Building an Integrated Development Environment
(IDE) on top of a Build System
The tale of a Haskell IDE

Neil Mitchell
Facebook
ndmitchell@gmail.com

Luke Lau
Trinity College Dublin
luke_lau@icloud.com

Matthew Pickering
University of Bristol
matthewtpickering@gmail.com

Abstract

When developing a Haskell IDE we hit upon an idea — why
not base an IDE on an build system? In this paper we’ll
explain how to go from that idea to a usable IDE, including
the difficulties imposed by reusing a build system, and those
imposed by technical details specific to Haskell. Our design
has been successful, and hopefully provides a blue-print for
others writing IDEs.

1 Introduction

Writing an IDE (Integrated Development Environment) is
not as easy as it looks. While there are thousands of papers
and university lectures on how to write a compiler, there is

much less written about IDEs ([1] is one of the exceptions).

We embarked on a project to write a Haskell IDE (originally
for the GHC-based DAML language [4]), but our first few
designs failed. Eventually, we arrived at a design where the

heavy-lifting of the IDE was performed by a build system.

That idea turned out to be the turning point, and the subject
of this paper.

Over the past two years we have continued development
and found that the ideas behind a build system are both
applicable and natural for an IDE. The result is available as
a project named ghcide', which is then integrated into the
Haskell Language Server?.

In this paper we outline the core of our IDE §2, how it
is fleshed out into an IDE component §3, and then how we
build a complete IDE around it using plugins §4. We look
at where the build system both helps and hurts §5. We then
look at the ongoing and future work §6 before concluding

§7.

Lhttps://github.com/digital-asset/Ghcide
Zhttps://github.com/haskell/haskell-language-server

IFL’20, September 2—4, 2020, Online
2020.

Moritz Kiefer
Digital Asset
moritz.kiefer@purelyfunctional.org

Zubin Duggal
Chennai Mathematical Institute

zubin.duggal@gmail.com

Pepe Iborra
Facebook
pepeiborra@gmail.com

Hannes Siebenhandl
TU Wien
hannes.siebenhandl@posteo.net

Alan Zimmerman
Facebook
alan.zimm@gmail.com

2 Design

In this section we show how to implement an IDE on top of
a build system. First we look at what an IDE provides, then
what a build system provides, followed by how to combine
the two.

2.1 Features on an IDE

To design an IDE, it is worth first reflecting on what features
an IDE provides. In our view, the primary features of an IDE
can be grouped into three capabilities, in order of priority:

Errors/warnings The main benefit of an IDE is to get
immediate feedback as the user types. That involves
producing errors/warnings on every keystroke. In a
language such as Haskell, that involves running the
parser and type checker on every keystroke.

Hover/goto definition The next most important fea-
ture is the ability to interrogate the code in front of
you. Ways to do that include hovering over an iden-
tifier to see its type, and clicking on an identifier to
jump to its definition. In a language like Haskell, these
features require performing name resolution.

Find references Finally, the last feature is the ability to
find where a symbol is used. This feature requires an
understanding of all the code, and the ability to index
outward.

The design of Haskell is such that to type check a module
requires to get its contents, parse it, resolve the imports, type
check the imports, and only then type check the module itself.
If one of the imports changes, then any module importing it
must also be rechecked. That process can happen once per
user character press, so is repeated incredibly frequently.

Given the main value of an IDE is the presence/absence of
errors, the way such errors are processed should be heavily
optimised. In particular, it is important to hide/show an error

https://github.com/digital-asset/Ghcide
https://github.com/haskell/haskell-language-server

IFL’20, September 2-4, Mgl0 MItdhed], Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal, Hannes Siebenhandl|, Matthew Pickering, and Alan Zimmerman

as soon as possible. Furthermore, errors should persist until
they have been corrected.

2.2 Features of a build system

The GHC API is a Haskell API for compiling Haskell files,
using the same machinery as the GHC compiler [17]. There-
fore, to integrate smoothly with the GHC API, it is important
to choose a build system that can be used as a Haskell library.
Furthermore, since the build graph is incredibly dynamic,
potentially changing on every key stroke, it is important to
be a monadic build system [12, §3.5]. Given those constraints,
and the presence of an author in common, we chose to use
Shake [11].

The Shake build system is fully featured, including paral-
lelism, incremental evaluation and monadic dependencies.
While it has APIs to make file-based operations easy, it is
flexible enough to allow defining new types of rules and
dependencies which do not use files. At its heart, Shake is a
key/value mapping, for many types of key, where the type
of the value is determined by the type of the key, and the
resulting value may depend on many other keys.

2.3 An IDE on a build system

Given the IDE and build system features described above,
there are some very natural combinations. The monadic
dependencies are a perfect fit. Incremental evaluation and
parallelism provide good performance. But there are a num-
ber of points of divergence which we discuss and overcome
below.

2.3.1 Restarting. A Shake build can be interrupted at any
point, and we take the approach that whenever a file changes,
e.g. on every keystroke, we interrupt the running Shake build
and start a fresh one. While that approach is delightfully
simple, it has some problems in practice, and is a significant
divergence from the way Shake normally works.

