
169

Build Scripts with Perfect Dependencies

SARAH SPALL, Indiana University, USA

NEIL MITCHELL, Facebook, UK

SAM TOBIN-HOCHSTADT, Indiana University, USA

Build scripts for most build systems describe the actions to run, and the dependencies between those actionsÐ
but often build scripts get those dependencies wrong. Most build scripts have both too few dependencies (leading
to incorrect build outputs) and too many dependencies (leading to excessive rebuilds and reduced parallelism).
Any programmer who has wondered why a small change led to excess compilation, or who resorted to a
łcleanž step, has suffered the ill effects of incorrect dependency specification. We outline a build system where
dependencies are not specified, but instead captured by tracing execution. The consequence is that dependencies
are always correct by construction and build scripts are easier to write. The simplest implementation of our
approach would lose parallelism, but we are able to recover parallelism using speculation.
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1 INTRODUCTION

Every non-trivial piece of software includes a łbuild systemž, describing how to set up the system
from source code. Build scripts [Mokhov et al. 2018] describe commands to run and dependencies to

respect. For example, using the Make build system [Feldman 1979], a build script might look like:

main.o: main.c

gcc -c main.c

util.o: util.c

gcc -c util.c

main.exe: main.o util.o

gcc -o main.exe main.o util.o

This script contains three rules. Looking at the first rule, it says main.o depends on main.c, and
is produced by running gcc -c main.c. What if we copy the commands into a shell script? We get:

gcc -c main.c

gcc -c util.c

gcc -o main.exe main.o util.o

That’s shorter, simpler and easier to follow. Instead of declaring the outputs and dependencies of
each command, we’ve merely given one valid ordering of the commands (we could equally have
put gcc -c util.c first). This simpler specification has additional benefits. First, we’ve fixed
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some potential bugs ś these commands depend on the undeclared dependency gcc, and whatever
header files are used by main.c and util.c. These bugs could be fixed in the Makefile by adding a
dependency on the version of gcc used, as well as by listing every header file transitively included
by main.c and util.c Furthermore, as the files main.c and util.c evolve, and their dependencies
change (by changing the #include directives), the shell script remains correct, while the Make

script must be kept consistent or builds will become incorrect.

1.1 Why Dependencies?

Given the manifest simplicity of the shell script, why write a Makefile? Build systems such as
Make have two primary advantages, both provided by dependency specification: incrementality

and parallelism. Make is able to re-run only the commands needed when a subset of the files
change, saving significant work when only util.c changes.Make can also run multiple commands
in parallel when neither depends on the other, such as the two invocations of gcc -c. With a
shell script, these are both challenging research problems in incremental computing and automatic
parallelization, respectively, and unlikely to be solvable for arbitrary programs such as gcc.

1.2 Builds without Dependencies

In this paper we show how to take the above shell script and gain many of the benefits of a Make

build (ğ2). Firstly, we can skip those commands whose dependencies haven’t changed by tracing

which files they read and write (ğ2.4) and keeping a history of such traces. Secondly, we can run
some commands in parallel, using speculation to guess which future commands won’t interfere
with things already running (ğ2.8). The key to speculation is a robust model of what łinterferingž
means ś we call a problematic interference a hazard, which we define in ğ2.6.

We have implemented these techniques in a build system called Rattle1, introduced in ğ3, which
embeds commands in a Haskell script. A key part of the implementation is the ability to trace
commands, whose limitations we describe in ğ3.5. We show that our design decisions produce
correct builds by formalizing hazards and demonstrating important properties about the safety of
speculation in ğ4. To evaluate our claims, and properly understand the subtleties of our design, we
converted existingMake scripts into Rattle scripts, and discuss the performance characteristics
and Make script issues uncovered in ğ5. We also implement two small but non-trivial builds from
scratch in Rattle and report on the lessons learned. Our design can be considered a successor to
theMemoize build system [McCloskey 2008], and we compare Rattle with it and other related
work in ğ6. Finally, in ğ7 we conclude and describe future work.

2 BUILD SCRIPTS FROM COMMANDS

Our goal is to design a build system where a build script is simply a list of commands. In this section
we develop our design, starting with the simplest system that just executes all the commands in
order, and ending up with the benefits of a conventional build system.

2.1 Executing Commands

Given a build script as a list of commands, like in ğ1, the simplest execution model is to run
each command sequentially in the order they were given. Importantly, we require the list of
commands is ordered, such that any dependencies are produced before they are used. We consider
this sequential execution the reference semantics, and as we develop our design further, require
that any optimised/cached implementation gives the same results.

1https://github.com/ndmitchell/rattle
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2.2 Value-Dependent Commands

While a static list of commands is sufficient for simple builds, it is limited in its expressive power.
Taking the build script from ğ1, the user might really want to compile and link all .c files ś not just
those explicitly listed by the script. A more powerful script, along with its translation to working
Rattle code, is shown in figure 1.

FILES=$(ls *.c)

for FILE in $FILES; do

gcc -c $FILE

done

gcc -o main.exe ${FILES%.c}.o

main = rattle $ do

cs <- liftIO $ getDirectoryFiles "." [root </> "*.c"]

forP cs $ \c -> cmd "gcc -c" c

let toO x = takeBaseName x <.> "o"

cmd "gcc -o main.exe" (map toO cs)

Fig. 1. Value-dependent build scripts, in Shell and Rattle

This script now has a curious mixture of commands (ls, gcc), control logic (for) and simple
manipulation (changing file extension2). Importantly, there is no fixed list of commands ś the future
commands are determined based on the results of previous commands. Concretely, in this example,
the result of ls changes which gcc commands are executed. The transition from a fixed list of
commands to a dynamic list matches the Applicative vs Monadic distinction of Mokhov et al.
[2018, ğ3.5].
There are three approaches to modelling a dynamic list of commands:

(1) We could consider the commands as a stream given to the build system one by one as they
are available. The build system has no knowledge of which commands are coming next or
how they were created. In this model, a build script supplies a stream of commands, with
the invariant that dependencies are produced before they are used, but provides no further
information. The main downside is that it becomes impossible to perform any analysis that
might guide optimisation.

