
© ACM, 2016. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the Haskell Workshop 2016

Non-recursive Make Considered Harmful
Build Systems at Scale

Andrey Mokhov ∗

Newcastle University, UK
andrey.mokhov@ncl.ac.uk

Neil Mitchell †

Standard Chartered Bank, UK
ndmitchell@gmail.com

Simon Peyton Jones
Microsoft Research, UK
simonpj@microsoft.com

Simon Marlow
Facebook, UK

smarlow@fb.com

Abstract
Most build systems start small and simple, but over time grow
into hairy monsters that few dare to touch. As we demonstrate in
this paper, there are a few issues that cause build systems major
scalability challenges, and many pervasively used build systems
(e.g. Make) do not scale well.

This paper presents a solution to the challenges we identify.
We use functional programming to design abstractions for build
systems, and implement them on top of the Shake library, which
allows us to describe build rules and dependencies. To substanti-
ate our claims, we engineer a new build system for the Glasgow
Haskell Compiler. The result is more scalable, faster, and spectac-
ularly more maintainable than its Make-based predecessor.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

Keywords build system, compilation, Haskell

1. Introduction
In 1998 Peter Miller published his famously influential paper “Re-
cursive Make Considered Harmful” (Miller 1998). He made a com-
pelling case that, when designing the build system for a large
project, it is far better to ensure that Make can see the entire de-
pendency graph rather than a series of fragments.

Miller was right about that. But he then went on to say “‘But,
but, but’ I hear you cry. ‘A single makefile is too big, it’s unmain-
tainable, it’s too hard to write... it’s just not practical”’, after which
he addresses each concern in turn1. Here, however, he is wrong. Us-
ing Make for large projects really is unmaintainable, and the rules
really are too hard to write.

In this paper we substantiate this claim, and offer a solution,
making the following contributions:

∗Andrey Mokhov conducted this work during a 6-month research visit to
Microsoft Research Cambridge that was funded by Newcastle University,
EPSRC (grant reference EP/K503885/1), and Microsoft Research.
†Neil Mitchell is employed by Standard Chartered Bank. This paper has
been created in a personal capacity and Standard Chartered Bank does
not accept liability for its content. Views expressed in this paper do not
necessarily represent the views of Standard Chartered Bank.
1 As a historical aside, Miller points out that memory size is no longer
a problem, because “the physical memory of modern computers exceeds
10MB”. Indeed!

[Copyright notice will appear here once ’preprint’ option is removed.]

• Using the Glasgow Haskell Compiler (GHC) as a substantial
exemplar, we give concrete evidence of the fundamental lack
of scalability of Make and similar build systems (§2 and §4).
GHC’s build system is certainly large: it consists of over 10,000
lines of (often incomprehensible) code spread over 200 Make-
files. Motivated by its shortcomings, GHC developers have im-
plemented no fewer than four major versions of the build sys-
tem over the last 25 years; it improved each time, but the result
is still manifestly inadequate.

• We describe Shake, an embedded domain specific language
(or library) in Haskell that directly addresses these challenges
in §3. Although Shake has been introduced before (Mitchell
2012), here we describe several key features that were men-
tioned only in passing if at all, notably: post-use and order-
only dependencies; how to use polymorphic dependencies; re-
sources; and content hashes.

• We show in some detail how Shake’s built-in abstractions ad-
dress many of the scalability challenges that have caused the
GHC developers such pain over two decades (§4).

• A huge benefit of using an embedded DSL as a build system
is that we can use the facilities of the host language (Haskell)
to build abstractions on top of Shake, to fit our particular use
case. This sort of claim is easier to make than to substantiate;
so in §5 we present an overview of the new build system we
have developed for GHC, and the new abstractions (not part of
Shake) that we built to support it.

• To validate our claims, we have completely re-implemented
GHC’s build system, for the fifth and final time. The new
version is only a little shorter than the old – Make is already
extremely terse. Much more importantly, while the original was
hard to comprehend and almost impossible to modify safely,
the replacement is beautifully modular, statically typed, and
extensible. Not only that, but the resulting system has much
better behaviour and performance, as we discuss in §6.

None of this is fundamentally new; we review related work in §7.
The distinctive feature of this paper is that it is grounded in the
reality of a very large, long-lived software project. Peter Miller
would be happy.

2. Challenges of large-scale build systems
Many existing build systems work well for small projects, or
projects that follow a common pattern. For example, building a
single executable or library from single-language source files is
well-supported in virtually all build systems. A lot of projects fit
into this category, and so never run into the limits of existing build
systems. Things start to get hairy in big projects, when complexities
such as these show up:

• The project has a large number of components (libraries or ex-
ecutables), using multiple languages, with complex interdepen-

1 2016/8/4

dencies. For example, executables depending on libraries, or
tools generating inputs for other parts of the build system.

• Many components follow similar patterns, so there is a need
for abstractions that allow common functionality to be shared
between different parts of the build system.

• Parts of the build system are not static but are generated, per-
haps by running tools that are built by the same build system.

• The build system has complex configuration, with aspects of its
behaviour being controlled by a variety of different sources: au-
tomatic platform-specific configuration, command-line options,
configuration files, and so on.

The GHC build system includes all of the above. To illustrate the
consequences, here is one rule from GHC’s current build system,
which uses Make:

$1/$2/build/%.$$($3_osuf) : \
$1/$4/%.hs $$(LAX_DEPS_FOLLOW) \
$$$$($1_$2_HC_DEP) $$($1_$2_PKGDATA_DEP)

$$(call cmd,$1_$2_HC) $$($1_$2_$3_ALL_HC_OPTS) \
-c $$< -o $$@ \
$$(if $$(�ndstring YES,$$($1_$2_DYNAMIC_TOO)), \
-dyno $$(addsu�x .$$(dyn_osuf),$$(basename $$@)))

$$(call ohi-sanity-check,$1,$2,$3,$1/$2/build/$$*)

Yes, there are four dollar signs in a row! If it wasn’t so tragic, im-
penetrable code like this would be hilarious. This kind of thing goes
on for thousands of lines. The result is a nighmare to understand,
maintain and modify.

Perhaps GHC’s implementors just aren’t very clever? Maybe
so, but they did at least try hard. The current build system is the
fourth major iteration, as they struggled to find good solutions to
the problems that arose:

• The first incarnation of the build system used jmake, a system
inspired by the X Consortium’s imake. This tool was essentially
ordinary Make combined with the C preprocessor to allow the
use of macros in Makefiles. The macro layer partly solves the
problem of needing to share functionality between different
parts of the build system.

• The C preprocessor was somewhat painful to use with Make.
The syntax was difficult to get right, and the need to constantly
make Makefiles when working on the build system was tire-
some. GNU Make came along which had built-in support for
include files and other features, meaning the GHC build system
could do away with the C preprocessor. The build system was
rewritten to use GNU Make, and simulated macros with include
files (GNU Make didn’t have macros at the time).

• Next there were several large changes to the GHC build system
that didn’t amount to complete rewrites. First, the build system
started to build multiple bootstrap stages in a single build tree;
that is, build the compiler (stage 1) and then build the compiler
again using the stage 1 compiler (stage 2). Previously this
process had required two separate builds.
Around this time the library ecosystem of Haskell was explod-
ing, and the Cabal build system for Haskell libraries emerged.
The GHC build system was integrated with Cabal to avoid du-
plicating Cabal metadata or build logic for the libraries that
were part of the GHC.

• The build system in its current form had grown unwieldy, and
had many idiosyncrasies. The root of many of the problems was
that the build system was constructed as a set of Makefiles that
recursively invoked each other. Recursive Make is considered
harmful for very good reasons (Miller 1998); it is not possible
to accurately track dependencies when the build system is con-
structed of separate components that invoke each other.

In the next rewrite the build system was made non-recursive.
However, in doing so, Make was stretched to its absolute limits,
as the example above illustrates. Every part of the rule is there
for a good reason, but the cumulative effect of solving all the
problems that arise in a complex build system is impenetrable.