Firstly, we interrupt using asynchronous exceptions [14].
Lots of Haskell code isn’t properly designed to deal with
such exceptions. We had to fix a number of bugs in Shake
and other libraries and are fairly certain some still remain.

Secondly, when interrupting a build, some things might be
in progress. If type checking a big module takes 10 seconds,
and the user presses the key every 1 second, it will keep
aborting 1 second through and never complete. In practice,
interrupting hasn’t been a significant hurdle, although we
discuss possible remedies in §5.3.

2.3.2 Errors. In normal Shake execution an error is thrown
as an exception which aborts the build. However, for an IDE,
errors are a common and expected state. Therefore, we want
to make errors first class values. Concretely, instead of the
result of a rule such as type checking being a type checked
module, we use:

([Diagnostic], Maybe TcModuleResult)

Where TcModuleResult is the type checked module result
as provided by the GHC APL The list of diagnostics stores
errors and warnings which can occur even if type checking
succeeded. The second component represents the result of
the rule with Nothing meaning that the rule could not be
computed either because its dependencies failed, or because
it failed itself.

In addition, when an error occurs, it is important to track
which file it belongs to, and to determine when the error goes
away. To achieve that, we make all Shake keys be a pair of a
phase-specific type alongside a FilePath. So a type-checked
value is indexed by:

(TypeCheck, FilePath)

where TypeCheck is isomorphic to ().

The second component of the key determines the file the
error will be associated with in the IDE. We cache the error
per FilePath and phase, and when a TypeCheck phase for a
given file completes, we overwrite any previous type check-
ing errors that file may have had. By doing so, we can keep
an up-to-date copy of what errors are known to exist in a
file, and know when they have been resolved.

2.3.3 Performance. Shake runs rules in a random order
[11, §4.3.2]. But as rule authors, we know that some steps
like type checking are computationally expensive, while oth-
ers like finding imports (and thus parsing) cause the graph
to fan out. Using that knowledge, we can deprioritise type
checking to reduce latency and make better use of multi-
core machines. To enable that deprioritisation, we added a
reschedule function to Shake, that reschedules a task with
a lower priority.

2.3.4 Memory only. Shake usually operates as a tradi-
tional build system, working with files and commands. As
standard, it stores its central key/value map in a journal on
disk, and rereads it afresh on each run. That caused two
problems:

1. Reading the journal each time can take as long as 0.1s.
While that is nearly nothing for a traditional build, for
an IDE that is excessive. We solved this problem by
adding a Database module to Shake that retains the
key/value map in memory.

2. Shake serialises all keys and values into the journal,
so those types must be serializable. While adding a
memory-only journal was feasible, removing the seri-
alisation constraints and eliminating all serialisation
would require more significant modifications. There-
fore we wrote serialisation methods for all the keys.
However, values are often GHC types, and contain
embedded types such as I0Ref, making it difficult to
serialise them. To avoid the need to use value serialisa-
tion, we created a shadow map containing the actual
values, and stored dummy values in the Shake map.

Building an Integrated Development Environment (IDE) on top of a Build System

The design of Shake is for keys to accumulate and never be
removed. However, as the IDE is very dynamic, the relevant
set of keys may change regularly. Fortunately, the Shake
portion of the key/value is small enough not to worry about,
but the shadow map should have unreachable nodes removed
in a garbage-collection like process (see §5.6).

2.4 Layering on top of Shake

In order to simplify the design of the rest of the system, we
built a layer on top of Shake, which provides the shadow
map, the keys with file names, the values with pairs and di-
agnostics etc. By building upon this layer we get an interface
that more closely matches the needs of an IDE. Using this
layer, we can define the type checking portion of the IDE as:

type instance RuleResult TypeCheck =
TcModuleResult

typeCheck = define $ \TypeCheck file -> do
pm <- use_ GetParsedModule file
deps <- use_ GetDependencies file
tms <- uses_ TypeCheck $
transitiveModuleDeps deps
session <- useNoFile_ GhcSession
1liftIO $ typecheckModule session tms pm

Reading this code, we use the RuleResult type family [2]
to declare that the TypeCheck phase returns a value of type
TcModuleResult. We then define a rule typeCheck which
implements the TypeCheck phase. The actual rule itself is
declared with define, taking the phase and the filename.
First, it gets the parsed module, then the dependencies of the
parsed module, then the type checked results for the transi-
tive dependencies. It then uses that information along with
the GHC API session to call a function typecheckModule.
To make this code work cleanly, there are a few key functions
we build upon:

e We use define to define types of rule, taking the phase
and the filename to operate on.

o We define use and uses which take a phase and a file
(or lists thereof) and return the result.

e On top of use we define use_ which raises an excep-
tion if the requested rule failed. In define we catch
that exception and switch it for ([], Nothing) to
indicate that a dependency has failed.

