. This could help with refactoring, by narrowing down
the scope of an error.

4.4 Termination Checking

The initial research has pushed in the direction of pattern match errors, and termination has been deliberately
ignored. I suspect that the same framework can be used in the termination checking. Implementing a simple
termination checker that accepts only primitive recursion, and ignores laziness entirely, should be an easily
achievable first step.

There are lots of methods for termination checking, in a variety of different disciplines including term
rewriting, graph rewriting and logic programming. I will continue to study the existing literature, before
devising an strategy that seems most appropriate to a lazy language.

4.5 Timeline

I intend to work on the common infrastructure next, in the order of regular expressions then full Haskell
reduction – with predicate simplification being investigated as required by other aspects. I expect this to
take about three months.

After the infrastructure has been completed, I will revisit the static pattern match checker, seeing what
additional power the new base adds. Hopefully the effort spent at lower levels will allow some improvements
to be obtained. This will take approximately one month.

After this, I will move on to the termination checker. The first task is to examine the theory in a great level
of detail, then writing a termination checker. The remaining five months will be spent on this task.

At the end of nine months, I hope to have pattern match checker and a termination checker, both for a
reasonable subset of Haskell.
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Handbook of Tableau Methods. Kluwer Academic Publishers, 1999.

[Danielsson 04] Nils Anders Danielsson & Patrik Jansson. Chasing Bottoms; A Case Study in Program
Verification in the Presence of Partial and Infinite Values. In Proc. 7th International
Conference on Mathematics of Program Construction. Springer LNCS 3125, 2004.
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[Partain 92] Will Partain. The nofib Benchmark Suite of Haskell Programs. In J Launchbury &
PM Sansom, editors, Functional Programming, Glasgow 1992, pages 195–202. Springer-
Verlag Workshops in Computing, 1992.

[Peyton Jones 03] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, first edition, 2003.

[Pientka 01] Brigitte Pientka. Termination and Reduction Checking for Higher–Order Logic Pro-
grams. In IJCAR ’01: Proceedings of the First International Joint Conference on
Automated Reasoning, pages 401–415. Springer–Verlag, 2001.

[Runciman 89] Colin Runciman. What About the Natural Numbers? Computer Languages, vol. 14,
no. 3, pages 181–191, 1989.

[Runciman 93] Colin Runciman & David Wakeling. Heap Profiling of Lazy Functional Programs.
Journal of Functional Programming, vol. 3, no. 2, pages 217–245, 1993.

[Sestoft 96] P. Sestoft. ML Pattern Match Compilation and Partial Evaluation. In O. Danvy,
R. Glück & P. Thiemann, editors, Partial Evaluation, pages 446–464. Springer LNCS
1110, 1996.

[Spivey 90] M. Spivey. A Functional Theory of Exceptions. Science of Computer Programming,
vol. 14, no. 1, pages 25–42, 1990.

[Steele 90] Guy L. Steele. Common Lisp the Language. Digital Press, second edition, 1990.

[Telford 97] Alastair Telford & David Turner. Ensuring the Productivity of Infinite Structures.
Technical report TR 14–97, The Computing Laboratory, University of Kent at Can-
terbury, September 1997.

[Telford 00] Alastair Telford & David Turner. A Hierarchy of Languages with Strong Termination
Properties. Technical report TR 2–00, The Computing Laboratory, University of Kent
at Canterbury, February 2000.

[The GHC Team 05] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide,
Version 6.4. http://www.haskell/org/ghc/docs/latest/html/users guide, March
2005.
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