By carefully employing a set of idioms2 (such as the prefix idiom
$1_$2_ above, which is explained in §4.2 and §4.3), it was possible
to construct a non-recursive build system for GHC in GNU Make.
It works surprisingly well, and by virtue of being non-recursive
it tracks dependencies accurately; but, it is almost impossible to
understand and maintain. So while it is possible to develop large-
scale build systems using Make, it is clear that GHC developers
have gone far beyond Make’s scalability limits.

3. Background about Shake
Many of the issues raised in §2 stem from the fact that Make
was never designed to be a programming language. A promising
approach is, therefore, abandon Make in favour of an embedded
domain-specific language (DSL), so that we have access to the full
static typing and abstraction facilities of the host language. We have
done exactly that with GHC’s build system, replacing Make with
Shake, a DSL embedded in Haskell (Mitchell 2012). In this section
we recap the key ideas behind Shake (§3.1-§3.3), and also describe
some of the additional features provided by Shake, but not covered
in the original paper (§3.4-§3.8). These features are of general use,
and all predate our efforts to replace the GHC build system.

3.1 Introduction
As an example of a complete Shake build system, let us compile a
C file into an object file:

1 module Main(main) where
2 import Development.Shake
3 import System.FilePath
4
5 main :: IO ()
6 main = shake shakeOptions $ do
7 want ["foo.o"]
8
9 "*.o" %> \out → do

10 let src = out -<.> "c"
11 need [src]
12 cmd "gcc -c" src "-o" out

Following the code from top to bottom:
Line 1 declares a Haskell module. Shake is a Haskell library, so all

Shake build systems are written in Haskell and can make full
use of other Haskell libraries and Haskell abstractions (func-
tions, modules, packages, let expressions etc).

Line 2 imports the Development.Shake module, which provides
most of the functions and types in Shake. Some of the Shake
API is given in Figure 1.

Line 3 imports the System.FilePath module, which in this exam-
ple provides the -<.> function to replace a file’s extension.

Lines 6 declares the main function, which calls shake. The shake
function takes some options (parallelism settings, etc.), along
with a set of Rules, and executes the necessary rules.

Line 7 calls want, to declare that after the build system has fin-
ished we would like the file foo.o to be available and up-to-date.

Line 9 defines a rule to build *.o files, namely those files which
end with the extension .o. The %> operator produces a rule of

2 https://ghc.haskell.org/trac/ghc/wiki/Building/Architecture

2 2016/8/4

newtype Rules a = ... Generic API
deriving (Monoid, Functor, Applicative,Monad)

newtype Action a = ...
deriving (Functor, Applicative,Monad,MonadIO)

data ShakeOptions = ShakeOptions {shakeThreads :: Int, ...}
shakeOptions :: ShakeOptions

shake :: ShakeOptions → Rules () → IO ()
action :: Action a → Rules ()

type ShakeValue a =
(Show a, Typeable a, Eq a, Hashable a, Binary a, NFData a)

class (ShakeValue key, ShakeValue value) ⇒
Rule key value where

storedValue :: ShakeOptions →
key → IO (Maybe value)

rule :: Rule key value ⇒ (key→Maybe (Action value))→Rules ()
apply :: Rule key value ⇒ [key] → Action [value]

data Resource
newResource :: String → Int → Rules Resource
withResource :: Resource → Int → Action a → Action a

type FilePattern = String File-speci�c API
want :: [FilePath] → Rules ()
need :: [FilePath] → Action ()
needed :: [FilePath] → Action ()
orderOnly :: [FilePath] → Action ()
(%>) :: FilePattern → (FilePath → Action ()) → Rules ()
(&%>) :: [FilePattern] → ([FilePath] → Action ()) → Rules ()
(?>) :: (FilePath → Bool)→ (FilePath → Action ())→Rules ()

Figure 1. Shake API

type Rules which takes a pattern on the left, and an Action on
the right. The variable out will be bound to the actual file being
produced, namely foo.o in this example.

Line 10 computes the name of the source file, i.e. src = "foo.c".

Line 11 uses the Shake function need to ensure foo.c has been
built before continuing, and to introduce a dependency that if
foo.c changes then this rule will require rerunning.

Line 12 uses the variable-arity function cmd to execute the system
command gcc with appropriate arguments to produce out from
src. Since the Action type has an instance of MonadIO we can
do any IO operation at this point.

On the first execution, this example will start running the *.o
rule to produce foo.o. When execution gets to need [src] this rule
will stop and the rule for foo.c will be run. Shake provides a default
rule for files that do not match any other rules, which simply checks
the file already exists. After completing this simple rule, Shake will
resume running the *.o rule, executing gcc to build foo.o.

3.2 Parsimonious rebuilding
Both Make and Shake try to eliminate unnecessary rebuilding, but
each uses a different approach:

• In Make, a rule is rerun if the output does not exist, or if the
modification time of the output is earlier than any of the inputs.
In an example similar to that above, gcc would be rerun if either
foo.o did not exist, or if the modification time of foo.o was
earlier than that of foo.c.

• In Shake, a rule is rerun if any of the inputs or outputs have
changed since the last run of the rule. In our example, Shake
will rerun gcc if either foo.c or foo.o does not exist or if either
file changes modification time from when the rule was last run
(or more generally, if either file changes contents, see §3.8).

Shake achieves this result by maintaining a per-project database,
storing information about inputs and outputs after a rule completes,
and rerunning a rule if anything has changed (and thus the result
could be expected to change). Using a separate database has a
number of advantages: (i) we can track things that aren’t files
as in §3.6; (ii) we can depend on a more refined measure than
modification time as in §3.8; (iii) we are robust to system time
changes or extracting old files from backups; (iv) the execution of a
rule does not need to update its output to avoid future rebuilds. The
final point is often worked around in Make by using stamp files to
provide a modification time but having no actual content – Shake
simplifies this common use-case.

3.3 Pre-use dependencies: need
The call need [src] on line 11 tells Shake that foo.c is required to
build foo.o. But note that this dependency is only announced after
Shake has started to run the rule building foo.c. In particular, we
can perform arbitrary computation including I/O, running system
commands and examining files required by a previous need, before
declaring additional requirements with need. In contrast, in most
build systems (Make included), all dependencies of a rule must be
declared before the rule starts executing. The power to add addi-
tional dependencies while running a rule turns out to be important
in practice (§4.6).

3.4 Post-use dependencies: needed
Looking at our first example, the object gets recompiled if the C
source file changes (via the call to need [src], line 11). But a C file
may #include any number of header files, and changes to these
headers will also affect the resulting object. One option is to write
our own code to search for transitively included headers (Mitchell
2012, §6.4), another approach is to reuse the logic already present
in gcc. The gcc compilation command (-c) can also take a flag
-MD to generate a Makefile listing all headers that were used by
the compilation. We can integrate this flag into our example by
replacing the final line with:

let make�le = out -<.> "m"
unit $ cmd "gcc -MD -MF" make�le "-c" src "-o" out
deps ← liftIO $ readFile make�le
need $ make�leDependencies deps

We write the Makefile to foo.m, then use make�leDependencies
to parse the Makefile and return all dependencies3. After obtaining
the list of dependencies we need them, making them inputs to this
rule, and ensuring that if a header changes the object will be rebuilt.

There is something a bit fishy here: after compiling foo.o we
announce that its pre-requisites are bar.h and wibble.h. There is no
issue if bar.h is a source file, and now Shake will know to re-build
foo.o if the user edits bar.h. But if bar.h is itself generated by the
build system, we have told Shake “too late”, and Shake may now
regenerate the file after the compilation has used it.

We solve this problem by using needed instead of need, which
combines need with an assertion that the file does not change as a
result of building, and thus the result is consistent. In the common
case of the header files being source files, the associated rule will
be the default file rule, which does not modify the file, and the
assertion will not trigger.

3 Using the parseMake�le helper function provided by Shake we can define
make�leDependencies = concatMap snd . parseMake�le.

