
c© ACM, 2009. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of the Haskell Symposium 2009,

ISBN 978-1-60558-508-6, (3 Sep 2009) http://doi.acm.org/??.????/???????.???????

Losing Functions without Gaining Data
– another look at defunctionalisation

Neil Mitchell ∗

University of York, UK
ndmitchell@gmail.com

Colin Runciman
University of York, UK
colin@cs.york.ac.uk

Abstract
We describe a transformation which takes a higher-order program,
and produces an equivalent first-order program. Unlike Reynolds-
style defunctionalisation, it does not introduce any new data types,
and the results are more amenable to subsequent analysis opera-
tions. We can use our method to improve the results of existing
analysis operations, including strictness analysis, pattern-match
safety and termination checking. Our transformation is imple-
mented, and works on a Core language to which Haskell programs
can be reduced. Our method cannot always succeed in removing
all functional values, but in practice is remarkably successful.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages

Keywords Haskell, defunctionalisation, firstification

1. Introduction
Higher-order functions are widely used in functional programming
languages. Having functions as first-class values leads to more
concise code, but it often complicates analysis methods, such as
those for checking pattern-match safety (Mitchell and Runciman
2008) or termination (Sereni 2007).

Example 1
Consider this definition of incList:

incList :: [Int] → [Int]
incList = map (+1)

map :: (α → β) → [α] → [β]
map f [] = []
map f (x : xs) = f x : map f xs

The definition of incList has higher-order features. The expres-
sion (+1) is passed as a functional argument to map. The incList

∗ This work was done while the first author was supported by an EPSRC
PhD studentship

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-508-6/09/09. . . $5.00

definition contains a partial application of map. The use of first-
class functions has led to short code, but we could equally have
written:

incList :: [Int] → [Int]
incList [] = []
incList (x : xs) = x + 1 : incList xs

Although this first-order variant of incList is longer (excluding
the library function map), it is also more amenable to certain types
of analysis. The method presented in this paper transforms the
higher-order definition into the first-order one automatically. ¤

Our defunctionalisation method processes the whole program
to remove functional values, without changing the semantics of
the program. This idea is not new. As far back as 1972 Reynolds
gave a solution, now known as Reynolds-style defunctionalisation
(Reynolds 1972). Unfortunately, this method effectively introduces
a mini-interpreter, which causes problems for analysis tools. Our
method produces a program closer to what a human might have
written, if denied the use of functional values.

There are two significant limitations to our method:

1. The transformation can reduce sharing, causing the resulting
program to be less efficient. Therefore our defunctionalisation
method is not appropriate as a stage in compilation. But it works
well when used as a preliminary stage in program analysis,
effectively making first-order analyses applicable to higher-
order programs: examples include analyses for safe pattern-
matching and for termination.

2. The transformation is not complete. In some programs there
may be residual higher-order expressions. However, the pos-
sible occurrences of such residual expressions can be charac-
terised, and mild restrictions guarantee first-order results. In
practice, our method is very often completely successful: for
example defunctionalisation is complete for over 90% of the
nofib benchmark programs.

Our method has been implemented in Haskell (Peyton Jones
2003), and operates over the Core language from the York Haskell
Compiler (Golubovsky et al. 2007). We have used our transforma-
tion within the Catch analysis tool (Mitchell and Runciman 2008),
which checks for potential pattern-match errors in Haskell. Catch
is a first-order analysis, and without a defunctionalisation method
we wouldn’t be able to apply Catch to real programs.

1.1 Contributions
Our paper makes the following contributions:

• We define a defunctionalisation method which, unlike some
previous work, does not introduce new data types (§3, §4). Our
method makes use of standard transformation steps, but with
precise restrictions on their applicability.

expr := λv → x lambda abstraction
| f xs function application
| c xs constructor application
| x xs general application
| v variable
| let v = x in y non-recursive let expression
| case x of alts case expression

alt := c vs → x case alternative

arityExpr [[λv → x]] = 1 + arityExpr x
arityExpr = 0

We let v range over locally defined variables, x and y over expres-
sions, f over top-level function names and c over constructors.

Figure 1. Core Language.

• We show where higher-order elements may remain in a resul-
tant program, and show that given certain restrictions we guar-
antee a first-order result (§6).

• We identify restrictions which guarantee termination, but are
not overly limiting (§7).

• We have implemented our method, and present measured re-
sults for much of the nofib benchmark suite (§8). Our method
can deal with the complexities of a language like Haskell, in-
cluding type classes, programs using continuation-passing style
and monads.

• We show how to apply our results to existing analysis tools,
using GHC’s strictness analysis and Agda’s termination checker
as examples (§9).

2. Core Language
Our Core language is both pure and lazy. The expression type is
given in Figure 1. A program is a mapping of function names
to expressions, with a root function named main. The arity of
a function is the result of applying arityExpr to its associated
expression. We initially assume there are no primitive functions in
our language, but explain how to extend our method to deal with
them in §4.5. We allow full Haskell 98 data types, assuming a finite
number of different constructors, each with a fixed arity.

The variable, case, application and lambda expressions are
much as they would be in any Core language. We restrict ourselves
to non-recursive let expressions. (Any recursive let expressions can
be removed, with a possible increase in runtime complexity, using
the methods described in (Mitchell 2008).) The constructor ex-
pression consists of a constructor and a list of expressions, exactly
matching the arity of the constructor. (Any partially applied con-
structor can be represented using a lambda expression.) A function
application consists of a function name and a possibly empty list of
argument expressions. If a function is given fewer arguments than
its arity we refer to it as partially-applied, matching the arity is
fully-applied, and more than the arity is over-applied. We use the
meta functions arity f and body f to denote the arity and body of
function f. We use the function rhs to extract the expression on the
right of a case alternative. We define the syntactic sugar f v = x to
be equivalent to f = λv → x.

We assume that all Core programs are type correct. In particular
we assume that when a program is evaluated a constructor applica-
tion will never be the first argument of a general application, and a
lambda expression will never be the subject of a case expression.

All our transformations are semantics preserving, so maintain these
two invariants.
Definition: A program is higher-order if it contains expressions
which create or use functional values. An expression creates a func-
tional value if it is a partially-applied function or a lambda expres-
sion which does not contribute to the arity of function definition.
An expression uses a functional value if it is an over-applied func-
tion or a general application. ¤

Example 1 (revisited)
The original definition of incList is higher-order because it creates
functional values with the partial applications of both map and (+).
The original definition of map is higher-order because it uses func-
tional values within a general application. In the defunctionalised
version, the program is first-order. ¤

3. Our First-Order Reduction Method
Our method works by applying a set of rules non-deterministically
until no further rules apply. The rules are grouped in to three
categories:

Simplification: Many local simplification rules are used, most of
which may be found in any optimising compiler (Peyton Jones
and Santos 1994).

Inlining: Inlining is a standard technique in optimising compilers
(Peyton Jones and Marlow 2002), and has been studied in depth.
Inlining involves replacing an application of a function with the
body of the function.

