Building an Integrated Development Environment
(IDE) on top of a Build System
The tale of a Haskell IDE

Neil Mitchell Moritz Kiefer Pepe Iborra
Facebook Digital Asset Facebook
ndmitchell@gmail.com moritz.kiefer@purelyfunctional.org pepeiborra@gmail.com

Luke Lau Zubin Duggal Hannes Siebenhandl
Trinity College Dublin Chennai Mathematical Institute TU Wien

luke_lau@icloud.com

Javier Neira Sanchez
UNED, Spain
atreyu.bbb@gmail.com

Abstract

When developing a Haskell IDE we hit upon an idea — why
not base an IDE on an build system? In this paper we’ll
explain how to go from that idea to a usable IDE, including
the difficulties imposed by reusing a build system, and those
imposed by technical details specific to Haskell. Our design
has been successful, and hopefully provides a blue-print for
others writing IDEs.

CCS Concepts: « Software and its engineering — Inte-
grated and visual development environments.

ACM Reference Format:

Neil Mitchell, Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal,
Hannes Siebenhandl, Javier Neira Sanchez, Matthew Pickering,
and Alan Zimmerman. 2020. Building an Integrated Development
Environment (IDE) on top of a Build System: The tale of a Haskell
IDE. In Proceedings of Implementation and Application of Functional
Languages (IFL’20). ACM, New York, NY, USA, 12 pages.

1 Introduction

Writing an IDE (Integrated Development Environment) is
not as easy as it looks. While there are thousands of papers
and university lectures on how to write a compiler, there is
much less written about IDEs. We embarked on a project to
write a Haskell IDE (originally for the GHC-based DAML
language [Digital Asset 2021]), but our first few designs failed.
Eventually, we arrived at a design where the heavy-lifting of
the IDE was performed by a build system. That idea worked
well, and is the subject of this paper.

Over the past two years we have continued development
and found that the ideas behind a build system are both

IFL’20, September 2—4, 2020, Online
2020.

zubin.duggal@gmail.com

Matthew Pickering
Well-Typed
matthewtpickering@gmail.com

hannes.siebenhandl@posteo.net

Alan Zimmerman
Facebook
alan.zimm@gmail.com

applicable and natural for an IDE. The result is available as
a project named Haskell Language Server! (HLS)?.

In this paper we outline the core of our IDE §2, how it
is fleshed out into an IDE component §3, and then how we
build a complete IDE §4. We look at where the build system
both helps and hurts §5. We then look at the ongoing and
future work §6 before comparing to related work §7 and
concluding §8.

2 Design

In this section we show how to implement an IDE on top of
a build system. First we look at what an IDE provides, then
what a build system provides, followed by how to combine
the two.

2.1 Features on an IDE

To design an IDE, it is worth first reflecting on what features
an IDE provides. In our view, the primary features of an
IDE can be grouped into three capabilities, in order of how
essential they are to a users experience:

Errors/warnings The main benefit of an IDE is to get
immediate feedback as the user types. That involves
producing errors/warnings on every keystroke. In a
language such as Haskell, that involves running the
parser and type checker on every keystroke. From
these errors/warnings lots of additional features can
be built, like the ability to automatically remedy com-
mon errors (e.g. inserting missing LANGUAGE extension
pragmas).

Hover/goto definition The next most important fea-
ture is the ability to interrogate the code in front of

https://github.com/haskell/haskell-language-server

2Within HLS there lives an internal library named Ghcide [Mitchell et al.
2020], which integrates the build system, and used to be a standalone IDE -
in this paper we use the term HLS to include the Ghcide library.


https://github.com/haskell/haskell-language-server

IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

you. Ways to do that include hovering over an identi-
fier to see its type, and clicking on an identifier to jump
to its definition. In a language like Haskell, these fea-
tures require performing name resolution. Many other
features build on this same information, for example
auto-completions (which HLS provides as a plugin, §4),
case splitting and the ability to automatically insert
type signatures.

Find references Finally, the last feature is the ability
to find where a symbol is used. This feature requires
an understanding of all the code, and the ability to
index outward. Lots of refactoring tools require similar
knowledge to be available.

While debugging is often part of a fully featured IDE, it
is not the focus of this paper, so we mostly ignore it, other
than as future work in §6.5.

The design of Haskell is such that to type check a module
requires to get its contents, parse it, resolve the imports, type
check the imports, and only then type check the module itself.
If one of the imports changes, then any module importing it
must also be rechecked. That process can happen once per
user character press, so is repeated incredibly frequently.

Given the main value of an IDE is the presence/absence of
errors, the way such errors are processed should be heavily
optimised. In particular, it is important to hide/show an error
as soon as possible. Furthermore, errors should persist until
they have been corrected.

2.2 Features of a build system

The GHC API is a Haskell API for compiling Haskell files,
using the same machinery as the GHC compiler [The GHC
Team 2021]. Therefore, to integrate smoothly with the GHC
API, it is important to choose a build system that can be
used as a Haskell library. Furthermore, since the build graph
is incredibly dynamic, potentially changing on every key
stroke, it is important to be a monadic build system [Mokhov
et al. 2018, §3.5]. Given those constraints, and the presence
of an author in common, we chose to use Shake [Mitchell
2012].

The Shake build system is fully featured, including paral-
lelism, incremental evaluation and monadic dependencies.
While it has APIs to make file-based operations easy, it is
flexible enough to allow defining new types of rules and
dependencies which do not use files. At its heart, Shake is a
key/value mapping, for many types of key, where the type
of the value is determined by the type of the key, and the
resulting value may depend on many other keys.

2.3 An IDE based on a build system

Given the IDE and build system features described above,
there are some very natural combinations. The monadic
dependencies are a perfect fit. Incremental evaluation and

parallelism provide good performance. But there are a num-
ber of points of divergence which we discuss and overcome
below:.

2.3.1 Restarting. When a user changes a file (e.g. on every
keystroke), if there is still ongoing work (e.g. type-checking
a file), there is a choice to be made: do you abort the on-
going work, wait for the ongoing work to complete before
dealing with the change, or do both simultaneously. Faster
feedback is more useful to the user, so we should prefer deal-
ing with the change immediately. Machine resources are
finite, so running lots of things simultaneously is likely to
slow everything down and have a corresponding memory
cost. However, some jobs take 10 seconds (e.g. type check-
ing a big module), and if aborted every keystroke might not
produce results until the user pauses.