3 2016/8/4

3.5 Order-only dependencies: orderOnly
We have seen how needed can be safely used for source files,
but what about generated files? Imagine we have a rule to build
con�g.h from a configuration data file. With the existing formu-
lation, needed ["con�g.h"] will raise an error if the configuration
data has changed and con�g.h is not up-to-date. One solution is
to need ["con�g.h"] before executing gcc. This solution is safe –
the file con�g.h will always be built before it is used and will not
change when needed (since it has already been built). However,
this solution introduces a dependency on con�g.h, which causes
any object file that does not include con�g.h to rebuild unnecessar-
ily if con�g.h changes.

A better solution is to use order-only dependencies, with the
expression orderOnly ["con�g.h"]. This expression ensures that
con�g.h has been built and is up-to-date before continuing, but
does not introduce a dependency on con�g.h: if con�g.h changes
the rule will not be re-run. Afterwards, if the file turns out to have
been required, needed can be used to express the dependency.

So, for a given rule; orderOnly ensures that a (potential) input
file has been built before the rule is run; and needed ensures that
the rule is re-run if an (actual) input file changes. Combining the
two we obtain the equivalence:

need xs ≡ (orderOnly xs >> needed xs)

Although in practice both orderOnly and needed can be imple-
mented on top of the need primitive.

3.6 Polymorphic dependencies
While build-systems are typically focused around files, the core of
Shake is fully polymorphic, operating on objects that are uniquely
labelled by a key and have rules that produce a value. In the case
of files, the key is the filename and the value is the modification
time, or content hash (§3.8). Using the polymorphic API we can
define new types of rules to track additional dependencies. This
polymorphic API, and the file-specific API built on top of it, are
presented in corresponding sections of Figure 1.

As an example of a new type of rule, let us imagine that the
actual compiler name (gcc) is obtained from a configure script that
produces a configuration file containing many key/value pairs. The
*.o rule could need the configuration file, and parse it to extract the
compiler name, but that would be wildly over-conservative: any
change to the configuration file would cause all rules using the
C compiler to rebuild, even if the compiler name did not change.
Alternatively, we could have rules to split the single configuration
file into one file per key, where each file is only updated if that key
changes, but that might result in thousands of files. Instead, we can
define a rule to map from configuration keys to values.

In Figure 2 we define two new types of rule. First, we define
a rule from the configuration file to the key/value map it contains,
using the Con�gMap type. Next we define a rule from a single
key in the configuration file to the associated value, using the
Con�gKey type. We define Rule instances to declare these new rule
types to Shake, allowing us to use rule and apply from Figure 1.

• We declare rules using rule, which takes a function that for
a given key, says how to compute its value. We use Just to
indicate both rules apply to all keys of the appropriate type.
In the first rule we read the file and parse it, producing an
associative map.

• We use rules with apply, which takes a list of rule keys and com-
putes the corresponding values. Here we use apply with single-
tons, but in general apply operates on list of keys which can
be computed in parallel. When defining the rule for Con�gKey
we use the value of Con�gMap. When defining *.o, we use the
value of Con�gKey "cc".

newtype Con�gMap = Con�gMap FilePath deriving ...
instance Rule Con�gMap (Map String String)

newtype Con�gKey = Con�gKey String deriving ...
instance Rule Con�gKey String

main = shake shakeOptions $ do
rule $ \(Con�gMap �le) → Just $ do

cfg ← readFile' �le
return $ parseCon�g cfg

rule $ \(Con�gKey key) → Just $ do
[dict] ← apply [Con�gMap "con�g.�le"]
return $ dict Map.! key

"*.o" %> \out → do
[cc] ← apply [Con�gKey "cc"]
...
cmd cc "-c" src "-o" out

parseCon�g :: String → Map String String
parseCon�g = ...

Figure 2. Using polymorphic dependencies in Shake

Crucially, Shake treats these computations incrementally: it
parses each configuration file only once, regardless of the number
of uses of apply; and it re-runs rules that look up Con�gKey "cc"
only if the name of the C compiler actually changes. So if file
con�g.�le changes, Shake will re-run the Con�gMap rule, but if
cc does not change, the *.o rule will not re-run.

The use of non-file rule types is common in large-scale build
systems; for example, we use ten different types in our implemen-
tation of GHC’s build system in §6. Polymorphic dependencies
do not give any fundamental additional expressive power over file
rules, but they do provide:

• An easy way to get distinct keys by using a freshly defined type.
• Additional structure for keys and values, instead of hierarchical

filenames and binary content files. In particular they can contain
full algebraic data types or associative maps.

• Greater granularity, by not forcing each rule to be backed by a
separate file. GHC’s build system uses 6,677 non-file rule values.

3.7 Concurrency reduction
Like most build systems, Shake can run independent rules concur-
rently. However, running too many rules in parallel can cause a
computer to become overloaded, spending much of its time switch-
ing between tasks instead of executing them. Most build systems
take an argument to set the maximum number of rules that can be
run in parallel (Shake has shakeThreads), and typically that num-
ber is based on the number of available CPUs. However, some rules
may not be independent:

• Some APIs are global in nature. If you run two programs that
access the Excel API simultaneously things start to fail.

• Many people have large numbers of CPUs, but only one slow
rotating hard-drive. Running many disk-heavy linker processes
simultaneously can overload the hard-drive.

• Some proprietary software has licenses which limit the number
of concurrent processes, for example ModelSim.

Rules using such limited resources should not be run in parallel
even though they do not have explicit dependencies between them.
Build systems typically obey such constraints by setting an artifi-
cially low CPU limit, pausing rules competing for the resource, or

4 2016/8/4

adding fake dependencies to serialise the rules. All these solutions
fail to make best use of the available CPUs, and the fake dependen-
cies are also fragile and tricky to implement.

Shake provides a Resource abstraction that solves this problem
directly. A Resource value represents a finite resource that multiple
build rules can use; such values are created with newResource and
used by withResource. As an example, only one set of calls to the
Excel API can occur at once, therefore Excel is a finite resource of
quantity 1. We can write:

want ["a.xls","b.xls"]
excel ← newResource "Excel" 1
"*.xls" %> \out →

withResource excel 1 $ cmd "excel" out ...

We create a new resource excel of quantity 1, and then we call
withResource excel 1 to use it. Now we will never run two copies
of Excel simultaneously, regardless of the shakeThreads setting.
Moreover, the build system will never block waiting for the re-
source if there are other rules that could be run. We use this ap-
proach to deal with the GHC package database, which only permits
one writer at a time, see §4.5.

3.8 Tracking file contents
Build systems run actions on files, skipping the actions if the files
have not changed. An important part of that process is determining
if a file has changed. As we saw in §3.1, Make uses modification
time to check outputs are newer than inputs, while Shake uses
modification time as a proxy for file contents and rebuilds on any
change. However, there are two common cases where a file can
change modification time without changing its contents:

• When generating source code, e.g. C code from a Yacc/Bison
parser generator, most trivial whitespace changes to the parser
input will probably result in identical output.

• When working on two git branches, both of which are based on
a common master branch, a typical pattern is to switch from
one branch to another. If the first branch was recently synced
with master, but the second has not been for a while, the typical
workflow is to switch to the second branch and then merge with
master. Assuming the differences between the two branches
are small, the number of changed files is also likely to be small.
However, if master changes regularly, any files that changed in
master since the second branch was last synced will have a new
modification time, despite having the same contents.

Shake can solve these problems by simply making the value of a
file rule reflect the contents of that file, instead of the modification
time. In the remainder of this section we discuss how to efficiently
implement something approximating that simple scheme. Since
Shake rules are polymorphic it is easy to provide multiple types of
coexisting file rules, although for simplicity we instead provide the
option of which file value type to use as a field of ShakeOptions.

The obvious problem with simply storing the entire contents
of all files is that it will result in a huge Shake database. Instead,
we store the result of applying a hash function to the file contents,
where the hash changing indicates the file contents have changed.
There is a remote risk that the file will change without its hash
changing, but unless the build system users are actively hostile, that
is unlikely. The disadvantage of content hashes over modification
times is that hashes are expensive to compute, requiring a full scan
of the file. In particular, after a rule finishes Shake must scan the file
it just built, and on startup Shake must scan all files. Scanning all
files can cause rebuild checks to take minutes instead of less than a
second.