Specialisation: Specialisation is another standard technique, used
to remove type classes (Jones 1994) and more recently to spe-
cialise functions to a given constructor (Peyton Jones 2007).
Specialisation involves generating a new function specialised
with information about the functions arguments.

Each transformation has the possibility of removing some func-
tional values, but the key contribution of this paper is how they can
be used together – including which restrictions are necessary.

We proceed by first giving a brief flavour of how these transfor-
mations may be used in isolation to remove functional values. We
then discuss the transformations in detail in §4.

3.1 Simplification
The simplification rules have two purposes: to remove some simple
functional values, and to ensure a normal form so other rules can
apply. The simplification rules are simple, and many are found in
optimising compilers. All the rules are given in §4.1.

Example 2

one = (λx → x) 1

The simplification rule (lam-app) transforms this function to:

one = let x = 1 in x ¤
Other rules do not eliminate lambda expressions, but put them into
a form that other rules can remove.

Example 3

even = let one = 1
in λx → not (odd x)

The simplification rule (let-lam) lifts the lambda outside of the let
expression.

even = λx → let one = 1
in not (odd x)

In general this transformation may cause duplicate computation to
be performed, an issue we return to in §4.1.2. ¤

3.2 Inlining
We use inlining to remove functions which return data constructors
containing functional values. A frequent source of data constructors
containing functional values is the dictionary implementation of
type classes (Wadler and Blott 1989).

Example 4

main = case eqInt of
(a, b) → a 1 2

eqInt = (primEqInt, primNeqInt)

Both components of the eqInt pair, primEqInt and primNeqInt,
are functional values. We can start to remove these functional
values by inlining eqInt:

main = case (primEqInt, primNeqInt) of
(a, b) → a 1 2

The simplification rules can now make the program first-order,
using the rule (case-con) from §4.1.

main = primEqInt 1 2 ¤

3.3 Specialisation
We use specialisation to remove lambda expressions that are ar-
guments of function applications. Specialisation creates alternative
function definitions where some information is known about the
arguments. In effect, some arguments are passed at transformation
time.

Example 5

notList xs = map not xs

Here the map function takes the functional value not as its first
argument. We can create a variant of map specialised to this argu-
ment:

map not x = case x of
[] → []
y : ys → not y : map not ys

notList xs = map not xs

The recursive call in map is replaced by a recursive call to the
specialised variant. We have now eliminated all functional values.
¤

3.4 Goals
We define a number of goals: some are essential, and others are
desirable. If essential goals make desirable goals unachievable
in full, we still aim to do the best we can. Essential goals are
either necessary to combine our transformation with an analysis,
or significantly simplify any subsequent analysis.

Essential
Preserve the result computed by the program. By making use of
established transformations, total correctness is relatively easy to
show.

Ensure the transformation terminates. The issue of termination
is much harder. Both inlining and specialisation could be applied
in ways that diverge. In §7 we develop a set of criteria to ensure
termination.

Recover the original program. Our transformation is designed to
be performed before analysis. It is important that the results of the
analysis can be presented in terms of the original program. We need
a method for transforming expressions in the resultant program into
equivalent expressions in the original program.

Introduce no data types. Reynolds’ method introduces a new
data type that serves as a representation of functions, then embeds
an interpreter for this data type into the program. We aim to elimi-
nate the higher-order aspects of a program without introducing any
new data types. By not introducing any data types we avoid in-
troducing an interpreter, which can be a bottleneck for subsequent
analysis. By composing our transformation out of existing transfor-
mations, none of which introduces data types, we can easily ensure
that our transformation does not introduce data types.

Desirable
Remove all functional values. We aim to remove as many func-
tional values as possible. In §6 we make precise where functional
values may appear in the resultant programs. If a totally first-order
program is required, Reynolds’ method can always be applied after
our transformation. Applying our method first will cause Reynolds’
method to introduce fewer additional data types and generate a
smaller interpreter.

Preserve the space/sharing behaviour of the program. In the
expression let y = f x in y + y, according to the rules of lazy
evaluation, f x will be evaluated at most once. It is possible to
inline the let binding to give f x+ f x, but this expression evaluates
f x twice. This transformation is valid in Haskell due to referential
transparency, and will preserve both semantics and termination, but
may increase the amount of work performed. In an impure or strict
language, such as ML (Milner et al. 1997), this transformation may
change the semantics of the program.

Our goals are primarily for analysis of the resultant code, not
to compile and execute the result. Because we are not interested in
performance, we permit the loss of sharing in computations if to
do so will remove functional values. However, we will avoid the
loss of sharing where possible, so the program remains closer to
the original.

Minimize the size of the program. A smaller program is likely
to be faster for any subsequent analysis. Previous work has spec-
ulated that there may be a substantial increase in code-size after
defunctionalisation (Chin and Darlington 1996).

Make the transformation fast. The implementation must be suf-
ficiently fast to permit proper evaluation. Ideally, when combined
with a subsequent analysis phase, the defunctionalisation should
not take an excessive proportion of the runtime.

4. Method in Detail
This section gives a set of rules, all of which are applied non-
deterministically, until no further rules apply. Many programs re-
quire a combination of rules to be applied, for example, the initial
incList example requires simplification and specialisation rules.

We have implemented our steps in a monadic framework to deal
with issues such as obtaining unique free variables and tracking
termination constraints. But to simplify the presentation here, we
ignore these issues – they are mostly tedious engineering concerns,
and do not effect the underlying algorithm.

4.1 Simplification
The simplification rules aim to move lambda expressions upwards,
and introduce lambdas for partially applied functions. The rules
include standard simplification rules given in Figure 2, which are

(x xs) ys
⇒ x xs ys

(app-app)

(f xs) ys
⇒ f xs ys

(fun-app)

(λv → x) y
⇒ let v = y in x

(lam-app)

(let v = x in y) z
⇒ let v = x in y z

(let-app)

(case x of {p1 → y1; . . .; pn → yn}) z
⇒ case x of {p1 → y1 z; . . .; pn → yn z} (case-app)

case c xs of {. . .; c vs → y; . . .}
⇒ let vs = xs in y

(case-con)

case (let v = x in y) of alts

⇒ let v = x in (case y of alts)
(case-let)

case (case x of { . . .; c vs → y; . . .}) of alts

⇒ case x of {. . .; c vs → case y of alts; . . .} (case-case)

case x of { . . .; c vs → λv → y; . . .}
⇒ λz → case x of

{ . . .z; c vs → (λv → y) z; . . .z}
(case-lam)

f xs
⇒ λv → f xs v
where arity f > length xs

(eta)

Figure 2. Standard Core simplification rules.

let v = (λw → x) in y
⇒ y [λw → x / v]

(bind-lam)

let v = x in y
⇒ y [x / v]
where x is a boxed lambda (see §4.2)

(bind-box)

let v = x in λw → y
⇒ λw → let v = x in y

(let-lam)

Figure 3. Lambda Simplification rules.

found in most optimising compilers, such as GHC (Peyton Jones
and Santos 1994). The (app-app) and (fun-app) rules are a conse-
quence of our application expressions taking a list of arguments.
We also make use of additional rules which deal specifically with
lambda expressions, given in Figure 3. All of the simplification
rules are correct individually. The rules are applied to any subex-
pression, as long as any rule matches. We believe that the combina-
tion of rules from Figures 2 and 3 are confluent.