Given the purpose of an IDE is to provide fast feedback,
and resource usage (particularly memory) is already a con-
cern (see §5.7), we opt to abort all ongoing work on every
change. The downside is that big tasks might repeat the
beginning of their work many times, or at worst never com-
plete, although in practice we haven’t noticed any significant
problems. We discuss possible remedies in §5.3.

A Shake build can be interrupted at any point, and we
take the approach that whenever a file changes, e.g. on every
keystroke, we interrupt the running Shake build and start
a fresh one. While that approach is delightfully simple, it
has some engineering concerns. We interrupt using asyn-
chronous exceptions [Peyton Jones 2001], but lots of Haskell
code is not properly designed to deal with such exceptions.
We had to fix a number of bugs in Shake and other libraries
and are fairly certain some still remain.

2.3.2 Errors. In normal Shake execution an error is thrown
as an exception which aborts the build. However, for an IDE,
errors are a common and expected state. Therefore, it is nec-
essary to make errors first class values. Concretely, instead
of the result of a rule such as type checking being a type
checked module, we use:

([Diagnostic], Maybe TcModuleResult)

Where TcModuleResult is the type checked module result
as provided by the GHC APL The list of diagnostics stores
errors and warnings which can occur even if type checking
succeeded. The second component represents the result of
the rule with Nothing meaning that the rule could not be
computed either because its dependencies failed, or because
it failed itself.

In addition, when an error occurs, it is important to track
which file it belongs to, and to determine when the error goes
away. To achieve that, we make all Shake keys be a pair of a
phase-specific type alongside a FilePath. So a type-checked
value is indexed by:

(TypeCheck, FilePath)
where TypeCheck is isomorphic to ().



Building an Integrated Development Environment (IDE) on top of a Build System

The second component of the key determines the file the
error will be associated with in the IDE. We cache the error
per FilePath and phase, and when a TypeCheck phase for a
given file completes, we overwrite any previous type check-
ing errors that file may have had. By doing so, we can keep
an up-to-date copy of what errors are known to exist in a
file, and know when they have been resolved.

2.3.3 Performance. Shake runs rules in a random order
[Mitchell 2012, §4.3.2]. But as rule authors, we know that
some steps like type checking are computationally expen-
sive, while others like finding imports (and thus parsing)
cause the graph to fan out. Using that knowledge, we can
deprioritise type checking to reduce latency and make better
use of multicore machines. To enable that deprioritisation,
we added a reschedule function to Shake, that reschedules
a task with a lower priority.

2.3.4 Memory only. Shake usually operates as a tradi-
tional build system, working with files and commands. As
standard, it stores its central key/value map in a journal on
disk, and rereads it afresh on each run. That caused two
problems:

1. Reading the journal each time can take as long as 0.1s.
While that is almost irrelevant for a traditional build,
for an IDE it is excessive. We solved this problem by
adding an option to Shake that retains the key/value
map in memory and doesn’t write to disk, completely
eliminating this delay.

2. Shake serialises all keys and values into the journal,
so those types must be serializable. While adding a
memory-only journal was feasible, removing the seri-
alisation constraints and eliminating all serialisation
would require more significant modifications. There-
fore we wrote serialisation methods for all the keys.
However, values are often GHC types, and contain
embedded types such as IORef, making it difficult to
serialise them. To avoid the need to use value serialisa-
tion, we created a shadow map containing the actual
values, and stored dummy values in the Shake map.

The design of Shake is for keys to accumulate and never be
removed. However, as the IDE is very dynamic, the relevant
set of keys may change regularly. Fortunately, the Shake
portion of the key/value is small enough not to worry about,
but the shadow map should have unreachable nodes removed
in a garbage-collection like process (see §5.6).

2.4 Layering on top of Shake

In order to simplify the design of the rest of the system, we
built a layer on top of Shake, which provides the shadow
map, the keys with file names, the values with pairs and di-
agnostics etc. By building upon this layer we get an interface
that more closely matches the needs of an IDE. Using this
layer, we can define the type checking portion of the IDE as:

IFL’20, September 2-4, 2020, Online

type instance RuleResult TypeCheck =
TcModuleResult

typeCheck = define $ \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use_ GetDependencies file
tms <- uses_ TypeCheck $
transitiveModuleDeps deps
session <- useNoFile_ GhcSession
1iftI0 $ typecheckModule session tms pm

Reading this code, we use the RuleResult type family
[Chakravarty et al. 2005] to declare that the TypeCheck phase
returns a value of type TcModuleResult. We then define a
rule typeCheck which implements the TypeCheck phase.
The actual rule itself is declared with define, taking the
phase and the filename. First, it gets the parsed module,
then the dependencies of the parsed module, then the type
checked results for the transitive dependencies. It then uses
that information along with the GHC API session to call a
function typecheckModule. To make this code work cleanly,
there are a few key functions we build upon:

e We use define to define types of rule, taking the phase
and the filename to operate on.
o We define use and uses which take a phase and a file
(or lists thereof) and return the result.
On top of use we define use_ which raises an excep-
tion if the requested rule failed. In define we catch
that exception and switch it for ([], Nothing) to
indicate that a dependency has failed.
Some items do not have a file associated with them,
e.g. there is exactly one GHC session, so we have
useNoFile (and the underscore variation) for these.
Finally, the GHC API can be quite complex. There
is a GHC provided typecheckModule, but it throws
exceptions on error, prints warnings to a log, returns
too much information for our purposes and operates
in the GHC monad. Therefore, we wrap it into a API
where all inputs and outputs are explicit, with the
signature:

typecheckModule

:: HscEnv

-> [TcModuleResult]

-> ParsedModule

-> I0 ([Diagnostic], Maybe TcModuleResult)

2.5 Stale results

For some operations, getting a result quickly is significantly
more important than getting a correct result. As an example,
consider completions - they are only useful if produced
almost immediately (before the next keystroke), and a precise
answer is nice, but not essential. Our initial approach utilized
the use function as described in §2.4, but each keystroke
necessitates checking the graph is still valid and a reparse



IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

of the current file. For completions, that overhead was very
noticeable. To address this use case we added a variant of
use which can access stale values:

useStale ::
=> stage -> FilePath
-> Action (Maybe (v, PositionMapping))

The function useStale takes a stage and file, just like nor-
mal use, but there are two key differences. Firstly, instead
of returning an accurate v, it returns the last successfully
computed value of v. The key is only computed afresh if it
has never been requested before. A result is only Nothing if
all previous requests have failed. Secondly, useStale also re-
turns a PositionMapping. The PositionMapping describes
how the document has been modified since the result was
calculated, allowing operations to map positions from that
result to and from the current document - e.g. if a new line
is inserted at the beginning of the file, the position mapping
will shift all line numbers by one. We also provide a variant
of useStale that asynchronously runs the action, so that
future stale requests are likely to get a more accurate answer.