e Some items don’t have a file associated with them,
e.g. there is exactly one GHC session, so we have
useNoFile (and the underscore variation) for these.

e Finally, the GHC API can be quite complex. There
is a GHC provided typecheckModule, but it throws
exceptions on error, prints warnings to a log, returns
too much information for our purposes and operates
in the GHC monad. Therefore, we wrap it into a “pure”

IFL’20, September 2-4, 2020, Online

API (where the output is based on the inputs), with
the signature:

typecheckModule

:: HscEnv

-> [TcModuleResult]

-> ParsedModule

-> 10 ([Diagnostic], Maybe TcModuleResult)

2.5 Error tolerance

An IDE needs to be be tolerant to errors in the source code,
and must continue to aid the developer while the source
code is incomplete and does not parse or typecheck, as this
state is the default while source code it is being edited. We
employ a variety of mechanisms to achieve this goal:

e GHC’s -fdefer-type-errors and
-fdefer-out-of-scope-variables flags turn type er-
rors and out of scope variable errors into warnings,
and let it proceed to typecheck and return usable arti-
facts to the IDE. This flag leads to GHC downgrading
the errors produced to warnings, so we must promote
such warnings back into errors before reporting them
to the user.

If the code still fails to typecheck (for example due to
a parse error, or multiple declarations of a function
etc.), we still need to be able to return results to the
user. Therefore, we define the useWithStale function
to get the most recent, successfully computed value of
a key, even if it was for a older version of the source.
The function useWithStale has return type Maybe
(v, PositionMapping) where v is the return type
of the rule, and the type PositionMapping is a set of
functions that help us convert source locations in the
current version of a document back into the version
of the document for which the rule was last computed
successfully, and vice versa. For example, if the user
inserts a line at the beginning of the file, the reported
source locations of all the definitions in the file need
to be moved one line down. Similarly, when we are
querying the earlier version of the document for the
symbol under a cursor, we must remember to shift the
position of the cursor up by one line. We maintain this
mapping between source locations for all versions of a
file for which we have artifacts older than the current
version of the document.

2.6 Responsiveness

An IDE needs to return results quickly in order to be helpful.
However, we found that running all the Shake rules to check
for freshness and recompute results on every single request
was not satisfactory with regards to IDE responsiveness. This
problem was particularly evident for completions, which
need to show up quickly in order to be useful. However, each

IFL’20, September 2-4, Mgl0 MItdhed], Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal, Hannes Siebenhandl|, Matthew Pickering, and Alan Zimmerman

keystroke made by a user invalidates the Shake store, which
needs to be recomputed.

For this reason, we added an alternative mechanism to di-
rectly query the computed store of results without rerunning
all the Shake rules. We defined a function useWithStaleFast
for this purpose, with a signature like useWithStale. This
function first asynchronously fires a request to refresh the
Shake store. Immediately afterwards, it checks to see if the re-
sult has already been computed in the store. If it has, it imme-
diately returns this result, along with the PositionMapping
for the version of the document this result was computed for,
as described in the previous section. If the result has never
been computed before, it waits for recomputation request to
Shake to finish, and then returns its result.

This technique provides a significant improvement in the
responsiveness of requests like hovering, go to definition,
and completions, in return for a small sacrifice in correctness.

3 Integration

To go from the core described in §2 to a fully working IDE
requires integrating with lots of other projects. In this section
we outline some of the most important.

3.1 The GHC API

The GHC API provides access to the internals of GHC and
was not originally designed as a public APIL This history
leads to some design choices where IORef values (mutable
references) hide alongside huge blobs of state (e.g. HscEnv,
DynFlags). With careful investigation, most pieces can be
turned into suitable building blocks for an IDE. Over the
past few years the Haskell IDE Engine [18] project has been
working with GHC to upstream patches to make more func-
tions take in-memory buffers rather than files, which has
been very helpful.

One potentially useful part of the GHC API is the “down-
sweep” mechanism. In order to find dependencies, GHC
first parses the import statements, then sweeps downwards,
adding more modules into a dependency graph. The result
of downsweep is a static graph indicating how modules are
related. Unfortunately, this process is not very incremen-
tal, operating on all modules at once. If it fails, the result
is a failure rather than a partial success. This whole-graph
approach makes it unsuitable for use in an IDE. Therefore,
we rewrote the downsweep process in terms of incremental
dependencies. The disadvantage is that many things like pre-
processing and plugins are also handled by the downsweep,
so they had to be dealt with specially. We hope to upstream
our incremental downsweep into GHC at some point in the
future.

3.1.1 Separate type-checking. In order to achieve good
performance in large projects, it’s important to cache the
results of type-checking individual modules and to avoid
repeating the work the next time they are needed, or when

loading them for the first time after restarting the IDE. Our
IDE leverages two features of GHC that, together, enable
fully separate typechecking while preserving all the IDE
features mentioned in §2.1

1. Interface files (so called .hi files) are a by-product
of module compilation and have been in GHC since
the authors can remember. They contain a plethora
of information about the associated module. When
asking the GHC API to type-check a module M that
depends on a module D, one can load a previously
obtained D. hi interface file instead of type-checking
D, which is much more efficient and avoids duplicating
work. Using this file is only correct when D hasn’t
changed since D.hi was produced, but happily GHC
performs recompilation checks and complains when
this assumption isn’t met.