(2) We could expose the full logic of the script to the build system, giving a complete under-
standing of what commands are computed from previous output, and how that computation
is structured. The main downside is that the logic between commands would need to be
specified in some constrained domain-specific language (DSL) in order to take advantage of
that information. Limiting build scripts to a specific DSL complicates writing such scripts.

(3) It would be possible to have a hybrid approach, where dependencies between commands
are specified, but the computation is not. Such an approach still complicates specification
(some kind of dependency specification is required), but would allow some analysis to be
performed.

In order to retain the desired simplicity of shell scripts, we have chosen the first option, modelling
a build script as a sequence of commands given to the build system. Future commands may depend
on the results of previous commands in ways that are not visible to the build system. The commands
are produced with łcheapž functions such as control logic and simple manipulations, for example,
using a for loop to build a list of object files. We consider the cheap commands to be fixed overhead,
run on every build, and not cached or parallelised in any way. If any of these cheap manipulations
becomes expensive, they can be replaced by a command, which will then be visible to the build
system. The simple list of commands from ğ1 is a degenerate case of no interesting logic between
commands.

2We take some liberties with shell scripts around replacing extensions, so as not to obscure the main focus.
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An important consequence of the control logic not being visible to the build system is that the
build system has no prior knowledge of which commands are coming next, or if they have changed
since it last executed them. As a result, even when the build is a simple static script such as from
ğ1, when it is manually edited, the build will execute correctly. The build system is unaware if
you edited the script, or if the commands were conditional on something that it cannot observe.
Therefore, this model solves the problem of self-tracking from Mokhov et al. [2018, ğ6.5].

2.3 Dependency Tracing

For the rest of this section we assume the existence of dependency tracing which can tell us which
files a command accesses. Concretely, we can run a command in a special mode such that when
the command completes (and not before) we can determine which files it read and wrote; these
files are considered to be the command’s inputs and outputs respectively. We cannot determine at
which point during the execution these files were accessed, nor which order they were accessed in.
We cannot prevent or otherwise redirect an in-progress access. We discuss the implementation of
dependency tracing, and the reasons behind the (frustrating!) limitations, in ğ3.5.

2.4 Skipping Unnecessary Commands

When running a command, we can use dependency tracing to capture the files which that command
reads and writes, and then after the command completes, record the cryptographic hashes of the
contents of those files. If the same command is ever run again, and the inputs and outputs haven’t
changed (have the same hashes), it can be skipped. This approach is the key idea behind both
Memoize [McCloskey 2008] and Fabricate [Hoyt et al. 2009]. However, this technique makes the
assumption that commands are pure functions from their inputs to their outputs, meaning if a
command’s input files are the same as last time it executed, it will write the same values to the
same set of files. Below are four ways that assumption can be violated, along with ways to work
around it.
Non-deterministic commands Many commands are non-deterministic ś e.g. the output of

ghc object files contains unpredictable values within it (a consequence of the technique described
by Augustsson et al. [1994]). We assume that where such non-determinism exists, any possible
output is equally valid.
Incorporating external information Some commands incorporate system information such

as a timestamp, so a cached value will be based on the first time the command was run, not
the current time. For compilations that embed the timestamp in metadata, the first timestamp is
probably fine. For commands that really want the current time, that step can be lifted into the
control logic (as per ğ2.2) so it will run each time the build runs. Similarly, commands that require
unique information, e.g. a GUID or random number, can be moved into control logic and always
run.
Reading and writing the same file If a command both reads and writes the same file, and the

information written is fundamentally influenced by the file that was read, then the command never
reaches a stable state. As an example, echo x >> foo.txt will append the character x every time
the command is run. Equally, there are also commands that read the existing file to avoid rewriting
a file that hasn’t changed (e.g. ghc generating a .hi file) and commands that can cheaply update an
existing file in some circumstances (the Microsoft C++ linker in incremental mode). We make the
assumption that if a command both reads and writes to a file, that the read does not meaningfully
influence the write, otherwise it is not really suitable as part of a build system because the command
never reaches a stable state and will re-run every time the build is run.
The most commonly used tool which violates these assumptions is Latex, where indeed, it is

possible for every run of the Latex compiler to produce a new result. One common approach to
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Latex is to run the compiler a fixed number of times (e.g. three), and a single command that ran
Latex repeatedly would then obey our rules. There may be better approaches to handling tools
such as Latex, but we leave that for future research.
Simultaneous modification If a command reads a file, but before the command completes

something else modifies the file (e.g. a human or untracked control logic), then the final hash will not
match what the command saw. It is possible to detect such problems with reads by ensuring that the
modification time after computing the hash is before the command was started. For simultaneous
writes the problem is much harder, so we require that all files produced by the build script are not
simultaneously written to.

In general we assume all commands given to the build system are well behaved and meet the above
assumptions.

2.5 Cloud Builds

We can skip execution of a command if all the files accessed have the same hashes as any previous
execution (ğ2.4). However, if only the files read match a previous execution, and the files that were
written have been stored away, those stored files can be copied over as outputs without rerunning
the command. If that storage is on a server, multiple users can share the results of one compilation,
resulting in cloud build functionality. While this approach works well in theory, there are some
problems in practice.
Machine-specific outputs Sometimes a generated output will only be applicable to the machine

on which it was generated ś for example if a compiler auto-detects the precise chipset (e.g. presence
of AVX2 instructions) or hardcodes machine specific details (e.g. the username). Such information
can often be lifted into the command line, e.g. by moving chipset detection into the control logic
and passing it explicitly to the compiler. Alternatively, such commands can be explicitly tagged as
not being suitable for cloud builds.
Relative build directories Often the current directory, or user’s profile directory, will be

accessed by commands. These directories change if a user has two working directories, or if they
use different machines. We can solve this problem by having a substitution table, replacing values
such as the users home directory with $HOME. If not rectified, this issue reduces the reusability of
cloud results, but is otherwise not harmful.
Non-deterministic builds If a command has non-deterministic output, then every time it runs

it may generate a different result. Anything that transitively depends on that output is likely to
also vary on each run. If the user temporarily disconnects from the shared storage, and runs a
non-deterministic command, even if they subsequently reconnect, it is likely anything transitively
depending on that command will never match again until after a clean rebuild. There are designs
to solve this problem (e.g. the modification comparison mechanism from Erdweg et al. [2015]), but
the issue only reduces the effectiveness of the cloud cache, and usually occurs with intermittent
network access, so can often be ignored.