This technique provides a significant improvement in the
responsiveness, in return for a small sacrifice in correctness.
For operations like completions (must be immediate, don’t
have to be correct), this trade-off was easy to make. For other
operations, like hover or go to definition, some changes can
have a significant impact (e.g. changing the imports to cause
different identifiers to be imported), but most changes are of
little consequence, so we use stale information. For actions,
like inserting type signatures, incorrect changes made to the
users code are very costly, so we do not use stale results.

3 Integration

To go from the core described in §2 to a fully working IDE
requires integrating with lots of other projects. In this section
we outline some of the most important.

3.1 The GHC API

The GHC API provides access to the internals of GHC and
was not originally designed as a public APIL. This history
leads to some design choices where IORef values (mutable
references) hide alongside huge blobs of state (e.g. HscEnv,
DynFlags). With careful investigation, most pieces can be
turned into suitable building blocks for an IDE. Over the past
few years the Haskell IDE Engine project [The Haskell IDE
Engine Team 2020] has been working with GHC to upstream
patches to make more functions take in-memory buffers
rather than files, which has been very helpful.

One potentially useful part of the GHC API is the “down-
sweep” mechanism. In order to find dependencies, GHC
first parses the import statements, then sweeps downwards,
adding more modules into a dependency graph. The result
of downsweep is a static graph indicating how modules are

related. Unfortunately, this process is not very incremen-
tal, operating on all modules at once. If it fails, the result
is a failure rather than a partial success. This whole-graph
approach makes it unsuitable for use in an IDE. Therefore,
we rewrote the downsweep process in terms of incremental
dependencies. The disadvantage is that many things like pre-
processing and plugins are also handled by the downsweep,
so they had to be dealt with specially. We hope to upstream
our incremental downsweep into GHC at some point in the
future.

3.1.1 Separate type-checking. In order to achieve good
performance in large projects, it is important to cache the
results of type-checking individual modules and to avoid
repeating the work the next time they are needed, or when
loading them for the first time after restarting the IDE. Our
IDE leverages two features of GHC that, together, enable
fully separate typechecking while preserving all the IDE
features mentioned in §2.1

1. Interface files (so called .hi files) are a by-product
of module compilation and have been in GHC since
the authors can remember. They contain a plethora
of information about the associated module. When
asking the GHC API to type-check a module M that
depends on a module D, one can load a previously
obtained D.hi interface file instead of type-checking
D, which is much more efficient and avoids duplicating
work. Using this file is only correct when D has not
changed since D.hi was produced, but happily GHC
performs recompilation checks and complains when
this assumption is not met.

2. Extended interface files (so called . hie files) are also a
by-product of module compilation, recently added to
GHC in version 8.8. Extended interface files record the
full details of the type-checked AST of the associated
module, enabling tools to provide hover and go-to
reference functionality without the need to use the
GHC API at all. Our IDE mines these files to provide
hover and go-to reference for modules that have been
loaded from an interface file, and thus not typechecked
in the current session.

3.2 Setting up a GHC Session

When using the GHC API, the first challenge is to create a
working GHC session. Session construction involves setting
the correct DynFlags needed to load and type-check the
files in a project. These typically include compilation flags
like include paths and what extensions should be enabled,
but also includes information about package dependencies,
which need to be built beforehand and registered with the
command line tool ghc-pkg. Furthermore, these details are
all entirely dependent on the build tool: the flags that the
build tool Stack passes to GHC to build a project will be
different from what the build tool Cabal passes, because each



Building an Integrated Development Environment (IDE) on top of a Build System

builds and stores package dependencies in different locations
and package databases.

Because session creation is so specific to the build tool,
setting up the environment and extracting the flags for a
Haskell project has traditionally been a very fickle process.
A new library called hie-bios [The HIE BIOS Team 2021] was
developed to tackle this problem, consolidating efforts into
one place. The name comes from the idea that it acts as the
first point of entry for setting up the GHC session, much like
a system BIOS is the first point of entry for hardware on a
computer. Its philosophy is to delegate the responsibility of
setting up a session entirely to the build tool — whether that
be Cabal, Stack, Hadrian [Mokhov et al. 2016], Bazel [Google
2021], Buck [Facebook 2021] or any other build system that
invokes GHC.

The hie-bios library is based around the idea of cradles
which describe a specific way to set up an environment
through a specific build tool. For instance, hie-bios comes
with cradles for Stack projects, Cabal projects and standalone
Haskell files, but it can interface with other build tools by in-
voking them and reading the arguments to GHC via stdout.
These cradles are essentially functions that call the necessary
commands on the build tool to build and register any depen-
dencies, and return the flags that would be passed to GHC for
a specific file or component. For Cabal and Stack, this infor-
mation is currently obtained through the repl commands.
The cradle that should be used for a specific project can
be inferred through the presence of build-tool specific files
like cabal.project and stack.yaml. For more complex
projects which comprise of multiple directories and pack-
ages, the cradles used can be explicitly configured through a
hie.yaml file to describe exactly what build tool should be
used, and what component should be loaded for the GHC
session, for each file or directory.

3.2.1 Handling multiple components in one session.
Haskell projects are often separated into multiple packages,
and when using Cabal [Jones 2005], a package consists of
multiple components. These components might be a library,
executable, test-suite or a benchmark. Each of the compo-
nents might require a different set of compilation options
and they might depend on each other. Ideally, we want to
be able to use the IDE on all components at the same time,
so that features like goto-definition and refactoring work
sensibly. Using the IDE on a big project with multiple sub-
projects should work equivalently to a single component
project.

However, the GHC API is designed to only handle a single
component at a time. This limitation is currently hard-coded
in multiple locations within the GHC code-base. As it can
only handle a single component, GHC only checks whether
any modules have changed for this single component, as-
suming that dependencies are stored on disk and will not

IFL’20, September 2-4, 2020, Online

change during the compilation. However, in our dynamic
usage, local dependencies might change!

The same problematic behaviour can be found in every-
day usage of an interactive GHC session. Loading an exe-
cutable into the interactive session, and applying changes to
the library the executable depends on, will not cause any re-
compilation in the interactive session. For any of the changes
to take effect, the user needs to entirely shut-down the in-
teractive GHC session and reload it. In the IDE context, if
the library component changes the executable component
will not be recompiled, as GHC does not notice that a de-
pendency has changed and diagnostics for the executable
component become stale.