2. Extended interface files (so called . hie files) are also a
by-product of module compilation, recently added to
GHC in version 8.8. Extended interface files record the
full details of the type-checked AST of the associated
module, enabling tools to provide hover and go-to
reference functionality without the need to use the
GHC API at all. Our IDE mines these files to provide
hover and go-to reference for modules that have been
loaded from an interface file, and thus not typechecked
in the current session.

3.2 Setting up a GHC Session

When using the GHC API, the first challenge is to create
a working GHC session. This involves setting the correct
DynFlags needed to load and type-check the files in a project.
These typically include compilation flags like include paths
and what extensions should be enabled, but they also include
information about package dependencies, which need to be
built beforehand and registered with ghc-pkg. Furthermore,
these details are all entirely dependent on the build tool:
The flags that Stack passes to GHC to build a project will
be different from what Cabal passes, because each builds
and stores package dependencies in different locations and
package databases.

Because this whole process is so specific to the build tool,
setting up the environment and extracting the flags for a
Haskell project has traditionally been a very fickle process.
A new library hie-bios [19] was developed to tackle this prob-
lem, consolidating efforts into one place. The name comes
from the idea that it acts as the first point of entry for setting
up the GHC session, much like a system BIOS is the first
point of entry for hardware on a computer. Its philosophy is
to delegate the responsibility of setting up a session entirely
to the build tool — whether that be Cabal, Stack, Hadrian
[13], Bazel [7] or any other build system that invokes GHC.

hie-bios is based around the idea of cradles which describe
a specific way to set up an environment through a specific

Building an Integrated Development Environment (IDE) on top of a Build System

build tool. For instance, hie-bios comes with cradles for Stack
projects, Cabal projects and standalone Haskell files, but it
can interface with other build tools by invoking them and
reading the arguments to GHC via stdout. These cradles
are essentially functions that call the necessary functions on
the build tool to build and register any dependencies, and re-
turn the flags that would be passed to GHC for a specific file
or component. For Cabal and Stack, this information is cur-
rently obtained through the repl commands. The cradle that
should be used for a specific project can be inferred through
the presence of build-tool specific files like cabal.project
and stack.yaml. For more complex projects which comprise
of multiple directories and packages, the cradles used can
be explicitly configured through a hie.yaml file to describe
exactly what build tool should be used, and what compo-
nent should be loaded for the GHC session, for each file or
directory.

3.3 Handling multiple components in one session

Haskell projects are often separated into multiple packages,
and when using Cabal [9], a package consists of multiple com-
ponents. These components might be a library, executable,
test-suite or a benchmark. Each of the components might
require a different set of compilation options and they might
depend on each other. Ideally, we want to be able to use the
IDE on all components at the same time, so that features
like goto-definition and refactoring work sensibly. Conse-
quentially, using the IDE on a big project with multiple sub-
projects should work as expected.

However, the GHC API is designed to only handle a sin-
gle component at a time. This limitation is hard-coded in
multiple locations within the GHC code-base. As it can only
handle a single component, GHC only checks whether any
modules have changed for this single component, assumes
that any dependencies are stored on disk and won’t change
during the compilation. However, in our dynamic usage,
local dependencies might change!

The same problematic behaviour can be found in every-
day usage of an interactive GHC session. Loading an exe-
cutable into the interactive session, and applying changes to
the library the executable depends on, will not cause any re-
compilation in the interactive session. For any of the changes
to take effect, the user needs to entirely shut-down the inter-
active GHC session and reload it. In the IDE context, if the
library component changes the executable component will
not be recompiled, as GHC does not notice that a dependency
has changed and diagnostics for the executable component
become stale. To work around these limitations, we handle
components in-memory and modify the GHC session ad-
hoc. Whenever the IDE encounters a new component, we
calculate the global module graph of all components that are
in-memory. With this graph, we can handle module updates
ourselves and load multiple components in a single GHC
session.

IFL’20, September 2-4, 2020, Online

3.4 Language Server Protocol (LSP)

In order to actually work as an IDE, we need to communi-
cate with a text editor. We use the Language Server Protocol
(LSP) [10] for this, which is supported by most popular text
editors and clients, either natively or through plugins and
extensions. LSP is a JSON-RPC based protocol that works by
sending messages between the editor and a language server.
Messages are either requests, which expect a response to be
sent back in reply, or notifications which do not expect any.
For example, the editor (client) might send notifications that
some file has been updated, or requests for code completions
to display to the user at a given source location. The lan-
guage server may then send back responses answering those
requests and notifications that provide diagnostics.