4.1.1 Lambda Introduction
The (eta) rule inserts lambdas in preference to partial applications,
using η-expansion. For each partially applied function, a lambda
expression is inserted to ensure that the function is given at least as
many arguments as its associated arity.

Example 6

(◦) f g x = f (g x)

even = (◦) not odd

Here the function applications of (◦), not and odd are all partially
applied. Three lambda expressions can be inserted using the (eta)
rule:

even = λx → (◦) (λy → not y) (λz → odd z) x

Now all three function applications are fully-applied. The (eta) rule
replaces partial application with lambda expressions, making func-
tional values more explicit, which permits other transformations.
¤

In Haskell, unrestricted η-expansion is not correct as the seq
primitive allows⊥ to be distinguished from λv → ⊥. However, our
(eta) rule only transforms applications of partially-applied func-
tions, which must evaluate to lambda abstractions. Therefore our
(eta) rule is similar to replacing λv → x with λw → (λv → x) w
– a transformation that is correct even allowing for seq.

4.1.2 Lambda Movement
The (bind-lam) rule inlines a lambda bound in a let expression. The
(let-lam) rule can be responsible for a reduction in sharing:

Example 7

f x = let i = expensive x
in λj → i + j

main xs = map (f 1) xs

Here (expensive 1) is computed at most once. Every application
of the functional argument within map performs a single (+)
operation. After applying the (let-lam) rule we obtain:

f x = λj → let i = expensive x
in i + j

Now (expensive 1) is recomputed for every element in xs. We
include this rule in our transformation, focusing on functional value
removal at the expense of sharing. ¤

4.2 Inlining
We use inlining of top-level functions as the first stage in the re-
moval of functional values stored within a constructor – for exam-
ple Just (λx → x). To eliminate a functional value stored inside
a constructor we eliminate the containing constructor by making it
the subject of a case expression and using the (case-con) rule. We
move the constructor towards the case expression using inlining.

isBox [[c xs]] = any isLambda xs ∨ any isBox xs
isBox [[let v = x in y]] = isBox y

isBox [[case x of alts]] = any (isBox ◦ rhs) alts
isBox [[f xs]] = isBox (fromLambda (body f))
isBox = False

fromLambda [[λv → x]] = fromLambda x
fromLambda x = x

isLambda [[λv → x]] = True
isLambda = False

The isBox function as presented may not terminate. Any non-
terminating evaluation can be easily detected (by remembering
which function bodies have been examined) and is defined to be
False.

Figure 4. The isBox function, to test if an expression is a boxed
lambda.

Definition: An expression e is a boxed lambda iff isBox e ≡ True,
where isBox is defined as in Figure 4. A boxed lambda evaluates to
a functional value inside a constructor. ¤

Example 8
Recalling that [e] is shorthand for (:) e [], where (:) is the cons
constructor, the following expressions are boxed lambdas:

[λx → x]
Just [λx → x]
let y = 1 in [λx → x]
[Nothing, Just (λx → x)]

The following are not boxed lambdas:

λx → [x]
[id (λx → x)]
id [λx → x]
let v = [λx → x] in v

The final three expressions all evaluate to a boxed lambda, but
are not themselves boxed lambdas. ¤

If a boxed lambda is bound in a let expression, we substitute the
let binding, using the (bind-box) rule from Figure 3. We only inline
a function if two conditions both hold: (1) the body of the function
definition is a boxed lambda; (2) the function application occurs as
the subject of a case expression.
Definition: The inlining transformation is specified by:

case (f xs) of alts

⇒ case (y xs) of alts
where

y = body f
If isBox (f xs) evaluates to True ¤

As with the simplification rules, there may be some loss of
sharing if the definition being inlined has arity 0 – a constant
applicative form (CAF). A Haskell implementation computes these
expressions at most once, and reuses their value as necessary. If
they are inlined, this sharing will be lost.

4.3 Specialisation
For each application of a top-level function in which at least one
argument has a lambda subexpression, a specialised variant is cre-
ated, and used where applicable. The process follows the same

pattern as constructor specialisation (Peyton Jones 2007), but ap-
plies where function arguments are lambda expressions, rather than
known constructors. Examples of common functions whose appli-
cations can usually be made first-order by specialisation include
map, filter, foldr and foldl.

The specialisation transformation makes use of templates. A
template is an expression where some subexpressions are omitted,
denoted by the • symbol. The process of specialisation proceeds as
follows:

1. Find all function applications which need specialising, and gen-
erate templates (see §4.3.1).

2. Abstract templates, replacing some subexpressions with • (see
§4.3.2).

3. For each template, generate a function definition specialised to
that template (see §4.3.3).

4. For each expression matching a template, replace it with the
generated function (see §4.3.4).

Example 9

main xs = map (λx → x) xs

map f xs = case xs of
[] → []
y : ys → f y : map f ys

Specialisation first finds the application of map in main, and
generates the template map (λx → x) xs. Next it abstracts the
template to map (λx → x) •. It then generates a unique name
for the template (we choose map id), and generates an appropriate
function body. Next all calls matching the template are replaced
with calls to map id, including the call to map within the freshly
generated map id.

main xs = map id xs

map id v1 = let xs = v1

in case xs of
[] → []
y : ys → y : map id ys

The resulting code is first-order. ¤

4.3.1 Generating Templates
The idea is to generate templates for all function applications which
pass functional values. Given an expression e, a template is gener-
ated if: (1) e is a function application; and (2) at least one of the
subexpressions of e is either a lambda or a boxed lambda (see §4.2).
In all cases, the template generated is simply e.

Example 10
The following expressions generate templates:

id (λx → x)
map f [λx → x]
id (Just (λx → x + 1))
f (λv → v) True ¤

4.3.2 Abstracting Templates
We perform abstraction to reduce the number of different templates
required, by replacing non-functional expressions with •. For each
subexpression e in a template, it can be replaced with • if the
following two conditions hold:

1. e is not, and does not contain, any expressions which are either
lambda expressions or boxed lambdas, e.g. we cannot substitute
• for (λx → x) or (let y = λx → x in y).

2. None of the free variables in e are bound in the template, e.g. we
cannot replace the expression f v with • in (let v = 1 in f v),
as the variable v is bound within the template.