To work around these limitations, we handle components
in-memory and modify the GHC session ad-hoc. Whenever
the IDE encounters a new component, we calculate the global
module graph of all components that are in-memory. With
this graph, we can handle module updates ourselves and load
multiple components in a single GHC session. However, such
approaches are fighting against GHC, are less efficient than
a native GHC approach would be, and there are many bugs
in the corner cases — some of which appear impossible to
eliminate. The real solution is to extend GHC with multiple
home components, which we discuss in §6.3.

3.2.2 Error tolerance. An IDE needs to be tolerant to er-
rors in the source code, and must continue to aid the devel-
oper while the source code is incomplete and does not parse
or typecheck, as this state is the default while source code it
is being edited. Importantly, the further we can proceed in
the compilation pipeline, the more information we can offer
the user; e.g. if we can type check some of the file, we can
provide better types on hover, even if the whole file does not
type check. We employ a variety of mechanisms to achieve
this goal:

e GHC has two flags named -fdefer-type-errors and
-fdefer-out-of-scope-variables that turn type er-
rors and out of scope variable errors into warnings,
and let it proceed to typecheck and return usable arti-
facts to the IDE. These flag leads to GHC downgrading
the errors produced to warnings, so we must promote
such warnings back into errors before reporting them
to the user.

o If the code still fails to typecheck (for example due to a
parse error, or multiple declarations of a function etc.),
we still need to be able to return results to the user.
Therefore, we use useStale from §2.5 to the most
recent successful type checked results, even if it was
for an older version of the source.

e We continue to work with the GHC team, suggesting
further places where errors can be downgraded to
warnings - e.g. the parse error do a <- x could be
treated as a warning.



IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

3.3 Language Server Protocol (LSP)

In order to actually work as an IDE, we need to communi-
cate with a text editor. We use the Language Server Protocol
(LSP) [Microsoft 2021b] for communication, which is sup-
ported by most popular text editors and clients, either na-
tively or through plugins and extensions. LSP is a JSON-RPC
based protocol that works by sending messages between the
editor and a language server. Messages are either requests,
which expect a response to be sent back in reply, or notifica-
tions which do not expect any. For example, the editor (client)
might send notifications that some file has been updated, or
requests for code completions to display to the user at a
given source location. The language server may then send
back responses answering those requests and notifications
that provide diagnostics.

To bridge the gap between messages and the build graph,
we deal with the types of incoming messages differently:

e When a notification arrives from LSP that a docu-
ment has been edited, we modify the nodes that have
changed, e.g., the content of the modified files, and
immediately start a rebuild in order to produce diag-
nostics.

e When a request for some specific language feature
arrives, we append a target to the ongoing build asking
for whatever information is required to answer that
request. For example, if a hover request arrives, we
ask for the set of type-checked spans corresponding
to that file. Importantly, this operation does not cause
a rebuild.

e When the graph computes that the diagnostics for a
particular file have changed, we send a notification to
the client to show updated diagnostics.

3.4 Testing

Our IDE implements a large part of the LSP specification,
and has to operate on a large range of possible projects with
all sorts of edge cases. We protect against regressions from
these edge cases with a functional test suite built upon the
library Isp-test, a testing framework for LSP servers. This Isp-
test library acts as a client which language servers can talk
to, simulating a session from start to finish at the transport
level. The library allows tests to specify what messages the
client should send to the server, and what messages should
be received back from the server.

Functional testing turns out to be rather important in this
scenario as the RPC-based protocol is in practice, highly
asynchronous, something which unit tests often fail to ac-
count for. Clients can make multiple requests in flight and
Shake runs multiple worker threads, so the order in which
messages are delivered is non-deterministic. Because of this
fact, a typical test might look like:

test :: I0 ()

test = runSession "hls" fullCaps "test" $ do
doc <- openDoc "Foo.hs" "haskell"
skipMany anyNotification
let prms = DocumentSymbolParams doc
rsp <- request TextDocumentDocumentSymbol prms
1iftIO $ rsp *. result ‘shouldNotSatisfy' null

In this session, Isp-test tells HLS to open up a document,
and then ignore any notifications it may send with skipMany
anyNotification. A session is actually a parser combina-
tor [Hutton and Meijer 1996] operating on incoming mes-
sages under the hood, which allows the expected messages
from the server to be specified in a flexible way that can
handle non-deterministic ordering. It then sends a request
to the server to retrieve the symbols in a document, waits
for the response and finally makes some assertion about the
response.

We also use Isp-test to drive benchmarks and memory
leak detection (see §5.7).

4 Extensibility

The IDE described in §3 corresponds to the bare bones of a
Haskell IDE, on which many features need adding. As ex-
amples, HLS integrates with 5 different formatters, a linting
tool (HLint), a refactoring tool (Retrie), a runtime evaluator,
documentation comment generator and many more besides.
The key to supporting all these use cases, without adding
additional complexity to the core, is an extensible core and a
rich plugin mechanism.

4.1 LSP extensibility

The Language Server Protocol is extensible, in that it defines
messages for various features that an IDE may or may not
implement. Examples include:

e Context aware code completion. These suggestions
have information about the current position of the cur-
sor within the document, and so can provide sugges-
tions that are semantically meaningful. For example,
suggesting variable names that are available within
the current scope or record fields matching the current
type.

e Hover information. This is context-specific informa-
tion provided as a separate floating window based on
the cursor position. Additional analysis sources should
be able to seamlessly add to the set of information pro-
vided.

e Diagnostics. The GHC compiler provides warnings
and errors. It is possible to supplement these with any
other information from a different analysis tool. We
have already integrated HLint [Breitner et al. 2013] for
lint-style suggestions and would like to also support
tools such as Liquid Haskell [Vazou et al. 2014].



Building an Integrated Development Environment (IDE) on top of a Build System

e Code Actions. These are context-specific actions that
are provided based on the current cursor location. Typ-
ical uses are to provide actions to fix simple compiler
errors reported, e.g. adding a missing language pragma
or import. But they can also provide more advanced
functionality, like suggesting refactorings of the code,
including based on HLint suggestions.

e Code Lenses. These operate on the whole file, and offer
a way to display annotations to a given piece of code,
which can optionally be clicked on to trigger a code
action to perform some function. In HLS these are used
to display inferred type signatures for functions, and
to add them to the code with one click.