To bridge the gap between messages and the build graph,
ghcide deals with the types of incoming messages differently:

e When a notification arrives from LSP that a docu-
ment has been edited, we modify the nodes that have
changed, e.g., the content of the modified files, and
immediately start a rebuild in order to produce diag-
nostics.

e When a request for some specific language feature
arrives, we append a target to the ongoing build asking
for whatever information is required to answer that
request. For example, if a hover request arrives, we
ask for the set of type-checked spans corresponding
to that file. Importantly, this does not cause a rebuild.

e When the graph computes that the diagnostics for a
particular file have changed, we send a notification to
the client to show updated diagnostics.

3.5 Testing

Our IDE implements a large part of the LSP specification, and
has to operate on a large range of possible projects with all
sorts of edge cases. We protect against regressions from these
edge cases with a functional test suite built upon Isp-test, a
testing framework for LSP servers. Isp-test acts as a client
which language servers can talk to, simulating a session from
start to finish at the transport level. The library allows tests
to specify what messages the client should send to the server,
and what messages should be received back from the server.

Functional testing turns out to be rather important in this
scenario as the RPC-based protocol is in practice, highly
asynchronous, something which unit tests often fail to ac-
count for. Clients can make multiple requests in flight and
Shake runs multiple worker threads, so the order in which
messages are delivered is non-deterministic. Because of this
fact, a typical test might look like:

test :: I0 ()

test = runSession "ghcide" fullCaps "test" $ do
doc <- openDoc "Foo.hs" "haskell"
skipMany anyNotification
let prms = DocumentSymbolParams doc

IFL’20, September 2-4, Mgl0 MItdhed], Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal, Hannes Siebenhandl|, Matthew Pickering, and Alan Zimmerman

rsp <- request TextDocumentDocumentSymbol prms
1iftI0O $ rsp *. result ‘shouldNotSatisfy‘ null

In this session, Isp-test tells ghcide to open up a document,
and then ignore any notifications it may send with skipMany
anyNotification. A session is actually a parser combina-
tor [8] operating on incoming messages under the hood,
which allows the expected messages from the server to be
specified in a flexible way that can handle non-deterministic
ordering. It then sends a request to the server to retrieve the
symbols in a document, waits for the response and finally
makes some assertion about the response.

An additional benefit of having testing at the transport
level is that we can reuse much of the test suite in IDEs
building on top of Ghcide for free, since we only need to
swap out what server the tests should be run on. Isp-test
is also used not only for testing, but also for automating
benchmarks (See §5.7).

4 Plugins
The IDE described in §3 corresponds to the Haskell library

Ghcide, which is currently used in at least four different
roles:

e With a thin wrapper as a stand alone IDE for GHC.

o As the engine powering the IDE for DAML.

o As the foundation of a compiler for DAML.

e As the GHC layer for a more full-featured Haskell IDE
(Haskell Language Server, HLS).

The key to supporting all these use cases is a rich plugin
mechanism.

4.1 LSP extensibility

The Language Server Protocol is extensible, in that it pro-
vides sets of messages that provide a (sub) protocol for de-
livering IDE features. Examples include:

e Context aware code completion

e Hover information. This is context-specific informa-
tion provided as a separate floating window based on
the cursor position. Additional analysis sources should
be able to seamlessly add to the set of information pro-
vided.

e Diagnostics. The GHC compiler provides warnings
and errors. It should be possible to supplement these
with any other information from a different analysis
tool. Such as hlint, or 1iquid haskell.

e Code Actions. These are context-specific actions that
are provided based on the current cursor location. Typ-
ical uses are to provide actions to fix simple compiler
errors reported, e.g. adding a missing language pragma
or import. But they can also provide more advanced
functionality, like suggesting refactorings of the code.

e Code Lenses. These operate on the whole file, and offer
a way to display annotations to a given piece of code,
which can optionally be clicked on to trigger a code

action to perform some function. In ghcide these are
used to display inferred type signatures for functions,
and allow you to add them to the code with one click.

The standardised messaging allows uniform processing
on the client side for features, but also means new features
should be easy to add on the server side.

4.2 Ghcide plugins

Internally, ghcide is two things, a rule engine, and an interface
to the Language Server Protocol (§3.4).

So to be extensible, there must be a way to add rules to
the rule database, and additional message handlers to the
LSP message processing.

A plugin in ghcide is thus defined as a data structure hav-
ing Rules and PartialHandlers

A Monoid class is provided for these, meaning they can be
freely combined. There is one caveat, in that order matters
for the PartialHandlers, so the last message handler for a
particular message wins.

In practical terms the plugin uses these features as follows

e It provides rules to generate additional artefacts and
add them to the Shake graph if needed. For most plug-
ins this is unnecessary, as the full output of the under-
lying compiler is available. Typical use-cases for this
would be to trigger additional processing for diagnos-
tics, such as for hlint or similar external analysis.
Note that care must be taken with adding rules, as it
affects both memory usage and processing time.

e It provides handlers for the specific LSP messages
needed to provide its feature(s).