2.6 Build Consistency

As stated in Mokhov et al. [2018, ğ3.6], a build is correct provided that:

If we recompute the value of the key (...), we should get exactly the same value as we see

in the final store.

In our build system, a key is a filename, and a value are the files contents.
Specifying this requirement in terms more applicable to our design, it means that after a build

completes, an immediate subsequent rebuild should have no effect because all commands are
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skipped (assuming the commands given to the build system are the same). However, there are
sequences of commands, where each command meets our assumptions separately (as per ğ2.4), but
the combination is problematic:

echo 1 > foo.txt

echo 2 > foo.txt

This program writes 1 to foo.txt, then writes 2. If the commands are re-executed then the first
command reruns because its output changed, and after the first command reruns, now the second
commands output has changed. More generally, if a build writes different values to the same file
multiple times, it is not correct by the above definition, because on a rebuild both commands would
re-run. But even without writing to the same file twice, it is possible to have an incorrect build:

sha1sum foo.txt > bar.txt

sha1sum bar.txt > foo.txt

Here sha1sum takes the SHA1 hash of a file, first taking the SHA1 of foo.txt and storing it in
bar.txt, then taking the SHA1 of bar.txt and storing it in foo.txt. The problem is that the
script first reads from foo.txt on the first line, then writes to foo.txt on the second line, meaning
that when the script is rerun the read of foo.txt will have to be repeated as its value has changed.

Writing to a file after it has already been either read or written is the only circumstance in which
a build, where every individual command is well-formed (as per ğ2.4), is incorrect. We define such
a build as hazardous using the following rules:

Read then write If one command reads from a file, and a later command writes to that file,
on a future build, the first command will have to be rerun because its input has changed.
This behaviour is defined as a read-write hazard. We assume the build author ordered the
commands correctly, if not the author can edit the build script.

Write then write If two commands both write to the same file, on a future build, the first will
be rerun (its output has changed), which is likely to then cause the second to be rerun. This
behaviour is defined as a write-write hazard.

Using tracing we can detect hazards and raise errors if they occur, detecting that a build system
is incorrect before unnecessary rebuilds occur. We prove that a build system with deterministic
control logic, given the same input the control logic will produce the same output, and with no
hazards always results in no rebuilds in ğ4.2. The presence of hazards in a build does not guarantee
that a rebuild will always occur, for example if the write of a file after it is read does not change the
file’s value. But, such a build system is malformed by our definition and if the write definitely can’t
change the output, then it should not be present.

2.7 Explicit Parallelism

A build script can use explicit parallelism by giving further commands to the build system before
previous commands have completed. For example, the script in ğ2.2 has a for loop where the inner
commands are independent and could all be given to the build system simultaneously. Such a build
system with explicit parallelism must still obey the invariant that the inputs of a command must
have been generated before the command is given, requiring some kind of two-way feedback that
an enqueued command has completed.

Interestingly, given complete dependency information (e.g. as available to Make) it is possible to
infer complete parallelism information. However, the difficulty of specifying complete dependency
information is the attraction of a tracing based approach to build systems.
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2.8 Implicit Parallelism (Speculation)

While explicit parallelism is useful, it imposes a burden on the build script author. Alternatively
we can use implicit parallelism, where some commands are executed speculatively, before they
are required by the build script, in the hope that they will be executed by the script in the future
and thus skipped by the build system. Importantly, such speculation can be shown to be safe by
tracking hazards, provided we introduce a new hazard speculative-write-read, corresponding to a
speculative command writing to a file that is later read by a command required by the build script
(defined precisely in ğ4.1).

Given a script with no hazards when executed sequentially, we show in ğ4.2: 1) that any ordering
of those commands that also has no hazards will result in an equivalent output, see Claim 3; 2) that
any parallel or interleaved execution without hazards will also be equivalent, see Claim 4; and 3)
if any additional commands are run that don’t cause hazards, they can be shown to not change
the results the normal build produces, see Claim 5. Finally, we prove that if a series of commands
contains hazards, so will any execution that includes those required commands, see Claim 6.
As a consequence, if we can predict what commands the build script will execute next, and

predict that their execution will not cause hazards, it may be worth speculatively executing them.
Effective speculation requires us to predict the following pieces of data.
Future commands The benefit of speculatively executing commands is that they will subse-

quently be skipped, which only happens if the speculative command indeed occurs in the build
script. The simplest way to predict future commands is to assume that they will be the same as
they were last time. Given more information about the build, e.g. all the control logic as per ğ2.2
choice 2, it would be possible to use static analysis to refine the prediction.
Absence of hazards If a hazard occurs the build is no longer correct, and remediation must

be taken (e.g. rerunning the build without speculation, see ğ4.3). Therefore, performance can be
significantly diminished if a speculative command leads to a hazard. Given knowledge of the
currently running commands, and the files all commands accessed in the last run, it is possible to
predict whether a hazard will occur if the access patterns do not change. If tracing made it possible
to abort runs that performed hazardous accesses then speculation could be unwound without
restarting, but such implementations are difficult (see ğ3.5).
Recovering from Hazards caused by speculation If a build using speculative execution

causes a hazard, it is possible that the hazard is entirely an artefact of speculation. There are a few
actions the build system could take to recover and these are discussed in section ğ4.3.

3 IMPLEMENTING RATTLE

We have implemented the design from ğ2 in a build system called Rattle. We use Haskell as the
host language and to write the control logic. Copying the design for Shake [Mitchell 2012], a
Rattle build script is a Haskell program that uses the Rattle library.