The standardised messaging allows uniform processing
on the client side for features, but also means new features
are easy to add on the server side.

4.2 Core extensibility

Seen at the lowest level, our dependency library from §2 pro-
vides two things: a rule engine and an interface to LSP (§3.3).
Therefore, to retain extensibility, there must be a way to add
rules to the rule engine, and additional message handlers to
the LSP message processing.

The Shake build system is designed to be extensible, so
new types of rules can be defined, much the same way the
core rules are defined in §2.4. These rules can depend on
existing stages of the compiler with use, and then produce
new values which are properly cached and invalidated. The
biggest concern when adding such rules is that the results
occupy memory on the build graph, which increases memory
consumption by the IDE. By using an extensible build system
we get some aspects of extensibility for free.

To extend the LSP message processing, we defined a type
called PartialHandlers, which provides a function that can
respond to certain messages. Using the Monoid type class
such handlers can be combined, with the caveat that only
one handler can process each message, so the last one wins.
As a consequence, there can only be one handler responding
to completions, whereas in reality there might be several
complementary approaches to completions.

4.3 HLS plugins

While the core extensibility allows one handler for each
type of message, the HLS plugins are intended to be more
compositional. The aim is that most functionality (outside
the core business of parsing and type checking source files)
should live in plugins, and that users can freely compose
these plugins. Therefore, HLS has a plugin descriptor which
looks like:

data PluginDescriptor =
PluginDescriptor
{ pluginld
I'PluginId

IFL’20, September 2-4, 2020, Online

, pluginRules
I'(Rules ())
, pluginCommands
I'[PluginCommand]
, pluginCodeActionProvider
! (Maybe CodeActionProvider)
, pluginCodelensProvider
I (Maybe CodelensProvider)
, pluginHoverProvider
! (Maybe HoverProvider)

The pluginId is used to make sure that if more than
one plugin provides a Code Action with the same command
name, HLS can choose the right one to process it. The field
[PluginCommand] is a possibly empty list of commands that
can be invoked in code actions. The rest of the fields can be
filled in with just the capabilities the plugin provides.

As an example, a plugin providing additional hover infor-
mation based on analysis of the existing GHC output would
only fill in the pluginId and pluginHoverProvider fields,
leaving the rest at their defaults. If two plugins providing
hover information are both used, then the hover information
from both will be combined in the response to LSP.

To evaluate the HLS Plugin values, the pluginRules are
joined together and given as database rules. The provider
fields are joined together into a single PartialHandlers,
allowing their outputs to be combined as required.

5 Evaluation

We released our IDE and it has become an important part
of the Haskell tools ecosystem. When it works, the IDE pro-
vides fast feedback with increasingly more features by the
day. Building on top of a build system gave us a suitable foun-
dation for expressing the right things easily. Building on top
of Shake gave us a well tested and battle hardened library
with lots of additional features we did not use, but were able
to rapidly experiment with. However, the interesting part of
the evaluation is what does not work.

5.1 Asynchronous exceptions are hard

Shake had been designed to deal with asynchronous excep-
tions, and had a full test suite to show it worked with them.
However, in practice, we keep coming up with new prob-
lems that bite in corner cases. Programming defensively with
asynchronous exceptions is made far harder by the fact that
even finally constructions can actually be aborted, as there
are two levels of exception interrupt. We suspect that in time
we’ll learn enough tricks to solve all the bugs, but it is a very
error prone approach, and one where Haskell’s historically
strong static checks are non-existent.



IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

5.2 Session setup

The majority of issues reported by users are come from the
failure to setup a valid GHC session — this task is the first
performed by HLS, and if this step fails, then every other
feature will fail too. The diversity of project setups in the
wild is astounding, which makes progress difficult. Haskell
projects using Nix [Dolstra et al. 2004] are both common,
and cause many problems.

In initial versions of HLS, we recommended that users
write custom configuration files to accurately describe the
setup of their project to hie-bios (see §3.2). However, as time
has gone by, approaches for automatically detecting sensible
configuration have improved and we now recommend most
people use auto-detection where possible.

Work is currently underway to push logic that extracts
setup information upstream from hie-bios into the build tools
themselves, to expose more information and provide a more
reliable interface for setting up sessions. As one example, a
show-build-info command has recently been developed
for Cabal that builds package dependencies and returns in-
formation about how Cabal would build the project in a
machine readable format.

Finally, many projects require more than one GHC session
to load all modules. While we have solutions §3.2.1, they are
often a cause of problems, and we are working on more
principled approaches §6.3.

5.3 Cancellation

While regularly cancelling builds does not seem to be a prob-
lem in practice, it would be better if the partial work started
before a cancellation could be resumed. A solution like FRP
[Elliott and Hudak 1997] might offer a better foundation,
but we were unable to identify a suitable existing library
for Haskell (most cannot deal with parallelism). We have
performed initial experiments using the Haskell FRP library
Reflex, which offered some benefits (lower overhead), but the
lack of parallelism was problematic. Alternatively, a build
system based on a model of continuous change rather than
batched restarts might be another option. We expect the cur-
rent solution using Shake to be sufficient for at least another
year, but not another decade.

5.4 Runtime evaluation

Some features of Haskell involve compiling and running code
at runtime. One such culprit is Template Haskell [Sheard
and Peyton Jones 2002]. The mechanisms within GHC for
runtime evaluation are improving with every release, but
still cause many problems. Examples of problems we have ob-
served are asynchronous exceptions giving problems (§5.3),
segfaults and use of stale code.

5Gb

4Gb

3Gb

Heap usage

2Gb

* = out of memory

1Gb

v0.2.0

0Gb -
Os 100s 200s 300s 400s 500s 600s

Time through execution

Figure 1. Heap usage for successive versions of HLS, replay-
ing a consistent trace.

5.5 References

As stated in §2.1, an IDE offers three fundamental features —
diagnostics, hover/goto-definition and find references. Our
IDE offers the first two, but not the third. If the IDE was
aware of the roots of the project (e.g. the Main module for
a program) we could use the graph to build up a list of ref-
erences. This work is ongoing, as we describe in §6.1, using
the build system to produce information that can then be
queried from a more traditional relational database.

5.6 Garbage collection

Currently, once a file has been opened, it remains in memory
indefinitely. Frustratingly, if a temporary file with errors is
opened, those errors will remain in the users diagnostics
pane even if the file is shut. It is possible to clean up such
references using a pass akin to garbage collection, removing
modules not reachable from currently open files. We have im-
plemented that feature for the DAML Language IDE [Digital
Asset 2021], but not yet for HLS.