This is a fairly low-level capability, but it is sufficient to
provide the plugins built in to ghcide, and serve as a building
block for the Haskell Language Server.

4.3 Haskell Language Server plugins

The Haskell Language Server makes use of ghcide as its IDE
engine, relying on it to provide fast, accurate, up to date
information on the project being developed by a user.

Where ghcide is intended to do one thing well, Haskell
Language Server is targeted at being the "batteries included"
starter IDE for any Haskell user. HLS is the family car where
ghcide is the sports model.

We will describe here its approach to plugins.

Firstly, a design goal for HLS is to be able mix and match
any set of plugins. The current version (0.3) has a set built in,
but the road map calls for the ability to provide a tiny custom
Main module that imports a set of plugins, puts them in a
structure and passes them in to the existing main programme.

To enable this, it has a plugin descriptor which looks like

data PluginDescriptor =
PluginDescriptor
{ pluginld

Building an Integrated Development Environment (IDE) on top of a Build System

'PluginId
, pluginRules
I'(Rules ())
, pluginCommands
I'[PluginCommand]
, pluginCodeActionProvider
! (Maybe CodeActionProvider)
, pluginCodelLensProvider
! (Maybe CodelLensProvider)
, pluginHoverProvider
! (Maybe HoverProvider)

The pluginId is used to make sure that if more than one
plugin provides a Code Action with the same command name,
HLS can choose the right one to process it.

The [PluginCommand] is a possibly empty list of com-
mands that can be invoked in code actions.

The rest of the fields can be filled in with just the capabili-
ties the plugin provides.

So a plugin providing additional hover information based
on analysis of the existing GHC output would only fill in
the pluginId and pluginHoverProvider fields, leaving the
rest at their defaults.

4.4 Haskell Language Server plugin processing

The HLS engine converts the HLS-specific plugin structures
to a single ghcide plugin.

It simply combines the Rules monoidally, but does some
specific processing for the other message handlers.

The key difference is that HLS processes the entire set
of PluginHandlers at once, rather than using the pairwise
mappend operation.

This means that when a hover request comes in, it can
call all the hover providers from all the configured plugins,
combine the results and send a single combined reply to the
original request.

The same technique is used as appropriate for each of the
message handlers.

5 Evaluation

We released our IDE and it has become an important part
of the Haskell tools ecosystem. When it works, the IDE pro-
vides fast feedback with increasingly more features by the
day. Building on top of a build system gave us a suitable
foundation for expressing the right things easily. Building
on top of Shake gave us a well tested and battle hardened li-
brary with lots of additional features we didn’t use, but were
able to rapidly experiment with. However, the interesting
part of the evaluation is what doesn’t work.

IFL’20, September 2-4, 2020, Online

5.1 Asynchronous exceptions are hard

Shake had been designed to deal with asynchronous excep-
tions, and had a full test suite to show it worked with them.
However, in practice, we keep coming up with new prob-
lems that bite in corner cases. Programming defensively with
asynchronous exceptions is made far harder by the fact that
even finally constructions can actually be aborted, as there
are two levels of exception interrupt. We suspect that in time
we’ll learn enough tricks to solve all the bugs, but it’s a very
error prone approach, and one where Haskell’s historically
strong static checks are non-existent.

5.2 Session setup

The majority of issues reported by users are come from
the failure to setup a valid GHC session — this is the first
port of call for ghcide, so if this step fails then every other
feature will fail. The diversity of project setups in the wild
is astounding, and without explicit configuration hie-bios
struggles to detect the correct cradles for the correct files
(see §3.2). It is a difficult problem, and the plethora of Haskell
build tools out there only exacerbates it further. Tools such
as Nix [5] are especially common and problematic.

Work is currently underway to push the effort upstream
from hie-bios into the build tools themselves, to expose more
information and provide a more reliable interface for set-
ting up sessions: Recently a show-build-info command
has been developed for cabal-install that builds package de-
pendencies and returns information about how Cabal would
build the project in a machine readable format.

In addition, some projects require more than one GHC
session to load all modules — we are still experimenting with
solutions for this problem.

5.3 Cancellation

While regularly cancelling builds doesn’t seem to be a prob-
lem in practice, it would be better if the partial work started
before a cancellation could be resumed. A solution like FRP
[6] might offer a better foundation, but we were unable to
identify a suitable existing library for Haskell (most cannot
deal with parallelism). Alternatively, a build system based on
a model of continuous change rather than batched restarts
might be another option. We expect the current solution
using Shake to be sufficient for at least another year, but not
another decade.

5.4 Runtime evaluation

Some features of Haskell involve compiling and running
code at runtime. One such culprit is Template Haskell [15].
The mechanisms within GHC for runtime evaluation are
improving with every release, but still cause many problems.

