Implementing Applicative Build Systems Monadically

Yi Fan (Bob) Yang
bobyf@gmail.com
Facebook

1 Introduction

Build systems are typically driven by a user script, e.g. the build
system Buck [1] is driven by BUCK files. Mokhov et. al. [7] classified
build systems as either applicative or monadic, based on whether
the build system required static dependencies, or allowed dynamic
dependencies, respectively. Buck does not allow dynamic dependen-
cies, so is classified as applicative.

In this paper we show that applicative build systems are only ap-
plicative from the perspective of the user, and are internally actually
monadic. In particular, the actions executed are entirely dependent
on the values in the user script. Following this observation, we
rewrote Buck, an “applicative build system”, using a monadic incre-
mental computation engine, and saw improvements in both code
complexity and performance.

2 Buck Design

Buck builds are configured by Python scripts supplied by the user.
We can define a C++ binary (with a target named main) which
depends on a C++ library (with a target named hello_string) as:

cxx_binary(

name = 'main',
srcs = ['hello-buck.cxx'],
deps = [':hello_string'],
)
cxx_library(
name = 'hello_string',
srcs = ['hello-string.cxx'],

In this example, the srcs attribute says what source code is
part of each target, and the deps attribute of main says the binary
depends on the library.

2.1 Buck phases

Buck is implemented as four significant phases, as shown in Figure 1.
These phases are:

Parsing The parsing step reads all the relevant build files, parsing
them and evaluating them as Python. It converts the result
of the Python function calls (e.g. cxx_binary) to a JSON
representation.

Marshaling The resulting JSON is used to generate a target graph,
which stores typed information about each rules attributes
in the nodes. The dependencies in the deps attributes are
translated into edges between these nodes.

Graph Transformation Given the target graph, Buck then con-
structs an action graph. The action graph nodes are actual
actions/commands that can be executed to produce outputs.

BAPL °20, London, UK
2020. 978-x-xxxX-xxxX-Xx/YY/MM...$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

Neil Mitchell
ndmitchell@gmail.com
Facebook

Build

Parsing

JSON

v

Marshalling

Target
Graph

L4
Graph
Transformation

Action
Graph

v

Execution

Artifacts

Figure 1. The phases of Buck.

Edges between nodes represent that one command uses
the output of another command. While the target graph is
closely based on the information supplied by the user, the
action graph is created based on rule implementations that
may expand a single target graph node into multiple action
graph nodes.

Execution Finally, Buck executes the commands on the action
graph, according to the dependency edges, to produce the
final build artifact.

Importantly, the entire graph of actions is calculated before any
commands are executed. Therefore Buck is an applicative build
system.

2.2 Monadic Buck

A monadic build system is one where actions influence the resulting
dependency structure. Therefore, what we consider to be an “action”
determines whether a system is monadic. If we consider only
executing external commands to be actions, then Buck is indeed
applicative. However, Buck also reads Python files and evaluates
them, and those actions are almost entirely responsible for defining
the resulting target graph. The action of converting a target graph
to an action graph is also a large action which impacts the resulting
graph. Therefore, if we look at all the significant actions within
Buck, we see that Buck is definitely monadic.

BAPL ’20, June 15-20, 2020, London, UK

Moreover, almost every applicative build system starts by read-
ing the user build script, which is then used to influence the com-
mands performed. Therefore, every build system implementation is
monadic. Such a result should not be too surprising - if we look at
the implementations in §5 of [7], we find that they are all monadic,
even for applicative build systems.

3 Implementing Buck Monadically

In this section we outline how we used the techniques from [7],
combined with the observation that applicative build systems are
secretly monadic, to implement Buck on a more principled foun-
dation. We first describe a generic monadic computation engine,
then translate the phases from §2.1 to it, and finally implement it.
This implementation technique does not change the power of Buck
for end users — targets still cannot have dynamic dependencies.

3.1 An Incremental Computation Engine

A generic incremental computation engine is a stateful object that
offers the API compute(k) -> r. Given a computation key k, we
produce the corresponding computation result r of a particular
computation. The computation for k could require dependencies,
which are the results of other computation keys.

This definition of computations is equivalent to a monadic task
from A. Mokhov, et al.[7]. That paper modeled a task as a mapping
of keys to values by either an applicative or monadic function. We
can treat computation keys the same as keys for tasks, and computa-
tion results the same as values for tasks. Since the dependencies of
computations are unrestricted, they can be dynamic, corresponding
to a monadic function in tasks.

The incremental computation engine can then be thought of as
a build engine for monadic tasks, i.e. a monadic build engine.

3.2 Modeling Buck as Computations

We can model all of Buck’s phases in §2.1 as computations, illus-
trated in Figure 2:

Parsing The computation keys are the paths of BUCK files and
results are some representation of the parsed information
as JSON. There are no dependencies, because the parsing of
one BUCK file is independent of other BUCK files.