5.7 Memory leaks

A recurring complaint of our users is the amount of memory
used. Indeed, one of the authors witnessed >70GB resident
set sizes on multiple occasions on medium/large codebases.
This memory consumption was not only ridiculously ineffi-
cient but also a source of severe responsiveness issues while
waiting for the garbage collector® to waddle through the
mud of an oversized heap.

Our initial efforts focused on architectural improvements
like separate type-checking and a frugal discipline on what
gets stored in the Shake graph. But it was not until a laziness
related space leak was identified and fixed in the Haskell

3By default the GHC runtime will trigger a major collection after 0.3 seconds
of idleness; thankfully this can be customized along with many other GC
settings.



Building an Integrated Development Environment (IDE) on top of a Build System

unordered-containers library* that we observed a material
improvement. Figure 1 shows the heap usage in Gb (Y axis)
of a replayed HLS session over time in seconds (X axis),
for various versions of HLS. Versions 0.0.5 and 0.1.0 grow
linearly without bound until running out of memory and
failing. Notable is how the leak became more pronounced
in 0.1.0 - this was only due to performance improvements
that made HLS run faster, and thus leak memory faster too.
Version 0.2.0 finally addressed the issue.

Given how much effort and luck it took to clear out the
space leak, and the lack of methods or tooling for diagnosing
leaks induced by laziness, we have installed mechanisms to
prevent new leaks from going undetected:

1. A benchmark suite that replays various scenarios while
collecting space and time statistics.

2. An experiment tool that runs benchmarks for a set
of commits and compares the results, highlighting re-
gressions.

Monitoring performance and preventing regressions is
always a good practice, but absolutely essential when using
a lazy language, due to the rather unpredictable dynamic
semantics.

6 Ongoing and future work

Since the IDE was released, a number of volunteer contrib-
utors have been developing and extending the project in
numerous directions. In addition, some teams in commercial
companies have starting adopting the IDE for their projects.

6.1 Find References

Our approach to the problem of find references is to inte-
grate with the hiedb library®. The hiedb library reads the
.hie files produced by GHC, and extracts all sorts of useful
information from them, such as references to names and
types, the definition and declaration spans, documentation
and types of top level symbols. All the information is stored
in an SQLite database for fast and easy querying. Integrat-
ing this project with HLS provides find references, symbol
search and opportunities to target refactorings.

Integrating hiedb with HLS is under active development,
with many technical issues to be worked out, but the funda-
mental approach works well. The build system dependencies
are used to generate the . hie files, and invalidate them when
necessary, and that information is passed on to hiedb. For
answering queries, a cache of the . hie file that the user is
editing is used for queries about that file, while all other
queries are performed against the database.

In addition to performing find reference and other queries,
the hiedb database serves as an effective way to persist infor-
mation across HLS runs. When a user first opens a project,

*https://github.com/haskell-unordered-containers/unordered-
containers/issues/254
Shttps://github.com/wz1000/HieDb

IFL’20, September 2-4, 2020, Online

while the build system is busy type checking a potentially
large number of files, results from hiedb can be used to pro-
vide stale but immediate results to queries such as go to
definition or hover.

6.2 Scalability

Our goal is to allow HLS to scale to codebases with more than
20,000 source files. Such a size, coupled with the relatively
slow type checking speed of Haskell, requires that anything
we do on all source files must be very cheap, while anything
expensive must only be done on a subset of files. Similarly,
any information stored per file must be compact - storing
a type checked AST for each file would be prohibitively
expensive.

Given a project with a set of N source files, where only a
subset O are open in the editor, the following information is
computed by the IDE:

1. N = 3 file exist checks, for every source file and the
corresponding two interface files (hi and .hie).

2. N = 3 timestamp checks, to compare every source file
with the corresponding two interface files.

3. A global module graph with N nodes

4. T invocations to the type checker pipeline, which can
be as few as O if all the interface files are up-to-date,
or up to N otherwise.

Items 1 and 2 take linear time and cannot be avoided at
startup, but after that they can be replaced by file system
subscriptions. HLS already uses this approach for 1 but we
have not yet adopted it for 2.

The global module graph is also a one-off cost in time, but
a linear cost in space if kept in memory. Ideally, this graph
should be stored in a disk-backed graph database with fast
querying, although we do not foresee this being a bottleneck
for codebases with less than 1,000,000 source files.

Item 4, running the parsing and typechecking pipeline, is
unsurprisingly the biggest cost in terms of time. HLS can
make use of interface files to skip this step, so if the file
system has been suitably “primed” then only O compilation
artifacts must be kept in memory. These interface files can
be generated in advance e.g. by a cloud build system or as a
by-product of a previous IDE run.

Unfortunately, when Template Haskell [Sheard and Pey-
ton Jones 2002] is involved, it is necessary to keep many
additional artifacts in memory - the number of artifacts be-
comes proportional to N in the worst case. There is a fair
amount of engineering work required, both in GHC and in
our IDE, to reduce the memory usage when Template Haskell
is involved.

Over time the ability of HLS to scale has improved markedly
— initial versions got sluggish at 200 source files, but now
10,000 can be made to work (with appropriate setup). Such
progress requires eliminating all bottlenecks, of which the
above are only the most serious.


https://github.com/haskell-unordered-containers/unordered-containers/issues/254
https://github.com/haskell-unordered-containers/unordered-containers/issues/254
https://github.com/wz1000/HieDb

IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

6.3 Multiple Home Unit in GHC

As described in §3.2.1, GHC has the concept of a home com-
ponent, and assumes that all other components are on disk
and do not change. If you wish to open both a library and
an executable that depends on it simultaneously, that causes
problems when the library changes but GHC does not no-
tice. While we have implemented workarounds, the correct
solution is to make GHC aware of multiple home units si-
multaneously.

The work to expand GHC to multiple home units is in
progress, and involves expanding GHC’s DynFlags data type
to go from having the notion of one home unit, to many, with
one of those many being the “current” home unit. Such a
patch has already been written, as described in several blog
posts®. There are three remaining limitations:

1. The code has not yet been merged into GHC. Until
that happens, it cannot be used by HLS and by our
users.

2. Modules in components can be hidden from each other.
However, which modules are visible is not actually
something GHC knows about, but is controlled by the
Cabal project description. Since GHC does not know
about Cabal projects, and only Cabal knows about
visibility, the information is not yet visible when GHC
is processing multiple components. As a consequence,
an executable can use a hidden module in a library,
and that error will only be detected when the project
is next compiled, not in the IDE.