IFL’20, September 2-4, Mgl0 MItdhed], Moritz Kiefer, Pepe Iborra, Luke Lau, Zubin Duggal, Hannes Siebenhandl|, Matthew Pickering, and Alan Zimmerman

Figure 1. Heap usage over successive versions of Ghcide

5.0e9

2009

— V005 —— V006 — V010 v0.20

5.5 References

As stated in §2.1, an IDE offers three fundamental features —
diagnostics, hover/goto-definition and find references. Our
IDE offers the first two, but not the third. If the IDE was
aware of the roots of the project (e.g. the Main module for a
program) we could use the graph to build up a list of refer-
ences. However, we have not yet done so.

5.6 Garbage collection

Currently, once a file has been opened, it remains in memory
indefinitely. Frustratingly, if a temporary file with errors is
opened, those errors will remain in the users diagnostics
pane even if the file is shut. It is possible to clean up such
references using a pass akin to garbage collection, removing
modules not reachable from currently open files. We have
implemented that feature for the DAML Language IDE [4],
but not yet for the Haskell IDE.

5.7 Memory leaks

A recurring complaint of our users is the amount of memory
used. Indeed one of the authors witnessed >70GB resident
set sizes on multiple occasions on medium/large codebases.
This memory consumption was not only ridiculously ineffi-
cient but also a source of severe responsiveness issues while
waiting ? for the garbage collector to waddle through the
mud of an oversized heap.

Our initial efforts focused on architectural improvements
like separate type-checking and a frugal discipline on what
gets stored in the Shake graph. But it wasn’t until a laziness
related space leak was identified and fixed in the Haskell

3By default the GHC runtime will trigger a major collection after 0.3 seconds
of idleness; thankfully this can be customized along with many other GC
settings.

6

library unordered-containers library that we observed a
material improvement. Figure 1 shows the heap usage of a
replayed Ghcide session over time, for various versions of
Ghcide, where we can see that for versions prior to 0.2.0 it
would grow linearly and without bounds until running out
of memory.

Given how much effort and luck it took to clear out the
space leak, and the lack of methods or tooling for diagnosing
leaks induced by laziness, we have installed mechanisms to
prevent new leaks from going undetected:

1. A benchmark suite that replays various scenarios while
collecting space and time statistics.

2. An experiment tool that runs benchmarks for a set
of commits and compares the results, highlighting re-
gressions.

Monitoring and preventing performance regressions is
always a good practice, but absolutely essential when using
a lazy language due to the rather unpredictable dynamic
semantics.

6 Future work

Since the IDE was released, a number of volunteer contrib-
utors have been developing and extending the project in
numerous directions. In addition, some teams in commercial
companies have starting adopting the IDE for their projects.
Some of the items listed in this section are currently under
active development, while other are more aspirational in
nature.

6.1 hiedb

hiedb* is a tool to index and query GHC extended interface
(.hie) files. It reads . hie files and extracts all sorts of useful
information from them, such as references to names and
types, the definition and declaration spans, documentation
and types of top level symbols, storing it in a SQLite database
for fast and easy querying.

Integrating hiedb with Ghcide has many obvious benefits.
For example, we can finally add support for "find references’,
as well as allowing you to search across all the symbols
defined in your project.

In addition, the hiedb database serves as an effective way
to persist information across Ghcide runs, allowing greater
responsiveness, ease of use and flexibility to queries. hiedb
works well for saving information that is not local to a partic-
ular file, like definitions, documentation, types of exported
symbols and so on.

A branch of Ghcide integrating it with hiedb is under
active development.

Ghcide acts as an indexing service for hiedb, generating
.hi and .hie files which are indexed and saved in the database,
available for all future queries, even across restarts. A local
cache of .hie files/type-checked modules is maintained on

*https://github.com/wz1000/HieDb

https://github.com/wz1000/HieDb

Building an Integrated Development Environment (IDE) on top of a Build System

top of this to answer queries for the files the user is currently
editing, while non-local information about other files in the
project is accessed through the database.

6.2 Replacing Shake

As we observed in §5, a build system is a good fit for an
IDE, but not a perfect fit. Using the abstractions we built
for our IDE, we have experimented with replacing Shake
for a library based on Functional Reactive Programming [6],
specifically the Haskell library Reflex. Initial results are
promising in some dimensions (seems to be lower overhead),
but lacking (no parallelism). We continue to experiment in
this space.

6.3 Multiple Home Unit in GHC

As described in §3.3, there are limitations in the GHC API
that force us to handle the module graph in-memory. This
is error-prone and complicates the IDE quite a lot. Moving
this code into GHC improves the performance and simplify
support for multiple GHC versions. Moreover, it might prove
useful for follow up contributions to enable GHC to work
as a build server. As such, it can compile multiple units in
parallel without being restarted, while using less memory in
the process.

7 Conclusion

We implemented an IDE for Haskell on top of the build
system Shake. The result is an effective IDE, with a clean
architectural design, which has been easy to extend and
adapt. We consider both the project and the design a success.