As an optimisation, Shake stores the modification time, file size
and hash of the contents. After a rule completes all the information

is computed and stored. When checking if a file has changed,
first the modification time is checked, and if that matches, the
contents are assumed to have not changed. If the modification time
has changed, and the file size has also changed, then the file has
definitely changed. Only in the case where the modification time
has changed but the size has not do we compute the actual hash. If
that hash is equal to the previously recorded hash we store a new
modification time, so that future checks will avoid computing the
hash. These optimisations give most of the benefits of storing the
file contents, but with significantly reduced costs.

4. Quick wins: from Make to Shake
The GHC build system stretches Make beyond its limits. In this sec-
tion we illustrate, from our experience with GHC’s build system,
some of these challenges, and how they can be solved. These prob-
lems can be divided into two groups: those caused by the Make lan-
guage (solved using Haskell); and those caused by a lack of expres-
sive power when describing dependencies (solved using Shake).
Building on these “quick wins”, we show how to structure a large
build system in §5.

4.1 Variables
Make’s program state involves a global namespace of mutable
string variables that are spliced into the program. This model natu-
rally causes challenges:

• Since variables live in a single global namespace, there is lim-
ited encapsulation and implementation hiding.

• Since variables are strings, arrays and associative maps are
typically encoded using computed variable names, which is
error-prone.

• Since variable references are spliced into the Makefile contents
and interpreted, certain special characters can cause problems –
notably space (which splits lexemes) and colon (which declares
rules, but is also found in Windows drive letters).

By using a build system embedded in Haskell, or indeed any other
modern programming language, most of these issues are elimi-
nated. An alternative solution is to generate the Makefile, either us-
ing a tool such as Automake or a full programming language. How-
ever, a generator cannot interact with the build system after gener-
ation, resulting in problems with dynamic dependencies (§4.6).

4.2 Macros
Consider the following Make rule:

%.o : %.hs
ghc $HC_OPTS $<

It tells Make that object files *.o are produced from Haskell source
files *.hs by compiling them using ghc invoked with HC_OPTS
arguments. The notation is terse and works well for this example.
Unfortunately, this simple formulation does not scale:

• What if we want the rule to match foo.o and bar.o, but not
baz.o? It is impossible to do any non-trivial computation – we
are forced to rely on patterns whose expressive power is limited.

• What if HC_OPTS should depend on the file being compiled?

The standard Make approach to solve these problems is to use
macros. As an example, here is a highly simplified version of the
macro from §2:

$1/$2/build/%.o : $1/$4/%.hs
ghc $$($1_$2_$3_HC_OPTS) -c $$< -o $$@

5 2016/8/4

As before, the rule is responsible for compiling a Haskell source
file into an object file. The arguments to the macro are available as
$1 to $4. We have solved the two problems above, but inelegantly:

• To make up for weak pattern matching, we use macros to
generate a separate rule for each $1/$2/$4 combination.

• The dependence of the command line arguments on the file is
solved using a computed variable name, which is dereferenced
using $$(...) to ensure the value is expanded when the macro
is used, not when it is defined. However, certain variables are
present in positions where the value is unavailable when first
called, requiring $$$$(..) to further delay expansion. Alas, it is
far from obvious when extra delaying is required.

Using Shake, the simplest variant looks slightly more complex,
because it must be expressed in Haskell syntax:

"*.o" %> \out → do
let hs = out -<.> "hs"
need [hs]
cmd "ghc" hc_opts hs

However, as the complexity grows, the build system scales prop-
erly. Making hc_opts depend on the Haskell file requires the small
and obvious change:

cmd "ghc" (hc_opts hs) hs

Namely, we turn hc_opts from a constant to a function. To use
richer pattern matching we can drop down to a lower-level Shake
operation. In Shake %> is itself defined in terms of ?>:

pattern %> act = (pattern ?==) ?> act

Wildcard pattern matching is just a special case, and we can use an
arbitrary predicate to exert more precise control over what matches.

An alert reader may have noticed that $1_$2_$3_HC_OPTS
refers to $3, which is not related to the file being built. Indeed, the
macro argument $3 specifies how the file must be built. The next
subsection discusses this pattern and associated challenges.

4.3 Computing command lines
In any large-scale build system, there are rules that say how to build
targets, and then there is a long list of special cases, listing tar-
gets that need to be treated specially. For example, the GHC build
system generates different rules for each combination of pack-
age, compiler version, and build way (in §5.1 we refer to such
combinations as build contexts). The build rules differ in several
aspects, and in particular they use different command line argu-
ments. The following snippet shows how command line arguments
$1_$2_$3_HC_OPTS are computed in the GHC build system:

WAY_p_HC_OPTS = -static -prof
...
base_stage1_HC_OPTS = -this-unit-id base
...
$1_$2_$3_HC_OPTS = $$(WAY_$3_HC_OPTS) \

$$($1_$2_HC_OPTS) \
... plus 30 more configuration patterns

This says that when building targets with GHC in the profiling
way p (i.e. with the profiling information enabled), we need to add
-static -prof to the command line. Furthermore, when we compile
targets from the base library using the Stage1 GHC, we need to
add -this-unit-id base to the command line.

WAY_p_HC_OPTS = -static -prof is concise, but also inflex-
ible. For example, if we do not want to pass the -prof flag when
building a particular file, we have to either add a new component to
the variable name, e.g. WAY_p_�le_HC_OPTS, or conditionally

filter out the -prof flag from HC_OPTS after it is constructed. Both
approaches are not scalable; consequently, much of the complexity
of the GHC build system is caused by computing command lines.
This complexity is unnecessary and can be tackled using high-level
abstractions readily available in Haskell. We elaborate on this so-
lution in §5.3, where we design a DSL for succinct and type-safe
computation of build command lines.

4.4 Rules with multiple outputs
Given a Haskell source file Foo.hs, GHC compilation produces
both an interface file Foo.hi and an object file Foo.o. The typical
way of expressing multiple outputs in Make is to use two rules, one
depending on the other. For example:

%.o : %.hs
ghc $HC_OPTS $<

%.hi : %.o ;

The second rule is a no-op: it tells Make that an interface file can
be produced simply by depending on the corresponding object file.
Alas, this approach is fragile: if we delete the interface file, but
leave the object file intact, Make will not rerun the *.o rule, because
the object file is up-to-date. Consequently, the build system will fail
to restore the deleted interface file.

In Shake we can express this rule directly using the operator
&%>, which defines a build rule with multiple outputs:

["*.o", "*.hi"] &%> \[o, hi] → do
let hs = o -<.> "hs"
need [hs]
cmd "ghc" hc_opts hs

4.5 Reducing concurrency
As discussed in §3.7, it is sometimes necessary to reduce concur-
rency in a build system. As an example, GHC packages need to be
registered by invoking the ghc-pkg utility. This utility mutates the
global state (package database) and hence at most one package can
be registered at a time, or the database is corrupted.

In Make, the solution is to introduce fake concurrency reduction
dependencies. In GHC’s build system there are 25 packages that
require registration, and in the old build system they all depended
on each other in a chain, to ensure no simultaneous registrations
occur. This solution works, but is fragile (easy to get wrong) and
inefficient (reduces available parallelism).

In Shake, the solution is to use the resources feature (§3.7):

packageDb ← newResource "package-db" 1
...
action $ withResource packageDb 1 $ cmd "ghc-pkg" ...

This snippet declares a global resource named packageDb with
quantity 1, then later calls withResource asking for a single quan-
tity of the resource to be held while running the ghc-pkg utility.
Provided all ghc-pkg calls are suitably wrapped, we will never
run two instances simultaneously. Furthermore, thanks to the avail-
ability of functions, we can abstract a function that both executes
ghc-pkg and takes the resource.