3. GHC has a feature allowing package imports, where
both the module name and package of an import are
specified. Normally the name of packages are read
from the package database, but when GHC compiles
multiple components in memory, such information is
not available.

The arrival of multiple home units will simplify HLS, fix
some bugs, reduce memory consumption, remove unnec-
essary invalidations and improve parallelism. We consider
such a project one of the most meaningful improvements to
HLS to be found on the GHC side.

6.4 Parsing

We currently reuse the standard GHC parser, which operates
on a whole file, and returns either an error or a parse tree.
Neither of those attributes are desirable.

Parsing the file at once. GHC parses the whole file at
once. However, given the model of LSP, we have a diff to
the file — we can identify precisely which part changed. But
GHC cannot make use of that information. In practice, given
that parsing is fast and type-checking is comparatively slow,

®https://mpickering.github.io/ide/posts/2020-10-12-multiple-home-
units.html

it is not clear that a diff-based parsing algorithm would pro-
vide many benefits, unless combined with diff-based type-
checking [Busi et al. 2019].

Single error. If GHC detects a parse-error in a file, it re-
ports the entire file as being invalid. In practice, while a user
is editing an expression, often the rest of the program will
be well-formed, but we cannot use GHC to extract any infor-
mation beyond the parse error. Worse, the Haskell grammar
was not designed with incremental development in mind.
Consider the monadic expression:

main = do
x <- getLine

This program results in a parse error, meaning we cannot
obtain information about the name resolution or definition
of getLine. GHC has gained the ability to defer type errors
[Vytiniotis et al. 2012], and some users have proposed defer-
ring some class of parse errors like the one above’. Going
further, the popular Tree Sitter library can define a parser
that always produces a parse tree, potentially with a number
of errors embedded within it, using parsing with error recov-
ery [Wagner and Graham 1997]. Such an approach would
provide more accurate information during edits.

6.5 Debugging

Many IDE’s handle both text editing facilities and debug-
ging. However, the LSP specification [Microsoft 2021b] sticks
strictly to the text editing, with the companion Debug Adap-
tor Protocol (DAP) [Microsoft 2021a] providing cross-editor
hooks for debugging. We consider extending HLS to deal
with debugging to be important, but a lot of difficult engi-
neering work, for a few reasons:

1. In comparison to LSP, DAP is a lot newer technology,
so is not as well supported or stabilised between edi-
tors.

2. Haskell has a fairly unique lazy evaluation model,
which causes some difficulties when integrating in
to traditional debugging frameworks. Concepts like
stepping to the next line are possible to map to Haskell,
but not trivial.

3. Our experience with the runtime evaluation mecha-
nisms of Haskell has found that they are significantly
less robust, see §5.4.

However, none of these are likely to be fatal impediments.
There is an evaluation plugin for HLS, which allows evalu-
ating snippets written in documentation comments, which
requires some of the same underlying pieces. There is also
an interactive debugger provided by the interactive GHC
environment [Marlow et al. 2007], which we should be able

"https://github.com/ghc-proposals/ghc-proposals/pull/333


https://mpickering.github.io/ide/posts/2020-10-12-multiple-home-units.html
https://mpickering.github.io/ide/posts/2020-10-12-multiple-home-units.html
https://github.com/ghc-proposals/ghc-proposals/pull/333

Building an Integrated Development Environment (IDE) on top of a Build System

to take advantage of. Importantly, the underlying architec-
ture of HLS seems to fit with a debugger, all that is left is a
substantial amount of engineering.

7 Related work

The idea of building compilers and IDE’s on top of build
systems is starting to gain traction, but it is still far from the
standard approach. One term which is sometimes applied to
this idea is query-based, referencing the notion that nodes on
the dependency graph are “queries” of their dependencies.

The IDE which is most similar to our design is the Rust
Analyser IDE [Rust IDE Contributors 2020]. Rust Analyser
uses a custom library called Salsa [Salsa Contributors 2021],
which is described as an incremental computation library.
Salsa is defined in terms of inputs, and functions that produce
outputs — much like Shake. Looking at Salsa through the
lens of a build system [Mokhov et al. 2018], it is monadic
with early cut-off. The experience of Rust Analyser is that
the benefits are “generality and correctness” and that “you
are immune to cache invalidation bugs”, while the downside
is “extra complexity, slower performance”. We agree with
their assessment.

While building a dependency graph IDE on top of a stan-
dard compiler is a viable approach, pushing the dependency
graph deeper inside the compiler can give further benefits.
As examples, both C# [Hejlsberg 2016] and Rock [Fredriks-
son 2020] feature dependency graphs at a finer level, where
individual functions in the compiler are separate nodes. As a
consequence, when editing a large file, only a small portion
of the file needs to be invalidated. Equally important, if one
part of the file contains an error, the remainder of the file,
and even those files depending on that file, can continue to
work (much easier and more robust than our approach from
§3.2.2). We expect that as an IDE becomes a standard part of
language tooling, the compiler will be increasingly designed
as an IDE first.

While some compilers have been designed around build
systems at their lowest level, other compilers have observed
that even without the IDE focus, there are problems within
compilers that are naturally solved by off-the-shelf build
systems. Examples include in Stratego [Smits et al. 2020] and
experiments with replacing GHC --make with Shake [Yang
2016].

Finally, there are relatively few reports on the technical
challenges associated with writing an IDE. The Merlin IDE
[Bour et al. 2018] for OCaml is one of the exceptions. Some
of the difficulties they encountered are remarkably similar to
ours — OCaml has a variety of different project formats (just
like Haskell, see §3.2) and scalability is a constant concern
(see §6.2). Much of their paper is dedicated to improving
parsing results in the presence of errors — something we
have not yet explored, and would definitely benefit from.

IFL’20, September 2-4, 2020, Online

8 Conclusion

We implemented an IDE for Haskell on top of the build
system Shake. The result is an effective IDE, with a clean ar-
chitectural design, which has been easy to extend and adapt.
We consider both the project and the design a success. Our
design separates an IDE into an incrementality engine (in
our case based on a build system), rules which describe de-
pendencies and an integration layer with LSP — we believe
this design is a good fit for many programming language
IDE/LSP integrations. Build systems offer a powerful abstrac-
tion whose use in the compiler/IDE space is likely to become
increasingly prevalent.