3.1 A Rattle Example

A complete Rattle script that compiles all .c files like ğ2.2 is given in Figure 2, with the key API
functions in Figure 3. Looking at the example, we see:

• A Rattle script is a Haskell program. It makes use of ordinary Haskell imports, and impor-
tantly uses Development.Rattle, offering the API from Figure 3.

• The rattle function takes a value in the Runmonad and executes it in IO. The Run type is the
IO monad, enriched with a ReaderT [Jones 1995] containing a reference to shared mutable
state (e.g. which commands are in flight, where to store metadata, location of shared storage).
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import Development.Rattle

import System.FilePattern

import System.FilePath

main = rattle $ do

cs <- liftIO $ getDirectoryFiles "." [root </> "*.c"]

forP cs $ \c ->

cmd "gcc -c" c

let toO x = takeBaseName x <.> "o"

cmd "gcc -o main.exe" (map toO cs)

Fig. 2. A Haskell/Rattle version of the script from ğ2.2

-- The Run monad -- Reading/writing files

data Run a = ... cmdReadFile :: FilePath -> Run String

rattle :: Run a -> IO a cmdWriteFile :: FilePath -> String -> Run ()

-- Running commands -- Parallelism

data CmdOption = Cwd FilePath | ... forP :: [a] -> (a -> Run b) -> Run [b]

cmd :: CmdArguments args => args

Fig. 3. The Rattle API

• All the control logic is in Haskell and can use external libraries ś e.g. System.FilePath for
manipulating FilePath values and System.FilePattern for directory listing. Taking the
example of replacing the extension from .c to .o, we are able to abstract out this pattern
as toO and reuse it later. Arbitrary Haskell IO can be embedded in the script using liftIO.
All of the Haskell code (including the IO) is considered control logic and will be repeated in
every execution.

• Commands are given to the build system part of Rattle using cmd. We have implemented cmd
as a variadic function [Kiselyov 2015] which takes a command as a series of String (a series
of space-separated arguments), [String] (a list of arguments) and CmdOption (command
execution modifiers, e.g. to change the current directory), returning a value of type Run ().
The function cmd only returns once the command has finished executing (whether that is by
actual execution, skipping, or fetching from external storage).

• We have used forP in the example, as opposed to forM, which causes the commands to be
given to Rattle in parallel (ğ2.7). We could have equally used forM and relied on speculation
for parallelism (ğ2.8).

Looking at the functions from Figure 3, there are two functions this example does not use. The
cmdWriteFile and cmdReadFile functions are used to perform a read/write of the file system
through Haskell code, causing hazards to arise if necessary. Apart from these functions, it is assumed
that all Haskell control code only reads and writes files which are not written to by any commands.
For further examples of Rattle programs see ğ5.9.

3.2 Alternative Rattle Wrappers

Given the above API, combined with the choice to treat the control logic as opaque, it is possible to
write wrappers that expose Rattle in new ways. For example, to run a series of commands from a
file, we can write:
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main = rattle $ do

[x] <- liftIO getArgs

src <- readFile x

forM_ (lines src) cmd

Here we take a command line argument, read the file it points to, then run each command
sequentially using forM_. We use this script for our evaluation in ğ5.
An alternative API could be provided by opening up a socket, and allowing a Rattle server to

take command invocations through that socket. Such an API would allow writing Rattle scripts in
other languages, making use of the existing Rattle implementation. While such an implementation
should be easy, we have not yet implemented it.

3.3 Specific Design Choices and Consequences

Relative to the reference design in ğ2 we have made a few specific design choices, mostly in the
name of implementation simplicity:

• All of our predictions (see ğ2.8) only look at the very last run. This approach is simple, and
in practice, seems to be sufficient ś most build scripts are run on very similar inputs most of
the time.

• We run a command speculatively if 1) it hasn’t been run so far this build; 2) was required
in the last run; and 3) doesn’t cause a hazard relative to both the completed commands and
predicted file accesses of the currently running commands. Importantly, if we are currently
running a command we have never run before, we don’t speculate anything ś the build
system has changed in an unknown way so we take the cautious approach.

• We never attempt to recover after speculation (see ğ4.3), simply aborting the build and
restarting without any speculation.

• We treat command lines as black boxes, never examining them to predict their outputs. For
many programs a simple analysis (e.g. looking for -o flags) might be predictive.

• Rattle can go wrong if a speculated command writes to an input file, as per ğ4.3. This
problem hasn’t occurred in practice, but dividing files into inputs and outputs would be
perfectly reasonable. Typically the inputs are either checked into version control or outside
the project directory, so that information is readily available.

• It is important that traces (as stored for ğ2.4) are only recorded to disk when we can be sure
they were not affected by any hazards (see ğ4.3). That determination requires waiting for all
commands which ran at the same time as the command in question to have completed.

• Wemodel queries for information about a file (e.g. existence or modification time) as a read for
tracing purposes, thus depending on the contents of the file. For queries about the existence
of a file, we rerun if the file contents changes, which may be significantly more frequent than
when the file is created or deleted. For queries about modification time, we don’t rerun if
the modification time changes but the file contents don’t, potentially not changing when we
should. In practice, most modification time queries are to implement rebuilding logic, so can
be safely ignored if the file contents haven’t changed.

3.4 Storage and Cloud Storage

Our Rattle implementation stores all information required between executions to disk. To provide
reuse between multiple different users, we can store these artefacts on a shared drive, and then use
tools such as NFS or Samba to provide remote connectivity and thus full łcloud buildsž. Rattle
stores three different types of information:
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(1) Command traces record which files were accessed when a specific command line (including
environment variables etc.) was run. For each file accessed, we record whether it was read
or written to, and the hash of the file. These traces are used to determine whether to skip
running a command as per ğ2.4, and are required to avoid continually rebuilding everything.
These traces are each relatively small and there may be hundreds per run (one per command
executed), meaning the cost to storing them is fairly low.