4.6 Dynamic dependencies
Make, in common with many other build systems, works by con-
structing a dependency graph and then executing it. This approach
makes it possible to analyse the graph ahead of time, but it is limit-
ing in some fundamental ways. Specifically, it is common that parts
of the dependency graph can be known only after executing some
other parts of the dependency graph. Here are some examples of
this pattern from the GHC build system:

6 2016/8/4

• GHC contains Haskell packages which have metadata specified
in .cabal files. We need to extract the metadata and generate
package-data.mk files to be included into the build system; this
is done by a Haskell program called ghc-cabal, which is built
by the build system. Hence we do not know how to build the
packages until we have built and run the ghc-cabal tool.
One “solution” to this problem is to generate the .mk files
and check them into the repository whenever they change. But
checking in generated files is ugly and introduces more failure
cases when the generated files get out of sync.

• The dependencies of a Haskell source file can be extracted by
running the compiler, much like using gcc -M on a C source
file. But the Haskell compiler is one of the things that we are
building, so we cannot know the dependencies of many of the
Haskell source files until we have built the stage 1 compiler.

• Source files processed by the C preprocessor use #include
directives to include other files. We can only know what the
dependencies are by running the C preprocessor to gather the
set of filenames that were included.

There are several other cases of such dynamic dependencies in the
build system. Indeed, they arise naturally even when building a
simple C program, because the #include files for a C source file
are not known until the source file is compiled or analysed by the
C compiler, using something like gcc -M. Build systems that have
a static dependency graph typically have special-case support for
changing dependencies; for example, Make will re-read Makefiles
that change during building. In the case of Make, this works for
simple cases, but fails when there are dependencies between the
generated Makefiles, which arises in more complex cases.

The GHC build system works around this limitation of Make by
dividing the build system into phases, where each phase generates
the parts of the build system that are required by subsequent phases.
The GHC developers managed to reduce the number of phases
to three, by carefully making use of Make’s automatic restarting
feature where possible. However, explicit phases are a terrible
solution for several reasons:

• Phases reduce concurrency: we cannot start the next phase until
the previous phase is complete.

• Knowing what targets to put in each phase requires a deep
understanding of generated parts of the build system and their
dependencies, and this area of our build system is notoriously
difficult to work on. Diagnosing problems is particularly hard.

• We have to run all the phases even when doing an incremen-
tal build, because explicit phases preclude dependency tracking
across the phase boundary. The result is so slow that we were
forced to allow the user to short-circuit the earlier phases, by
promising that nothing has changed that would require rebuild-
ing the early phases (make fast). This solution is less than ideal.

Shake supports dynamic dependencies natively, so these prob-
lems just go away. The need function can introduce new depen-
dencies after observing the results of previous dependencies4 (see
§3.3). For example, when building a Haskell package, we first need
the ghc-cabal tool, then we run it on the package’s .cabal file to
extract the package metadata, and then we consult the result to de-
termine what needs to be done to build the package.

4 It has been suggested that the dependency mechanism in Shake should
rightly be called Monadic dependencies to contrast with the Applicative de-
pendencies in Make. We agree. In an applicative computation the structure
cannot depend on the values flowing through the container. In a monadic
computation the structure can depend on the values.

The existence of need means that Shake cannot construct the
dependency graph ahead of time, because it doesn’t know the full
dependency graph until the build has completed. But this is not a
limitation in practice, whereas the lack of dynamic dependencies
really is a limitation requiring painful workarounds.

4.7 Avoiding external tools
Build systems typically spend most of their time calling out to ex-
ternal tools, e.g. compilers. But sometimes it is useful to replace
external tools with direct functions. As an example, the Make sys-
tem uses xargs to split command line arguments that exceed a cer-
tain size; but xargs does not work consistently across OS versions,
requiring lots of conditional logic. Fortunately, with Haskell at our
disposal, we can write:

-- | @chunksOfSize size strings@ splits a given list of strings
-- into chunks not exceeding @size@ characters. If that is
-- impossible, it uses singleton chunks.
chunksOfSize :: Int → [String] → [[String]]
chunksOfSize n = repeatedly $ \xs →

let ys = takeWhile (≤ n) $ scanl1 (+) $ map length xs
in splitAt (max 1 $ length ys) xs

Writing a small function is easy in Haskell, as is testing it (we
test this function using QuickCheck). Writing it in bash would be
infeasible. Reducing the specific behaviours required from external
tools leads to significantly fewer cross-platform concerns.

4.8 Summary
The unnecessary complexities described in this section have a big
impact on the overall complexity of the build system. The main
lessons we have learnt are:

• Abstraction is a powerful and necessary tool. Lack of good ab-
straction mechanisms is a significant cause of the complexity of
previous attempts in Make. Functional programming provides
excellent abstractions – marrying build systems and functional
programming works well.

• Expressive dependencies are important; we use multiple out-
puts §4.4, resources §4.5 and dynamic dependencies §4.6.
While some of these features are only used in a few places
(e.g. resources), their absence requires pervasive workarounds,
and a significant increase in the overall complexity.

5. Abstractions
In the previous section we covered how Shake helps us sidestep the
unnecessary complexities inherent in a large-scale build system. In
this section we focus on the complexities that remain. In particular,
we develop abstractions for describing build configurations on top
of Shake. Common configuration settings include turning on/off
documentation, choosing different sets of optimisation flags, etc.
As shown in §4.3, many GHC users work with GHC in different
modes and in different environments, leading to a combinatorial
explosion of possible configurations.

We first focus on the specifics of the GHC build system (§5.1).
The remaining abstractions (§5.2) are independent of GHC and
will, we believe, be useful to others. We then describe the configu-
ration language we developed (§5.3), which is tracked (if a config-
uration setting changes, the affected build rules are rerun), can have
provenance (§8), and permits easy configuration. As an example:

builderGhc ? way pro�ling ? arg "-prof"

This expression adds the -prof argument to the command line when
building a file with GHC in the pro�ling way.

7 2016/8/4

data PackageType = Library | Program Build types

data Package = Package
{ pkgName :: PackageName
, pkgPath :: FilePath
, pkgType :: PackageType }

newtype Way = ... deriving Eq

data Stage = Stage0 | Stage1 | Stage2 | Stage3 deriving Enum

data Context = Context
{ stage :: Stage
, package :: Package
, way :: Way }

data Builder = Alex
| Ar
| GenPrimopCode
| Ghc Stage
| Haddock
... plus 22 more builders

data Target = Target
{ context :: Context
, builder :: Builder
, inputs :: [FilePath]
, outputs :: [FilePath] }

type Expr a = ReaderT Target Action a Expressions

newtype Di� a = Di� { fromDi� :: a → a }

type Args = Expr (Di� [String])

append :: [String] → Args
append as = return $ Di� (<> as)

remove :: [String] → Args
remove as = return . Di� $ �lter (8notElem8 as)

arg :: String → Args
arg = append . return

interpret :: Target → Args → Action [String]
interpret target args = do

di� ← runReaderT args target
return $ fromDi� di� mempty

way :: Way → Expr Bool Predicates
way w = do

target ← ask
return $ Context.way (context target) == w

stage :: Stage → Expr Bool
package :: Package → Expr Bool
builder :: Builder → Expr Bool
builderGhc :: Expr Bool
input, output :: FilePattern → Expr Bool

(?) :: Monoid a ⇒ Expr Bool → Expr a → Expr a
predicate ? expr = do

bool ← predicate
if bool then expr else return mempty

Figure 3. GHC build system abstractions

5.1 Context

We start by describing GHC-specific build types, which form our
build context. By abstracting over the context in the subsequent
sections we derive a set of generally useful build abstractions that
are applicable to many build systems.

GHC source code is split into logical units, or packages. We
model packages with the Package type, see Figure 3 (Build types).
A package is identified by a unique PackageName and a FilePath
pointing to its location in the source tree. A GHC package can be a
library (e.g. array) or a program (e.g. haddock), which is captured
by PackageType. There are 32 libraries and 18 programs (the latter
includes GHC itself and various utilities).

A package can be built multiple ways, for example, to produce
a library with or without profiling information. The way is cap-
tured by an opaque type Way inhabited by values such as vanilla
(the simplest possible way), pro�ling (with profiling information),
debug (with debug information), and many others (there are 18
ways in total). Some ways can be combined, e.g. debugPro�ling;
however, not all combinations make sense. By making Way opaque
we make it easier to add new ways or change their internal repre-
sentation, something that would be impossible to achieve in Make,
where no information hiding is possible.