Example 11
Template Abstract Template
id (λx → x) id (λx → x)
id (Just (λx → x)) id (Just (λx → x))
id (λx → x : xs) id (λx → x : •)
id (λx → let y = 12 in 4) id (λx → •)
id (λx → let y = 12 in x) id (λx → let y = • in x)

In all these examples, the id function has an argument which
has a lambda expression as a subexpression. In the last three cases,
there are subexpressions which do not depend on variables bound
by the lambda – these have been removed and replaced with •. ¤

4.3.3 Generating Functions
To generate a function from a template, we first pick a unique
name for the new function. We replace each • in the template
with a unique fresh variable, then inline the outer function symbol.
The body of the new function is the modified template, contained
within lambda abstractions introducing each fresh variable used. If
a previous specialisation has already generated a function for this
template, we reuse the previous function.

Example 9 (revisited)
Consider the template map (λx → x) •. Let v1 be the fresh
variable for the single • placeholder, and map id be the function
name:

map id = λv1 → map (λx → x) v1

We inline the outer function symbol (map):

map id = λv1 → (λf → λxs → case xs of
[] → []
y : ys → f y : map f ys)

(λx → x) v1

After the simplification rules from Figure 3, we obtain:

map id = λv1 → let xs = v1

in case xs of
[] → []
y : ys → y : map (λx → x) ys ¤

4.3.4 Using Templates
An expression e, matching an existing template t, can be replaced
by a call to the function generated from t. All subexpressions in e
which match up with • in t are passed as arguments.

Example 9 (continued)

map id = λv1 → let xs = v1

in case xs of
[] → []
y : ys → y : map id ys

We now have a first-order definition. ¤

4.4 Confluence
The transformations we have presented are not confluent. Consider
the expression id ((λx → x) 1). We can either apply specialisation,

or the (lam-app) rule. The first will involve the creation of an
additional function definition, while the second will not.

We conjecture that the rules in each of the separate categories
are confluent. In order to ensure a deterministic application of the
rules we always favour rules first from the simplification stage, then
the inlining stage, and finally the specialisation stage. By choosing
the above order, we reduce the generation of auxiliary top-level
functions, which should lead to a simpler result.

4.5 Primitive Functions
Primitive functions do not have an associated body, and therefore
cannot be examined or inlined. We make two simple changes to
support primitives.

1. We define that a primitive application is not a boxed lambda,
and has an arity derived from its type.

2. We restrict specialisation so that if the function to be specialised
is a primitive, no template is generated. This restriction is neces-
sary because specialisation requires inlining the function, which
is not possible for a primitive.

These restrictions mean that some programs using primitive
functions cannot be made first-order.

Example 12

main = seq (λx → x) 42

Here a functional value is passed as the first argument to the
primitive seq. As we are not able to peer inside the primitive, and
must preserve its interface, we cannot remove this functional value.
For most primitives, such as arithmetic operations, the types ensure
that no functional values are passed as arguments. However, the seq
primitive is of type α → β → β, allowing any type to be passed as
either of the arguments, including functional values.

Some primitives not only permit functional values, but actually
require them. For example, the primCatch function within the
Yhc standard libraries implements the Haskell exception handling
function catch. The type of primCatch is α → (IOError → α) →
α, taking an exception handler as one of the arguments. ¤

4.6 Recovering Input Expressions
Specialisation is the only rule which introduces new function
names. In order to translate an expression in the output program
to an equivalent expression in the input program, it is sufficient to
replace all generated function names with their associated template,
supplying all the necessary variables.

5. Examples
We now give two examples. Our method can convert the first
example to a first-order equivalent, but not the second.

Example 13 (Inlining Boxed Lambdas)
An earlier version of our defunctionaliser inlined boxed lambdas
everywhere they occurred. Inlining boxed lambdas means the isBox
function does not have to examine the body of applied functions,
and is therefore simpler. However, it was unable to cope with
programs like this one:

main = map (λx → x 1) gen
gen = (λx → x) : gen

The gen function is both a boxed lambda and recursive. If we
inlined gen initially the method would not be able to remove all
lambda expressions. By first specialising map with respect to gen,
and waiting until gen is the subject of a case, we are able to remove

the functional values. This operation is effectively deforestation
(Wadler 1988), which also only performs inlining within the subject
of a case. ¤

Example 14 (Functional Lists)
Sometimes lambda expressions are used to build up lists which
can have elements concatenated onto the end. Using Hughes lists
(Hughes 1986), we can define:

nil = id
snoc x xs = λys → xs (x : ys)
list xs = xs []

This list representation provides nil as the empty list, but instead
of providing a (:) or “cons” operation, it provides snoc, which
adds a single element on to the end of the list. The function list is
provided to create a standard list. We are unable to defunctionalise
such a construction, as it stores unbounded information within
closures. We have seen such constructions in both the lines function
of the HsColour program, and the sort function of Yhc. However,
there is an alternative implementation of these functions:

nil = []
snoc = (:)
list = reverse

We have benchmarked these operations in a variety of settings
and the list based version appears to use approximately 75% of
the memory, and 65% of the time required by the function-based
solution. ¤

6. Restricted Completeness
Our method would be complete if it made all programs first-order.
In this section we give three conditions, which if met, ensure a
program can be made first-order. In doing so, we hope to show that
no obvious rule is missing.

6.1 Proposition
After transformation, there will be no partial applications, and all
lambda expressions will either contribute to the arity of a function
definition or be unreachable (never be evaluated at runtime), pro-
vided:

1. The termination criteria do not curtail defunctionalisation (see
§7).

2. No primitive function receives a functional argument, nor re-
turns a functional result.

3. The main function has a type that ensures it neither receives a
functional argument, nor returns a functional result.

We prove this proposition with a series of lemmas about the
resultant program.

6.2 Lemmas
We define the root of a function to be its body after applying the
fromLambda function from Figure 4. We define a higher-order
lambda (HO lambda) to be a lambda expression that does not
contribute to the arity of a function definition.
Lemma: No partial applications

The (eta) rule removes partial application, and at the end of the
transformation, no further rules apply – therefore there can be no
partial applications in the resultant program. ¤
Lemma: The first argument of a general application must be a
variable

The rules (app-app), (fun-app), (lam-app), (let-app) and (case-
app) mean the first argument to a general application must be a

variable or a constructor application. All constructor applications
are fully applied, and therefore cannot return a functional value,
so type safety ensures they cannot be the first argument of an
application. Therefore, the first argument of an application is a
variable. ¤
Lemma: A HO lambda may only occur in the following places:
inside a HO lambda; as an argument to an application or a con-
structor

A lambda cannot be the subject of a case expression as it would
not be well typed. A lambda cannot be an argument to a function as
it would be removed by specialisation. All other possible lambda
positions are removed by the rules (lam-app), (case-lam), (bind-
lam) and (let-lam). ¤
Lemma: A boxed lambda may only occur in the following places:
the root of a function; inside a HO lambda or boxed lambda; as an
argument to an application

Using the definition of isBox from Figure 4 to ignore expres-
sions which are themselves boxed lambdas, the only possible loca-
tions of a boxed lambda not mentioned in the lemma are the binding
of a let, the subject of a case, and as an argument to a function ap-
plication. We remove the binding of a let with (bind-box) and the
argument to a function application with specialisation.