(2) Speculation traces record which commands were required by the last run. If the speculation
information is missing, Rattle uses an empty speculation trace, and won’t get any speculative
parallelism as per ğ2.8. There is only one speculation trace stored or queried per run, so the
cost of these traces is very low.

(3) File contents record mappings from file hashes to the complete files. These hashes are used
in conjunction with the command traces to allow copying outputs if all the inputs match, as
per ğ2.5. Given a local file system with cheap copy-on-write semantics, it would be fairly
cheap to add entries to the the file contents mapping. Unfortunately, copy-on-write is not a
standard feature of most file systems, so copying files to this storage can have approximately
a 10% performance cost.

When speculation traces are shared between multiple users, who may be compiling different
versions of the software, it is useful to index the speculation trace by commit reference, so that the
nearest ancestor commit with speculation information can be used. Because speculation information
is necessarily approximate, using slightly old speculation information is not harmful. However, in
practice we currently store only the latest speculation information, and because Rattle is currently
used with only small numbers of users, this approach works sufficiently well (but would definitely
not scale to more users). Addressing this limitation is on our roadmap, and should not be difficult.
Our preliminary experiments suggest that we can recover almost as much parallelism as Make on
the initial build using this technique.
When sharing storage between multiple untrusted users, it is important to consider security

implications. The file contents store is indexed by hash, and checking the hash on retrieval ensures
the integrity of the data (assuming a strong hash function). The command traces are fundamentally
relied upon, so should only be written to be trusted users. The speculation traces aren’t relied upon
by the build system, but a malicious speculation trace could cause a user to execute a malicious
command, so should also be written only by trusted users. We have not yet implemented any
security restrictions.

3.5 Tracing Approaches

In ğ2.3 we assume the existence of dependency tracing which can, after a command completes, tell
us which files that command read and wrote. Unfortunately, such an API is not part of the POSIX
standard, and is not easily available on any standard platform. We reuse the file access tracing
features that have been added to Shake [Mitchell 2020], which in turn are built on top of Fsatrace
[Acereda 2019]. The techniques and limitations vary by OS:

• On Linuxwe use LD_LIBRARY_PRELOAD to inject a different C library into the process, which
records file accesses, and then forwards functions on to the original C library. There are
two main reasons we might fail to detect a file access. Firstly, the library we use (namely
Fsatrace) doesn’t support all C library functions, as there are a great number which perform
file accesses (e.g. in addition to the traditional open, there is also a newer openat). Fortunately,
while it is difficult to determine the full C library file API, Fsatrace has extensive coverage
in practice, including at least 28 different file-related functions on Linux platforms.3 Secondly,

3Many of these functions appear to be entirely undocumented, and required reverse-engineering by the Fsatrace developers.
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the program might not dynamically load the C library ś that is common in programs that
invoke system calls directly (typically Go programs [Donovan and Kernighan 2015]) or have
their C library statically linked to the binary. In future we plan to integrate BigBro [Roundy
2019a] as an alternative, which uses ptrace and doesn’t rely on using a dynamic C library.

• On Mac we also use LD_LIBRARY_PRELOAD. While the technique works on a Mac, from Mac
OS X 1.10 onwards system binaries can’t be traced due to System Integrity Protection4. As
an example of a program this impacts, the C/C++ compiler is typically installed as a system
binary. It is possible to disable System Integrity Protection (but not recommended by Apple);
or to use non-system binaries (e.g. those supplied by Nix [Dolstra et al. 2004]); or to copy
the system binary to a temporary directory (which works provided the binary does not
afterwards invoke another system binary). The library preload mechanism is implemented
by Fsatrace and the copying system binaries trick on Mac is implemented in Shake.

• OnWindows it is possible to hook the Kernel API, which can be used to detect when any
files are accessed. Since this hook is at the kernel level, all programs are subject to it, and
while it is important to cover all entry points, that list of entry points is well documented
and quite minimal, so easy to cover entirely. Implementing the hook is difficult, particularly
around 32bit v 64bit differences, as custom assembly language trampolines must be used.
Furthermore, some antivirus products (incorrectly) detect programs using the kernel hook
as viruses. Windows kernel hooking is available in Fsatrace, although without support for
32bit processes that spawn 64bit processes. In practice this limitation is rarely a problem
(most binaries are now 64bit), often easily remedied (switch to the 64bit version), and possible
to fix in Fsatrace if it was necessary (the engineering is difficult, but the technique is known
and used by other tools).

• On all platforms, Fsatrace does not record access to directories (as opposed to files). Thus, if
the kind of file-listing logic seen in Figure 1 was moved into a binary that needed to be traced,
changes to the directory itself (such as adding new files) would not trigger a reexecution of
the relevant command.

• On all platforms, any subcommands that are executed have their system accesses tracked and
attributed to the parent process. As an example, gcc invokes as when compiling to transform
textual assembly code to machine code. The tracing of gcc will include a read access to the
as binary and a write to the .o file that as produces.

• Files which are both written and deleted before the command completes are considered as
temporary files. They are reported by Fsatrace, but we ignore them in Rattle. Examples of
such files are the temporary textual assembly code produced by gcc to give to as, which is
also written in a temporary directory with a random filename.

In practice, none of the limitations have been overly problematic in the examples we have explored.
We have encountered one bug in Fsatracewhich led to builds erroring due to unsupported changes
to glibc internals5, and none which led to incorrect build results.
The consequence of a tracing tool not reporting a file access would be failing to re-run a build

command when the true dependencies change, or speculating a command when it shouldn’t be. To
take a concrete example, the gRPC generator (named protoc) is written in Go. If a Rattle build
features the command:

cmd "protoc hello.grpc --js_out=js"

4https://developer.apple.com/library/content/documentation/Security/Conceptual/System_Integrity_Protection_Guide/
ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
5https://github.com/jacereda/fsatrace/issues/35, fixed within one day
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That reads the file hello.proto, and writes the file js/hello.js, but on Linux and Mac Rattle
does not know that. If the file hello.proto changes, Rattle will fail to rebuild js/hello.js

causing it to produce an incorrect result. If the result is taken from a cloud cache (ğ2.5) it will not
fetch js/hello.js. The dependency on the protoc binary itself is tracked as that is done by the
operating system.
To resolve the issue, it is necessary to explicitly tell Rattle the dependencies, with:

cmd "protoc hello.grpc --js_out=js"

(Read ["hello.grpc"]) (Write ["js/hello.js"])

Unfortunately, it is not immediately obvious when a tracing tool has returned incomplete depen-
dencies, andmanually specifying dependencies results in all the missing and incomplete dependency
issues that are common in Makefile-based builds, which Rattle was designed to avoid.