Marshaling This computation has targets (identifiers of nodes)
as keys, mapping to target graph nodes. The dependen-
cies are on the results of the Parsing computation of the
corresponding target.

Graph Transformation This computation maps targets to action
graph nodes. This computation both depends on the target
graph node of the corresponding target from the Marshaling
computation, and the action graph nodes of this computa-
tion based on the dependency edges of the corresponding
target graph node.

Execution This computation maps a target to a file produced by
the build. The dependencies are the action graph node of
the corresponding target from the previous Graph Trans-
formation computation, and all the files produced by this
computation itself for the dependencies of the action graph
node.

Yi Fan (Bob) Yang and Neil Mitchell

Build
Files
Parsing
JSON (\
Marshalling
Target
Graph (\
dependency
v /
self dependency Graph
‘_/Transformation
Action
Graph (\
degendency
v

\

VY

zelf desendency Execution

Artifacts

Figure 2. The computations of Buck and its dependencies.

3.3 Implementing the Incremental Computation Engine
One natural way of modeling the incremental computation engine
is using the async/await feature [9] popular in many programming
languages, so a call waiting for a dependency can cheaply block on
it. Using the language Rust, we can encode a computation mapping
keys to values as:

trait SomeComputation {
async fn compute (k ComputationKey) ->
ComputationResult;

For example, the Graph Transformation phase computation can
be roughly modeled as §3.2:

trait GraphTransformationComputation {
async fn compute(target: BuildTarget) ->
BuildRule {

let target_node = MarshalingComputation.
compute(target).await;
let dependencies = target_node.deps.map(

|dep| GraphTransformationComputation.
compute (dep).await

)

return target_node.create_build_rule(
dependencies);

Implementing Applicative Build Systems Monadically

3.4 Implementing in Java
While a language featuring async/await would be ideal, Buck is
implemented in Java, so async/await is not available. Therefore,
we cannot implement our idealized computation API. However, we
can implement a somewhat related variant:

The incremental computation engine itself has a simple API

interface ComputationEngine {
Future<Result> compute (Key key);

The computations itself will implement the following interface:

interface Computation<Key, Result> {
Set<ComputeKey> depsl1(Key key);
Set<ComputeKey> deps2(Key key, Environment
deps);
Result compute(Key key, Environment deps);

Instead of calling a single compute method, the code driving the
Computation performs the following steps:

1. First call deps1 with a key to get an initial set of dependen-
cies the key statically depends upon.

2. Next call deps2 passing in all the computed values requested
by deps1 in the Environment type.

3. Finally call compute passing all the values requested by
both deps1 and deps2.

The three method implementation is less safe than the original,
as the implementation must ensure it only requests things from the
environment it has requested in advance. Instead of having one
phase of dependencies (as per applicative), or multiple phases (as
per monadic), we get exactly two phases — which still has the same
power as a monadic system. We can show the correspondence by
writing an interpreter for the free dependency monad from §7.1 of

[6]:

data Action k v = Finish v
| Depend k (v -> Action k v)

type Key = Action k v
type Val = v

depl :: Key -> [Key]
depl (Finish v) = []
dep1l (Depend k f) = [resolve k]

dep2 :: Key -> [Val] -> [Key]
dep2 (Finish v) [1 = []
dep2 (Depend k f) [v] = [f v]

compute :: Key -> [Vall -> Val
compute (Finish v) [] = v
compute (Depend k f) [_, v] = v

Here we have implemented an interpreter for the general monadic
Action type using the three method abstraction, showing this for-
mulation is equally powerful. Importantly, we have had to change
the key type to contain additional information, namely the closure

BAPL ’20, June 15-20, 2020, London, UK

of what steps to perform next. To retrieve the closure to start, we
assume there is a function resolve, based on Tasks from [7].

4 Learnings

Writing Buck using a monadic build system (i.e. the generic incre-
mental computation engine) yielded a lot of benefits in terms of
code complexity, and performance, and made it possible to consider
future extensions to the Buck APL

4.1 Code and Performance

Before writing Buck as generic computations, the various phases
were implemented as separate components with their own paral-
lelism and caching. In the new model, the computation engine
manages all caching and scheduling of work, leaving the computa-
tions themselves to only implement the core logic. A large amount
of code that was previously repeated has been centralized, offering
three compelling benefits:

1. Certain areas of code are substantially simpler, reducing
lines of code in some areas by as much as 70%.

2. While the code is simpler it is also more correct. We elimi-
nated several hard to track down deadlock and concurrency
bugs since all computations now rely on a standard and
well-tested execution engine.

3. We increased performance on some benchmarks by up to
3 times, by allowing us to focus optimization efforts on a
single execution engine.