In addition to different build ways, each package can be built
by several versions of GHC, which leads to the notion of stages. In
Stage0 we use the bootstrap GHC, i.e. the one that is installed on
the system. During this stage we build Stage1 GHC, an interme-
diate compiler that still lacks many features. It is used during the
following Stage1 for building a fully-featured Stage2 GHC, the
primary goal of the build system. We sometimes also build Stage3
GHC as a self-test: the object code of Stage2 and Stage3 compilers
should be the same.

Stage, Package and Way form a GHC-specific build context
represented by the type Context, see Figure 3. A typical GHC build
rule, such as compilePackage, depends on the context as follows:
it uses an appropriate compiler version (e.g. the bootstrap compiler
in Stage0), produces object files with different extensions (e.g.
vanilla *.o or profiled *.p_o object files), puts build artifacts into
an appropriate directory (e.g. stage1/libraries/base), etc.

5.2 Builder and Target

A typical build system invokes several build tools, or builders, such
as compilers, linkers, etc., some of which may be built by the build
system itself. The builders are captured by the Builder type. It is
useful to distinguish internal and external builders, i.e. those that
are built by the build system and those which are installed on the
system, respectively. The function builderProvenance returns the
stage during which an internal builder is built, the way it is built,
and the package containing the sources (all captured by a Context);
Nothing is known about the provenance of external builders.

builderProvenance :: Builder → Maybe Context
builderProvenance x = case x of
Ghc Stage0 → Nothing
Ghc stage → Just $ Context (pred stage) ghc vanilla
Haddock → Just $ Context Stage2 haddock vanilla
...
_ → Nothing

In particular, we can see that Ghc Stage0 is an external builder,
Ghc Stage1 is internal, built from package ghc during Stage0,
Haddock is built in Stage2, etc. There are 27 builders, 16 of
which are internal. Furthermore, some builders are optional, e.g.
HsColour, which (if installed) is used to colourise Haskell code
when building documentation.

Each invocation of a builder is fully described by a Target,
which comprises a build Context, a Builder, a list of input files and

8 2016/8/4

a list of output files. 3748 targets are built when building Stage2
GHC with documentation (with vanilla and profiled libraries). Con-
sider the following Target as an example:

preludeTarget = Target
{ context = Context Stage1 base pro�ling
, builder = Ghc Stage1
, inputs = ["libraries/base/Prelude.hs"]
, outputs = ["build/stage1/libraries/base/Prelude.p_o"] }

By examining preludeTarget it is possible to compute the full com-
mand line for building build/stage1/libraries/base/Prelude.p_o:

• The builder is Ghc Stage1. We lookup the right command
inplace/bin/ghc-stage1 with help of builderProvenance, and
use it in the following command line template:

-O2 -c <input> -o <output>

• The way is pro�ling, so we know that we need to add -prof.
• We know how to substitute <input> and <output> in the

above template.

The resulting full command line is:

inplace/bin/ghc-stage1 -O2 -prof -c libraries/base/Prelude.hs
-o build/stage1/libraries/base/Prelude.p_o

A build system typically contains many such computations (at
least one for each builder) and it is important to provide a terse and
readable notation to describe the transformation from a Target to
a command line. After experimenting with several abstractions, we
converged on expressions, as defined in the next subsection.

5.3 Expressions
An expression Expr a is a computation that produces a value of
type Action a and can read the current build Target, as shown
in Figure 3 (Expressions). For example, the following expression
computes command line arguments for invoking GHC:

ghcArgs :: Expr [String]
ghcArgs = do

target ← ask
return $ ["-O2"]

++ ["-prof" | way (context target) == pro�ling]
++ ["-c", head (inputs target)]
++ ["-o", head (outputs target)]

5.3.1 Predicates
The use of conditional Expr values is pervasive. In the ghcArgs
expression above -prof is only applied when profiling. But in
fact, the entire expression is only applicable when using the Ghc
builder. To make conditionals more concise we use predicates of
type Expr Bool, see Figure 3 (Predicates). In particular, we use
way :: Way → Expr Bool to check which way is currently being
built. For example, predicate way pro�ling returns True when the
current target is built using the pro�ling way.

Operator (?) :: Monoid a ⇒ Expr Bool → Expr a → Expr a
is a convenient shortcut for applying a predicate to an expression
that computes a monoidal value, such as [String]. For example, the
following expression returns ["-prof"] when the current target is
built the pro�ling way, and an empty list of arguments otherwise:

prof :: Expr [String]
prof = way pro�ling ? return ["-prof"]

Expressions computing monoids themselves form a monoid:

instance Monoid a ⇒ Monoid (Expr a) where
mempty = return mempty
mappend = liftM2 mappend

Predicates and monoidal expressions are a powerful combination
with many useful laws that allow us to reason about them:

1. Absorption: p ? mempty ≡ mempty

2. Distributivity: p ? (e <> f) ≡ p ? e <> p ? f

3. Conjunction: p ? q ? e ≡ (p ∧ q) ? e ≡ q ? p ? e

4. Disjunction: if p ∧ q ≡ False then
p ? e <> q ? e ≡ (p ∨ q) ? e ≡ q ? e <> p ? e

5. Complement: p ? e <> ¬p ? e ≡ e

These laws appear in other applications and come with efficient
proof methods, as studied by Mokhov and Khomenko (2014).

5.3.2 Extensibility
All expressions need to be modifiable by users of the build system.
We therefore need to provide a way not only to add new arguments,
but also to modify and remove them (e.g. remove -O2 under some
condition). A simple solution is to switch to difference list expres-
sions, represented by the type Expr (Di� a), which is used to con-
struct values of type Di� a with the following monoid instance:

instance Monoid (Di� a) where
mempty = Di� id
mappend (Di� x) (Di� y) = Di� $ y . x

The reverse order of function composition y . x ensures that when
two Expr (Di� a) computations are combined c1 <> c2, then c1
is applied first and c2 is applied second.

The following functions can be used to append and remove
items to/from a difference list:

append :: Monoid a ⇒ a → Expr (Di� a)
append x = return $ Di� (<> x)

remove :: Eq a ⇒ [a] → Expr (Di� [a])
remove xs = return . Di� $ �lter (8notElem8 xs)

We are now ready to introduce Args, a type of expression
for constructing command line arguments in the build system. In
addition to the above generic functions (whose specialised ver-
sions are shown in Figure 3), it is equipped with the function
arg :: String → Args for injecting simple String arguments into
an expression, e.g. arg "-prof" :: Args.

With these abstractions in place, we can construct command line
arguments for GHC as follows:

ghcArgs :: Args
ghcArgs = builderGhc ? mconcat

[arg "-O2"
, way pro�ling ? arg "-prof"
, arg "-c", arg =<< getInput
, arg "-o", arg =<< getOutput]

Here getInput :: Expr FilePath and getOutput :: Expr FilePath
are expressions that check that Target inputs and outputs contain
exactly one element and return it.

The resulting ghcArgs expression is terse and readable. All
distracting plumbing details have been abstracted away so that the
designers and users of the build system can focus on what matters.

We compose all command line arguments into a single args
expression, applying custom user modifications userArgs to the
end, allowing the user to override any default setting:

args :: Args
args = mconcat [ghcArgs, ..., userArgs]

The resulting expression is used in the build function that is respon-
sible for building a given Target:

9 2016/8/4

build :: Target → Action ()
build target@Target {..} = do

path ← builderPath builder
need [path]
checkArgsHash target
argList ← interpret target args
cmd [path] argList

The build function proceeds as follows:

• First, builderPath :: Builder → Action FilePath determines
the path to the builder depending on its provenance and the
contents of the system.con�g file.

• We need the builder to make sure it is up-to-date. Some builders
are built by the build system, e.g. genprimopcode, ghc-cabal,
Stage1 GHC, so it is important to rebuild them if needed.

• The function checkArgsHash :: Target → Action () checks
whether the command line computed from args expression has
changed since the previous build. If it has, the target is rebuilt
even if it is otherwise up-to-date. This step tracks changes both
in the environment and in the build system itself. We track
command lines using polymorphic dependencies, see §3.6.