We designed Rattle to work with the limitations of the best cross-platform tracing easily
available ś but that involves trade-offs. An enhanced, portable system would be a significant
enabler for Rattle. Our wishlist for tracing would include a cross-platform API, precise detection
times, detection as access happens, and executing code at interception points.

4 CORRECTNESS

Rattle’s design relies on taking a sequence of commands from the user, and additionally running
some commands speculatively. In this section we argue for the correctness of this approach with
respect to the reference semantics of sequential evaluation. Throughout, we assume the commands
themselves are pure functions from the inputs to their outputs (as reported by tracing) ś without
this property no build system more sophisticated than the shell script of ğ1 would be able to
perfectly replicate the sequential model.

4.1 Hazards, Formally

In ğ2.6 we introduced the notion of hazards through intuition and how they are used. Here we give
more precise definitions:

Read-write hazard A build has a read-write hazard if a file is written to after it has been read.
Given the limitations of tracing (see ğ3.5) we require the stronger property that for all files
which are both read and written in a single build, the command which did the write must
have finished before any commands reading it start executing, because we cannot assume
the command finished writing to the file anytime before it completed.

Write-write hazard A build has a write-write hazard if a file is written to after it has already
been written. Stated equivalently, a build has a write-write hazard if more than one command
in a build writes to the same file.

Speculative-write-read hazard A build has a speculative-write-read hazard if a file is written
to by a speculated command, then read from by a command in the build script, before the
build script has required the speculated command.

4.2 Correctness Properties

We now state and prove (semi-formally) several key correctness properties of our approach, partic-
ularly in the treatment of hazards. We define the following terms:

Command A command c reads from a set of files (cr ), and writes to a set of files (cw ). We
assume the set of files are disjoint (cr ∩ cr ≡ ∅), as per ğ2.4.
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Deterministic command A command is deterministic if for a given set of files and values it
reads, it always writes the same values to the same set of files. We assume commands are
deterministic.

Fixed point A deterministic command will have no effect if none of the files it reads or writes
have changed since the last time it was run. Since the command is deterministic, and its
reads/writes are disjoint, the same reads will take place, the same computation will follow, and
then the original values will be rewritten as they were before. We describe such a command
as having reached a fixed point.

Correct builds If a build containing a set of commands C has reached a fixed point for every
command c within the set, then it is a correct build system as per the definition in ğ2.6.

No hazards A build has no hazards if none of the hazards from ğ4.1 occur.
Input files We define the input files as those the build reads from but does not write to, namely:

⋃

c ∈C

cr \
⋃

c ∈C

cw

Output files We define the output files as those the build writes to, namely:
⋃

c ∈C

cw

Claim 1 (Completeness). If a set of commandsC is run, and no hazards arise, then every command

within C has reached a fixed point.

Proof: A command c has reached a fixed point if none of the files in cr or cw have changed. Taking
cr and cw separately:

(1) None of the files in cw have changed. Within a set of commands C , if any file was written to
by more than one command it would result in a write-write hazard. Therefore, if a command
wrote to a file, it must have been the only command to write to that file.

(2) None of the files cr have changed. For a read file to have changed would require it to be
written to afterwards. If a file is read from then written to it is a read-write hazard, so the
files cr can’t have changed.

As a consequence, all commands within C must have reached a fixed point.

Claim 2 (Unchanging builds). A build with deterministic control logic that completes with no

hazards has reached a fixed point.

Proof: The build’s deterministic control logic means that beginning with the first command in the
build, which is unchanged given the same set of input files, the command will write to the same set
of output files and produce the same results. It follows that the subsequent command in the build
will be unchanged as well since the results of the previous command did not change. It follows
by induction that each of the following commands in the build will remain unchanged. Because
the commands in the build will not have changed, it follows from the proof of Claim 1 that the
commands will not change the values of any files, therefore, the build is at a fixed point.

Claim 3 (Reordered builds). Given a script with no hazards when executed sequentially, with the

same initial file contents, any other ordering of those commands that also has no hazards will result in

the same terminal file contents.

Proof: The proof of Claim 1 shows that any script with no hazards will result in a fixed point. We
can prove the stronger claim, that for any filesystem state where all inputs have identical contents,
there is only one fixed point for any ordering of the same commands that has no hazards. For each

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 169. Publication date: November 2020.



169:14 Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt

command, it can only read from files that are in the inputs or files that are the outputs of other
commands. Taking these two cases separately:

(1) For read files that are in the inputs, they aren’t written to by the build system (or they
wouldn’t be in the inputs), and they must be the same in both cases (because the filesystem
state must be the same for inputs). Therefore, changes to the inputs cannot have an effect on
the command.

(2) For read files that are the outputs of other commands, they must have been written to before

this command, or a read-write hazard would be raised.

Therefore, the first command that performswrites cannot access anywrites from other commands,
and so (assuming determinism) its writes must be a consequence of only inputs. Similarly, the
second command can only have accessed inputs and writes produced by the first command, which
themselves were consequences of inputs, so that commands writes are also consequences of the
input. By induction, we can show that all writes are consequences of the inputs, so identical inputs
results in identical writes.

Claim 4 (Parallel commands). Given a script with no hazards when executed sequentially, any

parallel or interleaved execution without hazards will also be equivalent.

Proof: None of the proof of Claim 3 relies on commands not running in parallel, so that proof still
applies.