To remove a boxed lambda from the subject of a case we
observe that a boxed lambda must be a constructor application, a
let expression, a case expression or a function application. The first
three are removed with the rules (case-con), (case-let) and (case-
case), the final one is removed by inlining. ¤
Lemma: A boxed lambda must have a type that permits a func-
tional value

An expression must have a type that permits a functional value
if any execution, choosing any alternative in a case expression,
evaluates to a functional value. The base case of a boxed lambda
is a constructor application to a lambda, which is a functional
value. For let and case, the type of the expression is the type of the
contained boxed lambda. The remaining case is if ((λvs → b) xs)
evaluates to a functional value. As b must be a boxed lambda, i.e.
a constructor wrapping a lambda, any application and abstraction
operations alone cannot remove the constructor, so cannot remove
the functional value. ¤
Lemma: A function whose root is a boxed lambda must be called
from inside a HO lambda or as the argument of an application

An application of a function whose root is a boxed lambda is
itself a boxed lambda. Therefore the restrictions on where a boxed
lambda can reside apply to applications of these functions. ¤
Lemma: All HO lambdas are unreachable

The main function cannot be a boxed lambda, as that would
be a functional value, and is disallowed by restrictions on main.
There remain only four possible locations for HO lambdas or boxed
lambdas:

1. As an argument to an application (v •).

2. As the body of a HO lambda (λv → •).

3. Contained within a boxed lambda.

4. As the root of a function definition, whose applications are
boxed lambdas.

None of these constructs binds a functional value to a variable,
therefore in the first case v cannot be bound to a functional value.
If v is not a functional value, then type checking means that v must
evaluate to⊥, and • will never be evaluated. In the remaining three
cases, the lambda or boxed lambda must ultimately be contained
within an application whose variable evaluates to⊥ – and therefore
will not be evaluated. ¤

Lemma: There are no partial applications and all lambda expres-
sions either contribute to the arity of a function definition or are
unreachable

By combining the lemmas that there are no partial applications
and that all HO lambdas are unreachable. ¤

It is instructive to note that during the proof every rule has been
used, and that the removal of any single rule would invalidate the
proof. While this does not prove that each step is necessary, it does
provide a motivation for each rule.

6.3 Residual Higher-Order Programs
The following programs all remain higher-order after applying our
method, although none will actually create higher-order values at
runtime.

Example 15

main = bottom (λx → x)

We use the expression bottom to indicate a computation that
evaluates to⊥ – either a call to error or a non-terminating computa-
tion. The function main will evaluate to ⊥, without ever evaluating
the contained lambda expression. ¤

Example 16

nothing = Nothing
main = case nothing of

Nothing → 1
Just f → f (λx → x)

In this example the lambda expression is never reached because
the Just branch of the case expression is never taken. ¤

6.4 Transformation to First-Order
As a result of our proposition, provided the three restrictions are
met, we can replace all lambda expressions in the resultant program
which don’t contribute to the arity of a function with ⊥, to give an
equivalent program. In addition, any uses of functional values are
guaranteed to actually be operating on ⊥, as no functional values
could have been created. Another way of viewing the proposition is
that after transformation the program will be first-order at runtime,
even if there are expressions that create or use functional values in
the source program. Therefore, the following rewrites are valid:

(λv → x) ⇒ ⊥ if not contributing to the arity of a function
x xs ⇒ x
f xs ⇒ f (take (arity f) xs)

After applying the (eta) rule and performing these rewrites, all
programs are guaranteed to be first-order.

7. Proof of Termination
Our algorithm, as it stands, may not terminate. In order to ensure
termination, it is necessary to bound both the inlining and speciali-
sation rules. In this section we develop a mechanism to ensure ter-
mination, by first looking at how non-termination may arise.

7.1 Termination of Simplification
In order to check the termination of the simplifier we have used
the AProVE system (Giesl et al. 2006) to model our rules as a
term rewriting system, and check its termination. An encoding of
a simplified version of the rules from Figures 2 and 3 is given in
Figure 5. We have encoded rules by considering what type of ex-
pression is transformed by a rule. For example, the rule replacing
(λv → x) y with let v = y in x is expressed as a rewrite replacing

[x,y,z]
app(lam(x),y) → let(y,x)
app(case(x,y),z)→ case(x,app(y,z))
app(let(x,y),z) → let(x,app(y,z))
case(let(x,y),z) → let(x,case(y,z))
case(con(x),y) → let(x,y)
case(x,lam(y)) → lam(case(x,app(lam(y),var)))
let(lam(x),y) → lam(let(x,y))

Figure 5. Encoding of termination simplification.

app(lam(x),y) with let(y,x). The names of binding variables within
expressions have been ignored. To simplify the encoding, we have
only considered applications with one argument. The rewrite rules
are applied non-deterministically at any suitable location, so faith-
fully model the behaviour of our original rules.

The encoding of the (bind-box) and (bind-lam) rules is ex-
cluded. Given these rules, there are non terminating sequences. For
example:

(λx → x x) (λx → x x)
⇒ -- (lam-app) rule

let x = λx → x x in x x
⇒ -- (bind-lam) rule

(λx → x x) (λx → x x)

Such expressions are a problem for GHC, and can cause the
compiler to loop if encoded as data structures (Peyton Jones and
Marlow 2002). Other transformation systems (Chin and Darlington
1996) make use of type annotations to ensure these reductions
terminate. To guarantee termination, we apply (bind-lam) or (bind-
box) at most n times in any definition body. If the body is altered
by either inlining or specialisation, we reset the count. Currently
we set n to 1000, but have never seen the count exceed 50 on a real
program – it is not a problem that arises in practice.

7.2 Termination of Inlining
A standard technique to ensure termination of inlining is to refuse
to inline recursive functions (Peyton Jones and Marlow 2002).
For our purposes, this non-recursive restriction is too cautious as
it would leave residual lambda expressions in programs such as
Example 13. We first present a program which causes our method
to fail to terminate, then our means of ensuring termination.

Example 17

data B α = B α
f = case f of

B → B (λx → x)

The f inside the case is a candidate for inlining:

case f of B → B (λx → x)
⇒ -- inlining rule

case (case f of B → B (λx → x)) of B → B (λx → x)
⇒ -- (case-case) rule

case f of B → case B (λx → x) of B → B (λx → x)
⇒ -- (case-con) rule

case f of B → B (λx → x)

So this expression would cause non-termination. ¤
To avoid such problems, we permit inlining a function f, at all

use sites within the definition of a function g, but only once per
pair (f, g). In the previous example we would inline f within its
own body, but only once. Any future attempts to inline f within
this function would be disallowed, although f could still be inlined
within other function bodies. This restriction is sufficient to ensure

termination of inlining. Given n functions, there can be at most n2

inlining steps, each for possibly many application sites.