• We interpret the args expression w.r.t. to the target, and obtain
the list argList :: [String] of arguments to be passed to the
builder. See Figure 3 for the implementation of interpret.

• Finally, we invoke the builder with appropriate arguments using
Shake’s cmd function.

5.4 A simple build system example
Figure 4 shows a simple build system that uses the abstrac-
tions introduced in this section. The build system comprises
two packages (Array and Base) that can be built in two ways
(Vanilla and Pro�ling), using two versions of GHC (Ghc Head
and Ghc Release) and an archiver tool Ar. Note, the Context in
Figure 4 is different from the GHC Context presented in Figure 3,
but this does not prevent us from using the same abstractions.

Build rules are generated by the buildPackage function, which
given a build Context, describes how to compile a Haskell source
file and build a library by archiving the obtained object files.
buildPackage relies on several helper functions, which define the
path to build artifacts, set way-specific extensions for object and
archive files, lookup dependencies of a source file, and compute
source files of a library. Command line arguments are specified
as a single expression args, which makes use of package-, way-,
builder-, and file-specific arguments; alternatively, parts of args can
be defined separately and combined in a more modular way.

The main function is straightforward: for each possible Context
we request the corresponding library to be built using want, as well
as generate necessary rules by calling buildPackage. If we run the
build system it will build 8 libraries and all associated object files.

6. Shaking up GHC
In this section we report on our experience of applying the tech-
niques presented so far to building a large-scale software project:
the Glasgow Haskell Compiler. We implemented5 a new build sys-
tem for GHC from scratch using Shake and our build abstractions
from §5. The new build system does not yet implement the full
functionality of the old build system, but we are currently address-
ing remaining limitations; nothing presents any new challenges or
requires changes to the build infrastructure.

5 https://github.com/snowleopard/hadrian

data Version = Head | Release Build types
data Package = Array | Base
data Way = Vanilla | Pro�ling

data Context = Context Version Package Way

data Builder = Ghc Version | Ar

args :: Args Command line arguments
args = mconcat

[builderGhc ? mconcat
[arg "-O2"
, way Pro�ling ? arg "-prof"
, arg "-c", arg =<< getInput
, arg "-o", arg =<< getOutput]

, builder Ar ? mconcat
[arg "q"
, arg =<< getOutput
, append =<< getInputs]

, builderGhc ? output "//GHC/IO.*" ? arg "-funbox-strict-�elds"

, builderGhc ? package Array ? arg "-Wall"]

buildPackage :: Context → Rules () Build rules
buildPackage context@Context {..} = do

path context </> "*" ++ osuf way %> \obj → do
let src = obj -<.> "hs"
deps ← lookupDependencies context obj
need $ src : deps
build $ Target context (Ghc version) [src] [obj]

path context </> "*" ++ asuf way %> \a → do
srcs ← lookupSources context
let objs = [src -<.> osuf way | src ← srcs]
need objs
build $ Target context Ar objs [a]

path :: Context → FilePath
path Context {..} = show version </> showpackage

osuf :: Way → String
osuf Vanilla = ".o"
osuf Pro�ling = ".p_o"

asuf :: Way → String
asuf Vanilla = ".a"
asuf Pro�ling = "_p.a"

lookupDependencies :: Context→FilePath→Action [FilePath]
lookupDependencies context src = do ...

lookupSources :: Context → Action [FilePath]
lookupSources context = do ...

main :: IO () Main
main = shake shakeOptions $ do

for_ [Head, Release] $ \version →
for_ [Array, Base] $ \package →

for_ [Vanilla, Pro�ling] $ \way → do
let context = Context version package way
want [path context </> "HSlib" ++ asuf way]
buildPackage context

Figure 4. Example of a build system

10 2016/8/4

Use case Old build system based on Make New build system based on Shake
U1: Fully-featured GHC build Everything is built �X Not all features supported �
U2: Clean build Everything is built �X Everything is built �X
U3: Zero build Nothing is rebuilt �X Nothing is rebuilt �X
U4: Touch: libraries/base/Prelude.hs Prelude.o, base library, and all �

dependent binaries are rebuilt
Nothing is rebuilt �X

U5: Add comment: libraries/base/Prelude.hs Prelude.o, base library, and all �
dependent binaries are rebuilt

Only Prelude.o is rebuilt �X

U6: Modify code: libraries/base/Prelude.hs Prelude.o and all its dependents �X
are rebuilt

Prelude.o and all its dependents �X
are rebuilt

U7: Add comment: utils/ghc-cabal/Main.hs Almost everything is rebuilt � All ghc-cabal rules are rerun �
U8: Modify code: utils/ghc-cabal/Main.hs Almost everything is rebuilt � Only the targets affected by the �X

change are rebuilt
U9: Modify the build system: pass -O2 when

compiling Stage2 GHC
Nothing is rebuilt � Stage2 GHC and its dependents �X

are rebuilt
U10:Modify the build system without changing

command line arguments of build tools
Nothing is rebuilt � Nothing is rebuilt �

U11: Change path to gcc Everything is rebuilt � Only gcc dependents are rebuilt �X

Table 1. Comparison of GHC build systems on common use cases. CheckmarksXindicate desired behaviour.

6.1 Qualitative analysis
In this section we discuss several use cases of the GHC build sys-
tem, which are fairly typical for build systems in general. Table 1
lists use casesU1-U11 highlighting differences between the old and
the new build systems. Below we go through some of the use cases
in more detail. See §6.2 for performance comparison.

U1-U3 are simplest use cases. For the sake of fairness we start
with U1, where the old build system reigns over our current im-
plementation due to the aforementioned limitations. When unsup-
ported features are not used (U2), the new build system successfully
builds all expected targets. Running a build system twice in a row
must be equivalent to only running it once; the second build must
do nothing, hence the name zero build (U3). The new build system
works as expected, and is faster than the old one (see §6.2).

In U4-U6 we modify libraries/base/Prelude.hs and rebuild
GHC. If we touch the file (U4), i.e. change only its modification
time, the new build system rebuilds nothing, as desired. The old
build system rebuilds Prelude.o, the base library, and all depen-
dent binaries, such as Stage2 GHC. This use case commonly oc-
curs when switching git branches, as explained in §3.8, or when-
ever a user changes a file, but then decides to undo the changes. In
U5 we add comments, forcing the new build system to recompile
Prelude.hs. It then notices the object code is unchanged, and stops:
there is nothing else to be done. The old build system continues
to rebuild the base library and dependent binaries, which is unnec-
essary. In U6 the modification of Prelude.hs leads to changes in
Prelude.o, which causes all dependencies to be rebuilt. Both build
systems handle this case correctly.

U7-U8 are similar, but we now modify sources of the ghc-cabal
build tool. The old build system rebuilds almost everything in both
cases, which is unnecessary. Rebuilds are caused by rerunning the
updated ghc-cabal binary, which changes modification time of gen-
erated package-data.mk files. The lack of polymorphic depen-
dencies means we have to depend on the whole file when using
Make, therefore even if only one field in a package-data.mk file
is changed, e.g. CC_OPTS, we end up rebuilding everything, not
only C compilation rules that depend on CC_OPTS. The new build
system uses Shake’s polymorphic dependencies §3.6 to avoid such
unnecessary rebuilds. However, U7 behaviour is still suboptimal:
ghc-cabal rules are rerun, because GHC currently produces non-
deterministic output (ghc-cabal’s binary is changed).

In U9 we modify the build system itself by changing command
line arguments for one of the build files. The old build system re-
builds nothing, as Make does not track such changes. The new build

system correctly reruns all affected rules. We currently only track
command line arguments, therefore other, more subtle modifica-
tions of the build system (U10) go unnoticed, for example, adding
a new need dependency does not cause a rebuild. In U11we modify
the build environment, by changing the path to gcc in the configura-
tion file. As in U7-U8, the old build system rebuilds almost every-
thing since depending on a single configuration setting is not sup-
ported. The new build system correctly reruns only affected rules.