Claim 5 (Additional commands have no effect). Given a script with no hazards when executed,

speculating unnecessary commands that do not lead to hazards will not have an effect on the build’s

inputs or outputs.

Proof: Provided the inputs are unchanged, and there are no hazards, the proof from Claim 3 means
the same outputs will be produced. If speculated commands wrote to the outputs, it would result in
a write-write hazard. If speculated commands wrote to the inputs before they were used, it would
result in a speculative-write-read hazard. If speculated commands wrote to the inputs after they
were used, it would result in a read-write hazard. Therefore, assuming no hazards are raised, the
speculated commands cannot have an effect on the inputs or outputs.

Claim 6 (Preservation of hazards). If a sequence of commands leads to a hazard, any additional

speculative commands or reordering will still cause a hazard.

Proof: All hazards are based on the observation of file accesses, not the absence of file accesses.
Therefore, additional speculative commands do not reduce hazards, only increase them, as addi-
tional reads/writes can only cause additional hazards. For reordering, it cannot reduce write-write
hazards, which are irrespective of order. For reordering of read-write hazards, it can only remove
such a hazard by speculating the writing command before the reading command. However, such
speculation is a speculative-read-write hazard, ensuring a hazard will always be raised.

4.3 Hazard Recovery

If a build involving speculation reaches a hazard there are several remedies that can be taken. In
this section we outline these approaches and when each approach is safe to take.

Restart with no speculation. Restarting the entire build that happened with speculation, with
no speculation, is safe and gives an equivalent result provided the inputs to the build have not
changed (Claims 3, 5). Unfortunately, while writing to an input is guaranteed to give a hazard,
restarting does not change the input back. As a concrete example, consider the build script with the
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single command gcc -c main.c. If we speculate the command echo 1 >> main.c first, it will
raise a speculative-write-read hazard, but restarting will not put main.c back to its original value,
potentially breaking the build indefinitely. We discuss consequences and possible remediations
from speculative commands writing to inputs in ğ3.3, but note such a situation should be very
rare and likely easily reversible with minor user intervention. The build system only executes
commands that were previously part of the build script, making it unlikely a build author would
include commands that would irreversibly break their build. For all other recovery actions, we
assume that restarting with no speculation is the baseline state, and consider them safe if it is
equivalent to restarting with no speculation. This approach is the one we currently take in Rattle;
below we describe other approaches also justified in our model.

Restart with less speculation. Given the proofs in this section, running again with speculation is
still safe. However, running with speculation might repeatedly cause the same speculation hazard,
in which case the build would never terminate. Therefore, it is safe to restart with speculation
provided there is strictly less speculation, so that (in the worst case) eventually there will be a run
with no speculation.

As a practical matter, if a command is part of the commands that cause a hazard, it is a good
candidate for excluding from speculation.

Raise a hazard. Importantly, if there is no speculation (including reordering and parallelism),
and a hazard occurs, the hazard can be raised immediately. This property is essential as a base-case
for restarting with no speculation.

If two required commands, that is commands in the users build script, cause a write-write hazard,
and there have been no speculative-write-read hazards, then the same hazard will be reraised if
the command restarts. For write-write, this inevitability is a consequence of Claim 3, as the same
writes will occur. If two required commands cause a read-write hazard, and the relative order they
were run in matches their required ordering, then the same hazard will be reraised if the command
restarts, because the relative ordering will remain the same, Claim 6. However, if the commands
weren’t in an order matching their required ordering, it is possible the write will come first avoiding
the hazard, so it cannot be immediately raised.

Continue. If the hazard only affects speculated commands, and those commands have no subse-
quent effect on required commands, it is possible to continue the build. However, it is important
that the commands have no subsequent effect, even on required commands that have not yet been
executed, or even revealed to the build system. Consequently, even if a build can continue after an
initial hazard, it may still fail due to a future hazard. A build can continue if the hazards only affect
speculated commands, that is either a write-write hazard where both commands were speculated,
or a read-write hazard where the read was speculated. For other hazards, continuing is unsafe. If a
speculated command is affected by an initial hazard, and that command is later required by the
build script, a new non-continuable hazard will be raised.

5 EVALUATION

In this section we evaluate the design from ğ2, specifically our implementation from ğ3. We show
how the implementation performs on the example from ğ1 in ğ5.1, on microbenchmarks in ğ5.2,
and then on real projects that currently use Make ś namely FSATrace (ğ5.3), Redis (ğ5.4), Vim
(ğ5.5), tmux (ğ5.6), and Node.js (ğ5.7). We implement two sample projects using Rattle in ğ5.9.

We have focused our real-world comparison onMake projects using C because such projects often
have minimal external dependencies (making them easier to evaluate in isolation), and despite using
the same programming language, have an interesting variety of dependency tracking strategies and
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compilation times (ranging from one second to three hours). Most newer programming languages
(e.g. Rust, Haskell etc) have dedicated built tools (e.g. Cargo, Cabal) so small projects in such
languages tend not to use general-purpose build tools.

For benchmarks, the first four (ğ5.1-ğ5.4) were run on a 4 core Intel i7-4790 3.6GHz CPU (16Gb
RAM, 7200 RPM rotating hard drive). The remaining benchmarks were run on a 32 core (2 threads
per core) Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz (142Gb RAM, RAID 5 with 4 drives. RPM 10K
SAS 6 Gbps).

5.1 Validating Rattle’s Suitability

In ğ1 we claimed that the following build script is łjust as goodž as a proper Make script.

gcc -c main.c

gcc -c util.c

gcc -o main.exe main.o util.o

There are two axes on which to measure łjust as goodž ś correctness and performance. Perfor-
mance can be further broken down into how much rebuilding is avoided, how much parallelism is
achieved and how much overhead Rattle imposes.

Correctness. Rattle is correct, in that the reference semantics is running all the commands, and
as we have shown in ğ2 (see ğ4 for detailed arguments), and tested for with examples, Rattle
obeys those semantics. In contrast, theMake version may have missing dependencies which causes
it not to rebuild. Examples of failure to rebuild include if there are changes in gcc itself, or changes
in any headers used through transitive #include which are not also listed in the Make script.