7.3 Termination of Specialisation
The specialisation method, left unrestricted, may also not termi-
nate.

Example 18

data Wrap α = Wrap (Wrap α) | Value α

f x = f (Wrap x)
main = f (Value head)

In the first iteration, the specialiser generates a version of f
specialised for the argument Value head. In the second iteration
it would specialise for Wrap (Value head), then in the third with
Wrap (Wrap (Value head)). Specialisation would generate an
infinite number of specialisations of f. ¤

To ensure we only specialise a finite number of times we use
a homeomorphic embedding (Kruskal 1960). The relation x E y
indicates the expression x is an embedding of y. We can define E
using the following rewrite rule:

emb = {f(x1, . . . , xn) → xi | 1 6 i 6 n}
Now x E y can be defined as x ←∗

emb y (Baader and Nipkow
1998). The rule emb takes an expression, and replaces it with
one of its immediate subexpressions. If repeated non-deterministic
application of this rule to any subexpression transforms y to x, then
x E y. The intuition is that by removing some parts of y we obtain
x, or that x is somehow “contained” within y.

Example 19
a E a b(a) 5 a
a E b(a) a 5 b(c)

c(a) E c(b(a)) d(a, a) 5 d(b(a), c)
d(a, a) E d(b(a), c(c(a))) b(a, a) 5 b(a, a, a)

¤
The homeomorphic embedding E is a well-quasi order, as

shown by Kruskal’s tree theorem (Kruskal 1960). This property
means that for every infinite sequence of expressions e1, e2 . . .
over a finite alphabet, there exist indicies i < j such that ei E ej .
This result is sometimes used in program optimisation to ensure an
algorithm over expressions performs a bounded number of itera-
tions, by stopping at iteration n once ∃i • 1 6 i < n ∧ ei E en –
for example by Jonsson and Nordlander (2009).

For each function definition, we associate a set of expressions S.
After generating a template t, we only specialise with that template
if ∀s ∈ S • s 5 t. After specialising an expression e with template
t, we add t to the set S associated with the function definition
containing e. When we generate a new function from a template, we
copy the S associated with the function at the root of the template.

One of the conditions for termination of homeomorphic embed-
ding is that there must be a finite alphabet. To ensure this condition,
we consider all variables to be equivalent. However, this is not suf-
ficient. During the process of specialisation we generate new func-
tion names, and these names are new symbols in our alphabet. To
keep the alphabet finite we only use function names from the orig-
inal input program, relying on the equivalence of each template to
an expression in the original program (§4.6). We perform the home-
omorphic embedding test only after transforming all templates into
their original equivalent expression.

Example 18 (revisited)
Using homeomorphic embedding, we again generate the spe-
cialised variant of f (Value head). Next we generate the tem-

plate f (Wrap (Value head)). However, f (Value head) E
f (Wrap (Value head)), so the new template is not used. ¤

Forbidding homeomorphic embeddings in specialisation still
allows full defunctionalisation in most simple examples, but there
are examples where it terminates prematurely.

Example 20

main y = f (λx → x) y
f x y = fst (x, f x y) y

Here we first generate a specialised variant of f (λx → x) y. If
we call the specialised variant f′, we have:

f′ y = fst (λx → x, f′ y) y

Note that the recursive call to f has also been specialised. We
now attempt to generate a specialised variant of fst, using the
template fst (λx → x, f′ y) y. Unfortunately, this template is an
embedding of the template we used for f′, so we do not specialise
and the program remains higher-order. But if we did permit a
further specialisation, we would obtain the first-order equivalent:

f′ y = fst′ y y
fst′ y1 y2 = y2 ¤

This example may look slightly obscure, but similar situations
occur frequently with the standard implementation of type classes
as dictionaries. Often, classes have default methods, which call
other methods in the same class. These recursive class calls often
pass dictionaries, embedding the original caller even though no
recursion actually happens.

To alleviate this problem, instead of storing one set S, we store
a sequence of sets, S1 . . . Sn – where n is a small positive number,
constant for the duration of the program. Instead of adding to the
set S, we now add to the lowest set Si where adding the element
will not violate the invariant. Each of the sets Si is still finite, and
there are a finite number (n) of them, so termination is guaranteed.

By default our defunctionalisation program uses 8 sets. In the
results table given in §8, we have included the minimum possible
value of n to remove all expressions creating functional values from
each program.

7.4 Termination as a Whole
Given an initial program, inlining and specialisation rules will
only apply a finite number of times. The simplification rules are
terminating on their own, so when combined, all the rules will
terminate.

8. Results
8.1 Benchmark Tests
We have tested our method with programs drawn from the nofib
benchmark suite (Partain et al. 2008), and the results are given in
Table 1. Looking at the input Core programs, we see many sources
of functional values.

• Type classes are implemented as tuples of functions.
• The monadic bind operation is higher-order.
• The IO data type is implemented as a function.
• The Haskell Show type class uses continuation-passing style

extensively.
• List comprehensions in Yhc are desugared to continuation-

passing style. There are other translations which require fewer
functional value manipulations (Coutts et al. 2007).

We have tested all 14 programs from the imaginary section of
the nofib suite, 35 of the 47 spectral programs, and 17 of the 30

Table 1. Results of defunctionalisation on the nofib suite.
Name is the name of the program; Bound is the numeric bound
used for termination (see §7.3); HO Create is the number of under-
applied functions and lambda expressions not contributing to the
arity of a top-level function, first in the input program and then
in the output program; HO Use is the number of over-applied
functions and application expressions; Time is the execution time
of our method in seconds; Size is the change in the program size
measured by the number of lines of Core.

Name Bound HO Create HO Use Time Size

Programs curtailed by a termination bound:
cacheprof 8 611 44 686 40 1.8 2%
grep 8 129 9 108 22 0.8 40%
lift 8 187 123 175 125 1.2 -6%
prolog 8 308 301 203 137 1.1 -5%

All other programs:
ansi 4 239 0 187 2 0.5 -29%
bernouilli 4 240 0 190 2 0.3 -32%
bspt 4 262 0 264 1 0.7 -22%

. . . plus 56 additional programs . . .
sphere 4 343 0 366 2 0.7 -45%
symalg 5 402 0 453 64 1.0 -32%
x2n1 4 345 0 385 2 0.8 -57%

Summary of all 62 other programs:
Minimum 2 60 0 46 0 0.1 -78%
Maximum 14 580 1 581 100 1.2 27%
Average 5 260 0 232 5 0.5 -30%

real programs. The remaining 25 programs do not compile using
the Yhc compiler, mainly due to missing or incomplete libraries.
After applying our defunctionalisation method, 4 programs are
curtailed by the termination bound and 2 pass functional values to
primitives. The remaining 60 programs can be transformed to first-
order as described in §6.4. We first discuss the resultant programs
which remain higher-order, then those which contain higher-order
expressions but can be rewritten as first-order, then make some
observations about each of the columns in the table.

8.2 Higher-Order Programs
All four programs curtailed by the termination bound are listed in
Table 1. The lift program uses pretty-printing combinators, while
the other three programs use parser combinators. In all programs,
the combinators are used to build up a functional value representing
the action to perform, storing an unbounded amount of information
inside the functional value, which therefore cannot be removed.