In summary, the new build system correctly handles most use
cases, whereas the old one performs a lot of unnecessary rebuilds
in many cases.
6.2 Quantitative analysis: benchmarks
When building from scratch, ignoring the initial boot/con�gure
steps which are shared, the old build system takes 1266 seconds on
Windows and 649 seconds on Linux; while the new build system
takes 737 seconds on Windows and 578 seconds on Linux. These
were tested in as similar configurations as we could manage (by
disabling all the features the new system does not support), but due
to the complexity of the build systems, there are almost certainly
minor differences. For the zero build, the old build system takes
12.3 seconds on Windows and 2.2 seconds on Linux; while the new
one takes 2.1 seconds on Windows and 2.0 seconds on Linux. All
measurements were collected using -j4.

Since Shake and Haskell both provide profiling and analysis
tools, we have already used these features to optimise the new build
system, resulting in modest gains so far and several opportunities
we have yet to exploit. Looking at the current full Windows build
time of 737 seconds, the longest single task is building the GMP
library (315 seconds), and the total time of single-threaded com-
putation is 2206 seconds, of which 2099 is calling out to external
processes. The critical dependency chain has 378 steps in it, and
requires 463 seconds – a lower bound on the clean build time even
with an unlimited number of processors.

7. Related Work
This paper is about writing build systems at scale, the most com-
plete modern advice on developing such systems comes from Smith
(2011). When McIntosh et al. (2011) studied software maintenance
they found that build systems can take up to 27% of the devel-
opment effort, and that improvements to the build system rapidly
paid off. Recently Martin et al. (2015) surveyed which Make fea-
tures are used, and then Martin and Cordy (2016) classified them
by complexity – unsurprisingly they found that as Makefiles grow,
their complexity increases, and that hand written Makefiles require

11 2016/8/4

most complex features. In the remainder of this section we focus
on features found in other build systems which are useful at scale.

7.1 Embedded language
A build system can either be specified using structured metadata,
e.g. Bazel (Google 2016), or embedded into a standard program-
ming language – for example SCons in Python (Knight 2005), Pluto
in Java (Erdweg et al. 2015) and Jenga in OCaml (Jane Street Group
2016). For complex bespoke build systems, embedding into a lan-
guage allows both complex operations (§4.7) and better abstrac-
tions (§5) – essentially allowing us to write most of our build sys-
tem in a domain language tailored to our specific project.

Even sticking to Haskell as the embedded language, there are a
surprisingly large number of libraries implementing a dependency
aware build system – we know of eleven in addition to Shake
(Abba, Blueprint, Buildsome, Coadjute, Cake × 2, Hake, Hmk,
Nemesis, OpenShake and Zoom). Of these, the two Cake libraries
and OpenShake are based on an early presentation of the principles
behind Shake.

7.2 Advanced dependencies
We have found that while powerful dependencies might only be
used in a few places, if they are missing the workarounds can be
pervasive (§4.6). A few build systems support resources, e.g. Ninja
(Martin 2013), and several support monadic dependencies, e.g.
Redo (Pennarun 2012), Jenga, Pluto, SCons. A few build systems
directly support dependency features more powerful than Shake,
e.g. Pluto supports rules that run until a fixed-point is reached
and rules whose output filename is not known in advance. These
features can be encoded in Shake, but are not present natively.

7.3 Automatic dependency management
In both Shake and Make, all dependencies must be declared explic-
itly. However, in build systems such as Tup (Shal 2009) and Build-
some (Lotem 2016), some dependencies are automatically captured
by monitoring program execution. The Fabricate tool (Hoyt et al.
2009) takes a unique approach to defining build systems, provid-
ing a series of steps that run sequentially, but are skipped if their
automatically-detected inputs have not changed. Unfortunately no
cross-platform APIs are available to detect used dependencies, so
such tools are all limited in which platforms they support.

7.4 Build clusters
The build systems Bazel and Buck (Facebook 2016) are used at
Google and Facebook respectively, both operating at sizes signifi-
cantly beyond that of the GHC build system (reportedly billions of
lines of code). Both systems take a metadata approach, with vari-
ous rule types baked in. As an example, the cxx_binary rule builds
a C/C++ binary given a list of source files and dependencies, tak-
ing care of suitable build flags and conventions, much like a very
sophisticated version of buildPackage from §5.4.

The disadvantage of such an approach is that the available rules
are fixed, making it difficult to encode something like a bootstrap-
ping compiler. Generating build metadata is not really supported
– a problem typically solved by committing the generated files to
version control. Both tools also support build clusters, which build
code once and share the resulting objects to everyone without re-
compiling them locally – an essential feature at such scales. Sup-
port for build clusters using Shake is made harder by the powerful
dependencies, but we believe is still tractable, and hope to add sup-
port in a future version.

8. Conclusions and future work
We have demonstrated that Make really is unsuitable for large com-
plex build systems, regardless of whether used recursively or non-
recursively. Using Shake we have rewritten the GHC build system,

producing the fifth and hopefully final version. While all previous
versions have started simple and gained complexity as they pro-
gressed, this version is different. Developing the abstractions in §5
took many months of discussion and refinement. Once the funda-
mental concepts were in place, the rest was “just” coding and re-
verse engineering the existing system. The result is faster, more
maintainable and more correct. There are three major tasks remain-
ing for future work:

• While we have demonstrated that our approach works, we have
not yet implemented all features of the build system, and hope
to do so over the next few months. Once complete, we expect it
to quickly become the only supported method of building GHC.

• Our abstractions from §5 were designed to allow tracking
provenance of command line arguments – mapping each flag
to the location of the expression that generated it. This feature
will rely on the implicit locations feature of the latest GHC.

• While faster than the old system, the build is still slower than we
would like. The zero build time could be reduced by switching
to a faster serialisation library. The critical path of a full rebuild
takes over seven minutes, limiting the gains available from
additional processors. We hope to break this critical path by
refactoring the build system, which is now a feasible task.

References
Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and opti-

mal incremental build system with dynamic dependencies. In Proc. of
the ACM SIGPLAN Int’l Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 89–106. ACM, 2015.

Facebook. Buck. https://buckbuild.com/, 2016.
Google. Bazel. http://bazel.io/, 2016.
Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. fabricate – the better build tool.

https://github.com/SimonAlfie/fabricate, 2009.
Jane Street Group. Jenga. https://github.com/janestreet/jenga,

2016.
Steven Knight. Building software with SCons. Computing in Science and

Engineering, 7(1):79–88, 2005.
Eyal Lotem. Buildsome build system. https://github.com/

ElastiLotem/buildsome, 2016.
Douglas H. Martin and James R. Cordy. On the maintenance complexity of

Makefiles. In Proceedings of the 2016 7th Interenational Workshop on
Emerging Trends in Software Metrics, WETSoM ’16, 2016.

Douglas H. Martin, James R. Cordy, Bram Adams, and Giulio Antoniol.
Make it simple: An empirical analysis of GNU Make feature use in
open source projects. In Proc. of the IEEE International Conference on
Program Comprehension, ICPC’15, pages 207–217. IEEE Press, 2015.

Evan Martin. Ninja. In Tavish Armstrong, editor, The Performance of Open
Source Applications, chapter 3. 2013.

Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasutaka Kamei, and
Ahmed E. Hassan. An empirical study of build maintenance effort. In
Proceedings of the 33rd International Conference on Software Engineer-
ing, ICSE ’11, pages 141–150. ACM, 2011.

Peter Miller. Recursive make considered harmful. Journal of AUUG Inc,
19(1):14–25, 1998.

Neil Mitchell. Shake before building - replacing Make with Haskell.
In ICFP ’12: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming. ACM, September 2012.

Andrey Mokhov and Victor Khomenko. Algebra of parameterised graphs.
ACM Transactions on Embedded Computing Systems, 13(4s):143, 2014.

Avery Pennarun. redo: a top-down software build system. https://
github.com/apenwarr/redo, 2012.

Mike Shal. Build system rules and algorithms. http://gittup.org/
tup/build_system_rules_and_algorithms.pdf, 2009.

Peter Smith. Software Build Systems. Pearson Education, 2011.

12 2016/8/4