The idea of using a build system to drive a compiler is
becoming more widespread, e.g. in Stratego [16] and experi-
ments with replacing GHC --make [20]. By going one step
further, we can build the entire IDE on top of a build sys-
tem. The closest other IDE following a similar pattern is the
Rust Analyser IDE [3], which uses a custom recomputation
library, not dissimilar to a build system. Build systems offer
a powerful abstraction whose use in the compiler/IDE space
is likely to become increasingly prevalent.

Acknowledgments

Thanks to everyone who contributed to the IDE. The list is
long, but includes the Digital Asset team (who did the initial
development), the Haskell IDE engine team (who improved
the GHC API and lead the trail), and the hie-bios team (who
made it feasible to target real Haskell projects). In addition,
many open source contributors have stepped up with bug
reports and significant improvements. Truly a team effort.

References

[1] Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: a
language server for OCaml (experience report). Proceedings of the
ACM on Programming Languages 2, ICFP (2018), 1-15.

IFL’20, September 2-4, 2020, Online

[2] Manuel MT Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. 2005. Associated types with class. In Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 1-13.

[3] RustIDE Contributors. 2020. Three Architectures for a Responsive IDE.
(20 July 2020). https://rust-analyzer.github.io/blog/2020/07/20/three-
architectures-for-responsive-ide.html.

[4] Digital Asset. 2020. DAML Programming Language. (2020). https:
/lwww.daml.com/.

[5] Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and
Policy-Free System for Software Deployment. In LISA, Vol. 4. 79-92.

[6] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In International Conference on Functional Programming.

[7] Google. 2020. Bazel. (2020). http://bazel.io/.

[8] Graham Hutton and Erik Meijer. 1996. Monadic Parser Combinators.

[9] Isaac Jones. 2005. The Haskell Cabal: A Common Architecture for
Building Applications and Libraries, Marko van Eekelen (Ed.). 340—
354.

[10] Microsoft. 2020. Language Server Protocol. (2020). https://microsoft.
github.io/language-server-protocol/.

[11] Neil Mitchell. 2012. Shake before building: Replacing Make with
Haskell. In ACM SIGPLAN Notices, Vol. 47. ACM, 55-66.

[12] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build
systems a la carte. Proceedings ACM Programing Languages 2, Article
79, 79:1-79:29 pages.

[13] Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Mar-
low. 2016. Non-recursive Make Considered Harmful - Build Systems
at Scale. In Haskell 2016: Proceedings of the ACM SIGPLAN symposium
on Haskell. 55-66.

[14] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls in
Haskell. 10S Press, 47-96.

[15] Tim Sheard and Simon Peyton Jones. 2002. Template meta-
programming for Haskell. In Proceedings of the 2002 Haskell Workshop,
Pittsburgh. 1-16.

[16] Jeff Smits, Gabriél D. P. Konat, and Eelco Visser. 2020. Constructing
Hybrid Incremental Compilers for Cross-Module Extensibility with
an Internal Build System. CoRR (2020). arXiv:2002.06183

[17] The GHC Team. 2020. The GHC Compiler, Version 8.8.3. (2020). https:
//www.haskell.org/ghc/.

[18] The haskell-ide-engine Team. 2020. haskell-ide-engine. (2020). https:
//github.com/haskell/haskell-ide-engine.

[19] The hie-bios Team. 2020. hie-bios. (2020).
mpickering/hie-bios.

[20] Edward Yang. 2016. ghc —make reimplemented with Shake. (2016).
https://github.com/ezyang/ghc-shake.

https://github.com/

https://rust-analyzer.github.io/blog/2020/07/20/three-architectures-for-responsive-ide.html
https://rust-analyzer.github.io/blog/2020/07/20/three-architectures-for-responsive-ide.html
https://www.daml.com/
https://www.daml.com/
http://bazel.io/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://arxiv.org/abs/2002.06183
https://www.haskell.org/ghc/
https://www.haskell.org/ghc/
https://github.com/haskell/haskell-ide-engine
https://github.com/haskell/haskell-ide-engine
https://github.com/mpickering/hie-bios
https://github.com/mpickering/hie-bios
https://github.com/ezyang/ghc-shake

	Abstract
	1 Introduction
	2 Design
	2.1 Features on an IDE
	2.2 Features of a build system
	2.3 An IDE on a build system
	2.4 Layering on top of Shake
	2.5 Error tolerance
	2.6 Responsiveness

	3 Integration
	3.1 The GHC API
	3.2 Setting up a GHC Session
	3.3 Handling multiple components in one session
	3.4 Language Server Protocol (LSP)
	3.5 Testing

	4 Plugins
	4.1 LSP extensibility
	4.2 Ghcide plugins
	4.3 Haskell Language Server plugins
	4.4 Haskell Language Server plugin processing

	5 Evaluation
	5.1 Asynchronous exceptions are hard
	5.2 Session setup
	5.3 Cancellation
	5.4 Runtime evaluation
	5.5 References
	5.6 Garbage collection
	5.7 Memory leaks

	6 Future work
	6.1 hiedb
	6.2 Replacing Shake
	6.3 Multiple Home Unit in GHC

	7 Conclusion
	Acknowledgments
	References