The remaining two higher-order programs are integer and mail-
list, both of which pass functional values to primitive functions.
The maillist program calls the catch function (see §4.5). The inte-
ger program passes functional values to the seq primitive, using the
following function:

seqlist [] = return ()
seqlist (x : xs) = x `seq̀ seqlist xs

This function is invoked with the IO monad, so the return ()
expression is a functional value. It is impossible to remove this
functional value without having access to the implementation of
the seq primitive.

8.3 First-Order Programs
Of the 66 programs tested, 60 can be made first-order using the
rewrites given in §6.4. When looking at the resultant programs,

3 contain lambda expressions, and all but 5 contain expressions
which could use functional values.

The pretty, constraints and mkhprog programs pass functional
values to expressions that evaluate to ⊥. The case in pretty comes
from the fragment:

type Pretty = Int → Bool → PrettyRep

ppBesides :: [Pretty] → Pretty
ppBesides = foldr1 ppBeside

Here ppBesides xs evaluates to ⊥ if xs ≡ []. The ⊥ value
will be of type Pretty, and can be given further arguments, which
include functional values. In reality, the code ensures that the input
list is never [], so the program will never fail with this error.

The vast majority of programs which have residual uses of func-
tional values result from over-applying the error function, because
Yhc generates such an expression when it desugars a pattern-match
within a do expression.

8.4 Termination Bound
The termination bound required varies from 2 to 14 for the sample
programs (see Bound in Table 1). If we exclude the integer pro-
gram, which is complicated by the primitive operations on func-
tional values, the highest bound is 8. Most programs have a termi-
nation bound of 4. There is no apparent relation between the size
of a program and the termination bound.

8.5 Creation and Uses of Functional Values
We use Yhc-generated programs as input. Yhc performs desugaring
of the Haskell source code, introducing dictionaries of functions to
implement type classes, and performing lambda lifting (Johnsson
1985). As a result the input programs have no lambda expressions,
only partial application. Conversely, the (eta) rule from Figure 2
ensures resultant programs have no partial application, only lambda
expressions. Most programs in our test suite start with hundreds of
partial applications, but only 9 resultant programs contain lambda
expressions (see HO Create in Table 1).

For the purposes of testing defunctionalisation, we have worked
on unmodified Yhc libraries, including all the low-level detail.
For example, readFile in Yhc is implemented in terms of file
handles and pointer operations. Most analysis operations work on
an abstracted view of the program, which reduces the number and
complexity of functional values.

8.6 Execution Time
The timing results were all measured on a 1.2GHz laptop, running
GHC 6.8.2 (The GHC Team 2007). The longest execution time was
just over one second, with the average time being half a second
(see Time in Table 1). The programs requiring most time made
use of floating point numbers, suggesting that library code requires
most effort to defunctionalise. If abstractions were given for library
methods, the execution time would drop substantially.

In order to gain acceptable speed, we perform a number of
optimisations over the method presented in §4. (1) We transform
functions in an order determined by a topological sort with respect
to the call-graph. (2) We delay the transformation of dictionary
components, as these will often be eliminated. (3) We track the
arity and boxed lambda status of each function.

8.7 Program Size
We measure the size of a program by counting the number of lines
of Core code, after a simple dead-code analysis to remove entirely
unused function definitions. On average the size of the resultant
program is smaller by 30% (see Size in Table 1). The decrease
in program size is mainly due to the elimination of dictionaries

holding references to unnecessary code. An optimising compiler
will perform dictionary specialisation, and therefore is likely to
also reduce program size. We do not claim that defunctionalisation
reduces code size, merely hope to alleviate concerns raised by
previous papers that it might cause an explosion in code size (Chin
and Darlington 1996).

9. Higher-Order Analysis
In this section we show that our method can be used to improve
the results of existing analysis operations. Our method is already
used by the Catch tool (Mitchell and Runciman 2008), allowing a
first-order pattern-match analysis to check higher-order programs.
We now give examples of applying our method to strictness and
termination analysis.

Example 21
GHC’s demand analysis (The GHC Team 2007) is responsible for
determining which arguments to a function are strict.

main :: Int → Int → Int
main x y = apply 10 (+x) y

apply :: Int → (α → α) → α → α
apply 0 f x = x
apply n f x = apply (n− 1) f (f x)

GHC’s demand analysis reports that the main function is lazy
in both arguments. By generating a first-order variant of main and
then applying the demand analysis, we find that the argument y is
strict. This strictness information can then be applied back to the
original program. ¤

Example 22
The Agda compiler (Norell 2008) checks that each function is
terminating, using an analysis taken from the Foetus termination
checker (Abel 1998).

cons : (N→ List N) → N→ List N
cons f x = x :: f x

downFrom : N→ List N
downFrom = cons f

where f : N→ List N
f zero = []
f (suc x) = downFrom x

Agda’s termination analysis reports that downFrom may not
terminate. By generating a first-order variant and applying the
termination analysis, we find that downFrom is terminating. ¤

No doubt there are other ways in which the above analysis meth-
ods could be improved, by extending and reworking the analysis
machinery itself. But a big advantage of adding a preliminary de-
functionalisation stage is that it is modular: the analysis is treated
as a black box. A combination with Reynolds-style defunctionali-
sation does not improve either analysis.

10. Related Work
10.1 Reynolds-style defunctionalisation
Reynolds-style defunctionalisation (Reynolds 1972) is the seminal
method for generating a first-order equivalent of a higher-order
program.

Example 23

map f [] = []
map f (x : xs) = f x : map f xs

Reynolds’ method works by creating a data type to represent all val-
ues that f may take anywhere in the whole program. For instance,
it might be:

data Function = Head | Tail

apply Head x = head x
apply Tail x = tail x

map f [] = []
map f (x : xs) = apply f x : map f xs

Now all calls to map head are replaced by map Head. ¤
Reynolds’ method works on all programs. Defunctionalised

code is still type safe, but type checking would require a depen-
dently typed language. Others have proposed variants of Reynolds’
method that are type safe in the simply typed lambda calculus (Bell
et al. 1997), and within a polymorphic type system (Pottier and
Gauthier 2004).

The method is complete, removing all higher-order functions,
and preserves space and time behaviour. The disadvantage is that
the transformation essentially embeds a mini-interpreter for the
original program into the new program. The control flow is compli-
cated by the extra level of indirection and the apply interpreter can
be a bottleneck for analysis. Various analysis methods have been
proposed to reduce the size of the apply function, by statically de-
termining a safe subset of the possible functional values at a call
site (Cejtin et al. 2000; Boquist and Johnsson 1996).

Reynolds’ method has been used as a tool in program calcula-
tion (Danvy and Nielsen 2001; Hutton and Wright 2006), often as a
mechanism for removing introduced continuations. Another use of
Reynolds’ method is for optimisation (Meacham 2008), allowing
flow control information to be recovered without the complexity of
higher-order transformation.