4.2 User-facing Monadic Buck?

By writing Buck on a monadic build system, we noticed that the
applicative nature of Buck is mostly a consequence of limiting the
build API. We could add an extra computation dependency to the
rules like in Figure 3.

This change is equivalent to allowing the action graph creation
to access the action execution, which means that the target graph
to action graph computation now has access to the build results,
thereby allowing actions to be created dynamically based on the
results of executing other actions. The build dependency graph can
then no longer be fully determined before any execution occurs,
making Buck monadic from the users perspective. We could further
improve user’s dynamic power by adding another computation
dependency from parsing to execution. Now, users could even
dynamically alter parsing based on some rules execution.

Importantly, the core build system doesn’t need to change at
all, as it is already internally monadic. However, designing the
appropriate APIs and retaining the graph query functionality may
pose problems. As future work, we see value in investigating the
feasibility to extend Buck in this direction, given the benefits offered
by monadic build systems such as Shake [5, 8].

4.3 Javais not a good fit

Recall that the computation API from §3.4 had two stages of de-
pendency discovery. This choice was forced because Java does not
have async/await or coroutines. Futures were too heavy weight, so
we introduced our own executors relying on multiple steps.
While having this API is powerful, the usability is sub-optimal.
When multiple stages of dynamic dependencies are required, we
are forced to split them into many computations where each has 2
stages of dynamic dependencies with lots of boiler plate code — it

BAPL ’20, June 15-20, 2020, London, UK

Build
Files
Parsing
JSON (\
Marshalling
Target
Graph ‘\
dependency
Y ,_/
seli dependency Graph
‘__/lTransform ation\
Action extra dependency
Graph (\ to become monadic
degendency
¥ —/
self degendency Execution
Artifacts

Figure 3. Computation dependencies of a Monadic Buck.

is quite error prone. We ended up introducing additional types of
Computations to aid this type of pattern. We view this transforma-
tion as akin to manual lambda lifting [4].

Ideally, a high-performance monadic build system is best served
in a language with co-routines and async/await.

5 Conclusion

In this paper we have shown that most applicative build systems
are secretly monadic, all you have to do is look at them from the
right perspective. Furthermore, this observation can be used to
simplify the engineering of an applicative build system, irrespective
of the power offered to users.

Once a build system is internally monadic, limiting users to an
applicative API is a choice rather than an engineering constraint.
With that flexibility, we hope to explore whether a more powerful
API benefits the users, or harms users by reducing how analyzable
a graph is. As we have seen with parsers, there are benefits to
applicative parsers [10], and to those constrained to arrows [2],
but there are still good reasons to sometimes use a monadic parser
[3]. It may turn out that build systems need the same variety of
approaches.

References

[1] 2013. Buck. (2013). https://buck.build/

[2] John Hughes. 2000. Generalising monads to arrows. Science of computer pro-
gramming 37, 1-3 (2000), 67-111.

[3] Graham Hutton and Erik Meijer. 1998. Monadic Parsing in Haskell. J. Funct.

Program. 8, 4 (July 1998), 437-444.

Thomas Johnsson. 1985. Lambda lifting: transforming programs to recursive

equations. In Proc. FPCA ’85. Springer-Verlag, 190-203.

[5] Neil Mitchell. 2012. Shake before Building: Replacing Make with Haskell. In
Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’12). Association for Computing Machinery, New York, NY,
USA, 55-66.

[4

[10]

Yi Fan (Bob) Yang and Neil Mitchell

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2020. Build Systems a
la Carte: Theory and Practice. Journal of Functional Programming (2020). To
appear in JFP.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems a
La Carte. Proc. ACM Program. Lang. 2, ICFP (September 2018), 79:1-79:29.
Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow. 2016.
Non-recursive Make considered harmful: build systems at scale. In Proceedings
of the 9th International Symposium on Haskell (Haskell 2016). ACM, 170-181.
Semih Okur, David L Hartveld, Danny Dig, and Arie van Deursen. 2014. A study
and toolkit for asynchronous programming in C#. In Proceedings of the 36th
International Conference on Software Engineering. 1117-1127.

Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. 2008. Haskell, Do You
Read Me? Constructing and Composing Efficient Top-down Parsers at Runtime.
In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell "08).
Association for Computing Machinery, New York, NY, USA, 63-74.

https://buck.build/

	1 Introduction
	2 Buck Design
	2.1 Buck phases
	2.2 Monadic Buck

	3 Implementing Buck Monadically
	3.1 An Incremental Computation Engine
	3.2 Modeling Buck as Computations
	3.3 Implementing the Incremental Computation Engine
	3.4 Implementing in Java

	4 Learnings
	4.1 Code and Performance
	4.2 User-facing Monadic Buck?
	4.3 Java is not a good fit

	5 Conclusion
	References