Acknowledgments

Thanks to everyone who contributed to the IDE. The list is
long, but includes the Digital Asset team (who did the initial
development), the Haskell IDE engine team (who improved
the GHC API and lead the trail), and the hie-bios team (who
made it feasible to target real Haskell projects). In addition,
many open source contributors have stepped up with bug
reports and significant improvements. Truly a team effort.

References

Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: a language
server for OCaml (experience report). Proceedings of the ACM on Pro-
gramming Languages 2, ICFP (2018), 1-15.

Joachim Breitner, Brian Huffman, Neil Mitchell, and Christian Sternagel.
2013. Certified HLints with Isabelle/HOLCF-Prelude. In Haskell And
Rewriting Techniques (HART).

Matteo Busi, Pierpaolo Degano, and Letterio Galletta. 2019. Using standard
typing algorithms incrementally. In NASA Formal Methods Symposium.
Springer, 106-122.

Manuel MT Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon
Marlow. 2005. Associated types with class. In POPL. 1-13.

Digital Asset. 2021. DAML Programming Language. (2021). https://www.
daml.com/.

Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and
Policy-Free System for Software Deployment. In LISA, Vol. 4. 79-92.
Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In

ICFP.

Facebook. 2021. Buck. (2021). https://buck.build/.

Olle Fredriksson. 2020. Query-based compiler architectures. (25 June 2020).
https://ollef.github.io/blog/posts/query-based-compilers.html.

Google. 2021. Bazel. (2021). https://bazel.build/.

Anders Hejlsberg. 2016. Modern Compiler Construction. (12 May
2016). https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-
on-Modern-Compiler-Construction.

Graham Hutton and Erik Meijer. 1996. Monadic Parser Combinators.

Isaac Jones. 2005. The Haskell Cabal: A Common Architecture for Building
Applications and Libraries. In Trends in Functional Programming. 340—
354.

Simon Marlow, José Iborra, Bernard Pope, and Andy Gill. 2007. A Light-
weight Interactive Debugger for Haskell. In Haskell Workshop. 13-24.
Microsoft. 2021a. Debug Adaptor Protocol. (2021). https://microsoft.github.

io/debug-adapter-protocol/.

Microsoft. 2021b. Language Server Protocol. (2021). https://microsoft.github.
io/language-server-protocol/.

Neil Mitchell. 2012. Shake before building: Replacing Make with Haskell.
In ICFP. ACM.


https://www.daml.com/
https://www.daml.com/
https://buck.build/
https://ollef.github.io/blog/posts/query-based-compilers.html
https://bazel.build/
https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-on-Modern-Compiler-Construction
https://channel9.msdn.com/Blogs/Seth-Juarez/Anders-Hejlsberg-on-Modern-Compiler-Construction
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

IFL’20, September 2-4, 2020, Online N. Mitchell, M. Kiefer, P. Iborra, L. Lau, Z. Duggal, H. Siebenhandl, J. Neira Sanchez, M. Pickering and A. Zimmerman

Neil Mitchell, Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal, Hannes
Siebenhandl, Matthew Pickering, and Alan Zimmerman. 2020. Building
an Integrated Development Environment (IDE) on top of a Build System.
In Draft Proceedings of the 32nd International Symposium on Implementa-
tion and Application of Functional Languages (IFL 2020). 222-230.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build systems
ala carte. Proceedings ACM Programing Languages 2, Article 79, 79:1—
79:29 pages.

Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow.
2016. Non-recursive Make Considered Harmful - Build Systems at Scale.
In Haskell 2016. 55—-66.

Simon Peyton Jones. 2001. Tackling the awkward squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls in Haskell.
10S Press, 47-96.

Rust IDE Contributors. 2020. Three Architectures for a Responsive IDE.
(20 July 2020). https://rust-analyzer.github.io/blog/2020/07/20/three-
architectures-for-responsive-ide.html.

Salsa Contributors. 2021. About Salsa. (2021). https://salsa-rs.github.io/
salsa/.

Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming
for Haskell. In Haskell Workshop. 1-16.

Jeff Smits, Gabriél D. P. Konat, and Eelco Visser. 2020. Constructing Hybrid
Incremental Compilers for Cross-Module Extensibility with an Internal
Build System. CoRR (2020).

The GHC Team. 2021. The GHC Compiler, Version 8.10.3. (2021). https:
//www.haskell.org/ghc/.

The Haskell IDE Engine Team. 2020. haskell-ide-engine. (2020). https:
//github.com/haskell/haskell-ide-engine.

The HIE BIOS Team. 2021. hie-bios. (2021). https://github.com/mpickering/
hie-bios.

Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton Jones. 2014. Refinement types for Haskell. In ICFP. 269-282.
Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhaes. 2012.
Equality Proofs and Deferred Type Errors: A Compiler Pearl. In ICFP.

341-352.

T. Wagner and S. Graham. 1997. Incremental analysis of real programming
languages. In PLDI ’97.

Edward Yang. 2016. ghc —make reimplemented with Shake. (2016). https:
//github.com/ezyang/ghc-shake.


https://rust-analyzer.github.io/blog/2020/07/20/three-architectures-for-responsive-ide.html
https://rust-analyzer.github.io/blog/2020/07/20/three-architectures-for-responsive-ide.html
https://salsa-rs.github.io/salsa/
https://salsa-rs.github.io/salsa/
https://www.haskell.org/ghc/
https://www.haskell.org/ghc/
https://github.com/haskell/haskell-ide-engine
https://github.com/haskell/haskell-ide-engine
https://github.com/mpickering/hie-bios
https://github.com/mpickering/hie-bios
https://github.com/ezyang/ghc-shake
https://github.com/ezyang/ghc-shake

	Abstract
	1 Introduction
	2 Design
	2.1 Features on an IDE
	2.2 Features of a build system
	2.3 An IDE based on a build system
	2.4 Layering on top of Shake
	2.5 Stale results

	3 Integration
	3.1 The GHC API
	3.2 Setting up a GHC Session
	3.3 Language Server Protocol (LSP)
	3.4 Testing

	4 Extensibility
	4.1 LSP extensibility
	4.2 Core extensibility
	4.3 HLS plugins

	5 Evaluation
	5.1 Asynchronous exceptions are hard
	5.2 Session setup
	5.3 Cancellation
	5.4 Runtime evaluation
	5.5 References
	5.6 Garbage collection
	5.7 Memory leaks

	6 Ongoing and future work
	6.1 Find References
	6.2 Scalability
	6.3 Multiple Home Unit in GHC
	6.4 Parsing
	6.5 Debugging

	7 Related work
	8 Conclusion
	Acknowledgments
	References