10.2 Removing Functional Values
The closest work to ours is by Chin and Darlington (1996), which
itself is similar to that of Nelan (1991). They define a defunctional-
isation method which removes some functional values without in-
troducing data types. Their work shares some of the simplification
rules, and includes a form of function specialisation. Despite these
commonalities, there are big differences between their method and
ours.

• Their method makes use of the types of expressions, informa-
tion that must be maintained and extended to work with addi-
tional type systems.

• Their method has no inlining step, or any notion of boxed
lambdas. Functional values within constructors are ignored.
The authors suggest the use of deforestation (Wadler 1988) to
help remove them, but deforestation transforms the program
more than necessary, and still fails to eliminate many functional
values.

• Their specialisation step only applies to outermost lambda ex-
pressions, not lambdas within constructors.

• To ensure termination of the specialisation step, they never spe-
cialise a recursive function unless it has all functional argu-
ments passed identically in all recursive calls. This restriction
is satisfied by higher-order functions such as map, but fails in
many other cases.

In addition, functional programs now use monads, IO continua-
tions and type classes as a matter of course. Such features were still
experimental when Chin and Darlington developed their method
and it did not handle them. Our work can be seen as a successor
to theirs, indeed we achieve most of the aims set out in their future

work section. We have tried their examples, and can confirm that all
of them are successfully handled by our system. Some of their ob-
servations and extensions apply equally to our work: for example,
they suggest possible methods of removing accumulating functions
such as in Example 14.

10.3 Partial Evaluation and Supercompilation
The specialisation and inlining steps are taken from existing pro-
gram optimisers, as is the termination strategy of homeomorphic
embedding. A lot of program optimisers include some form of spe-
cialisation and so remove some higher-order functions, such as par-
tial evaluation (Jones et al. 1993) and supercompilation (Turchin
1986). We have certainly benefited from ideas in both these areas
in developing our method.

11. Conclusions and Future Work
Higher-order functions are very useful, but may pose difficulties for
certain types of analysis. Using the method we have described, it is
possible to remove most functional values from most programs. A
user can still write higher-order programs, but an analysis tool can
work on equivalent first-order programs. Our method has already
found practical use within the Catch tool, allowing a first-order
pattern-match analysis to be applied to real Haskell programs. It
would be interesting to investigate the relative accuracy of higher-
order analysis methods with and without defunctionalisation.

Our method works on whole programs, requiring sources for all
function definitions. This requirement both increases transforma-
tion time, and precludes the use of closed-source libraries. We may
be able to relax this requirement, precomputing first-order variants
of libraries, or permitting some components of the program to be
ignored.

The use of a numeric termination bound in the homeomorphic
embedding is regrettable, but practically motivated. We need fur-
ther research to determine if such a numeric bound is necessary, or
if other measures could be used.

Many analysis methods, in fields such as strictness analysis and
termination analysis, start out first-order and are gradually extended
to work in a higher-order language. Defunctionalisation offers an
alternative approach: instead of extending the analysis method,
we transform the functional values away, enabling more analysis
methods to work on a greater range of programs.

References
Andreas Abel. foetus – Termination Checker for Simple Functional Pro-

grams. Programming Lab Report, July 1998.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven de-
functionalization. In Proc. ICFP ’97, pages 25–37. ACM, 1997.

Urban Boquist and Thomas Johnsson. The GRIN project: A highly opti-
mising back end for lazy functional languages. In Proc IFL ’96, volume
1268 of LNCS, pages 58–84. Springer-Verlag, 1996.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed
closure conversion for typed languages. In Proc. ESOP ’00, volume
1782 of LNCS, pages 56–71. Springer–Verlang, 2000.

Wei-Ngan Chin and John Darlington. A higher-order removal method. Lisp
Symb. Comput., 9(4):287–322, 1996.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proc ICFP ’07, pages 315–
326. ACM Press, October 2007.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proc.
PPDP ’01, pages 162–174. ACM, 2001.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Proceedings of
the 3rd International Joint Conference on Automated Reasoning (IJCAR
’06), volume 4130 of LNCS, pages 281–286. Springer–Verlag, 2006.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core – from
Haskell to Core. The Monad.Reader, 1(7):45–61, April 2007.

John Hughes. A novel representation of lists and its application to the
function “reverse”. Inf. Process. Lett., 22(3):141–144, 1986.

Graham Hutton and Joel Wright. Calculating an Exceptional Machine. In
Trends in Functional Programming volume 5. Intellect, February 2006.

Thomas Johnsson. Lambda lifting: transforming programs to recursive
equations. In Proc. FPCA ’85, pages 190–203. Springer-Verlag New
York, Inc., 1985.

Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. In Proc.
PEPM ’94, pages 107–117. ACM Press, June 1994.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice-Hall International, 1993.

Peter Jonsson and Johan Nordlander. Positive supercompilation for a higher
order call-by-value language. In POPL ’09, pages 277–288. ACM, 2009.

J B Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95(2):210–
255, 1960.

John Meacham. jhc: John’s haskell compiler. http://repetae.net/
john/computer/jhc/, 2008.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML - Revised. The MIT Press, May 1997.

Neil Mitchell. Transformation and Analysis of Functional Programs. PhD
thesis, University of York, 2008.

Neil Mitchell and Colin Runciman. Not all patterns, but enough – an
automatic verifier for partial but sufficient pattern matching. In Proc.
Haskell ’08, 2008.

George Nelan. Firstification. PhD thesis, Arizona State University, Decem-
ber 1991.

Ulf Norell. Dependently typed programming in Agda. In Lecture notes on
Advanced Functional Programming, 2008.

Will Partain et al. The nofib Benchmark Suite of Haskell Programs.
http://darcs.haskell.org/nofib/, 2008.

Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

Simon Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proc. ICFP ’07, pages 327–337. ACM Press, October 2007.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell
Compiler inliner. JFP, 12:393–434, July 2002.

Simon Peyton Jones and Andrés Santos. Compilation by transformation in
the Glasgow Haskell Compiler. In Functional Programming Workshops
in Computing, pages 184–204. Springer-Verlag, 1994.

François Pottier and Nadji Gauthier. Polymorphic typed defunctionaliza-
tion. In Proc. POPL ’04, pages 89–98. ACM Press, 2004.

John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proc. ACM ’72, pages 717–740. ACM Press, 1972.

Damien Sereni. Termination analysis and call graph construction for higher-
order functional programs. In Proc. ICFP ’07, pages 71–84. ACM, 2007.

The GHC Team. The GHC compiler, version 6.8.2. http://www.
haskell.org/ghc/, December 2007.

Valentin F. Turchin. The concept of a supercompiler. ACM Trans. Program.
Lang. Syst., 8(3):292–325, 1986.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In
Proc ESOP ’88, volume 300 of LNCS, pages 344–358. Berlin: Springer-
Verlag, 1988.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proc. POPL ’89, pages 60–76. ACM Press, 1989.