Rebuilding too much. Rattle only reruns a command if some of the files it reads or writes have
changed. It is possible that a command only depends on part of a file, but at the level of abstraction
Rattle works, it never rebuilds too much. As a matter of implementation, Rattle detects changes
by hashing the file contents, while Make uses the modification time. As a consequence, if a file is
modified, but its contents do not change (e.g. using touch), Make will rebuild but Rattle will not.

Parallelism. The script from ğ1 has three commands ś the first two can run in parallel, while the
the third must wait for both to finish. Make is given all this information by dependencies, and will
always achieve as much parallelism as possible. In contrast, Rattle has no such knowledge, so
has to recover the parallelism by speculation (see ğ2.8). During the first execution, Rattle has no
knowledge about even which commands are coming next (as described in ğ2.2), so it has no choice
but to execute each command serially, with less parallelism thanMake. In subsequent executions
Rattle uses speculation to always speculate on the second command (as it never has a hazard with
the first), but never speculate on the third until the first two have finished (as they are known to
conflict). Interestingly, sometimes Rattle executes the third command (because it got to that point
in the script), and sometimes it speculates it (because the previous two have finished) ś it is a race
condition where both alternatives are equivalent. While Rattle has less parallelism on the first
execution, if we were to use shared storage for speculation traces, that can be reduced to the first
execution ever, rather than the first execution for a given user.

Overhead. The overhead inherent in Rattle is greater than that of Make, as it hashes files,
traces command execution, computes potential hazards, figures out what to speculate and writes
to a shared cloud store (in this section we use a locally mounted shared drive, as per ğ3.4). To
measure the overhead, and prove the other claims in this section, we created a very simple pair of
files, main.c and util.c, where main.c calls printf using a constant returned by a function in
util.c. We then measured the time to do: (1) An initial build from a clean checkout; (2) a rebuild
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when nothing had changed; (3) a rebuild with whitespace changes to main.c, resulting in the same
main.o file; (4) a rebuild with meaningful changes to main.c, resulting in a different main.o file;
and (5) a rebuild with meaningful changes to both C files.

We performed the above steps with 1, 2 and 3 threads, on Linux. To make the parallelism obvious,
we modified gcc to sleep for 1 second before starting. The build times are (lower is better):

Number of threads 1 2 3
Tool Make Rattle Make Rattle Make Rattle

1) Initial build 3.35s 3.28s 2.18s 3.28s 2.20s 3.36s
2) Nothing changed 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
3) main.c changed whitespace 2.19s 1.12s 2.19s 1.12s 2.19s 1.10s
4) main.c changed 2.19s 2.16s 2.23s 2.21s 2.19s 2.22s
5) Both C files changed 3.28s 3.29s 2.22s 2.20s 2.19s 2.20s

As expected, we see that during the initial build Rattle doesn’t exhibit any parallelism, but
Make does (1). In contrast, Rattle benefits when a file changes in whitespace only and the resulting
object file doesn’t change, whileMake can’t (3). We see 3 threads has no benefit over 2 threads,
as this build contains no more parallelism opportunities. Comparing the non-sleep portion of the
build,Make and Rattle are quite evenly matched, typically within a few milliseconds, showing
low overheads. We focus on the overheads in the next section.

5.2 Measuring Overhead

In order to determine what overhead Rattle introduces, we ran a fixed set of commands with
increasingly more parts of Rattle enabled. Rattle command execution builds on the command
execution from Shake [Mitchell 2012], which uses Fsatrace for tracing and the Haskell process
library for command execution. We ran the commands in a clean build directory in 7 ways:

(1) Using make -j1 (Make with 1 thread), as a baseline.
(2) Using System.Process from the Haskell process library.
(3) Using cmd from the Shake library [Mitchell 2012], which builds on the process library.
(4) Using cmd from Shake, but wrapping the command with Fsatrace for file tracing.
(5) Using cmd from Shake with the Traced setting [Mitchell 2020], which runs Fsatrace and

collects the results.
(6) Using Rattle with no speculation or parallelism, and without shared storage.
(7) Using Rattle with all features, including shared storage.

To obtain a set of commands typical of building, we took the latest version of Fsatrace6 and ran
make -j1 with maximum verbosity, recording the commands that were printed to the standard
output. On Windows Fsatrace runs 25 commands (21 compiles, 4 links). On Linux Fsatrace runs
9 commands (7 compiles, 2 links). On Linux the list of commands produces write-write hazards,
because it compiles some files (e.g. shm.c) twice, once with -fPIC (position independent code),
and once without. However, both times it passes -MMD to cause gcc to produce shm.d at the same
location (shm.d is used to track dependencies). That write-write hazard is a genuine problem, and
in an incredibly unlucky build Fsatrace would end up with a corrupted shm.d file. To remedy
the problem we removed the -MMD flag as it doesn’t impact the benchmark and isn’t required by
Rattle. We ran all sets of commands on both Windows and Linux.

6https://github.com/jacereda/fsatrace/commit/41fbba17da580f81ababb32ec7e6e5fd49f11473
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Commands Windows Linux
1) Make 9.96s 100% 1.19s 100%
2) process 10.26s 103% +3% 1.18s 99% -1%
3) Shake 10.58s 106% +3% 1.17s 98% -1%
4) Shake + Fsatrace 12.66s 127% +21% 1.23s 103% +5%
5) Shake + Traced 13.06s 131% +4% 1.23s 103% +0%
6) Rattle 14.43s 145% +14% 1.25s 105% +2%
7) Rattle + everything 14.53s 146% +1% 1.27s 107% +2%

In the above table both Windows and Linux have three columns ś the time taken (average of the
three fastest of five runs), that time as a percentage of the baselineMake run, and the delta from
the row above. The results are significantly different between platforms:

Windows. On Windows, we see that the total overhead of Rattle makes execution 46% slower.
21% of the slowdown is from Fsatrace (due to hookingWindows kernel API), with the next greatest
overhead being from Rattle itself. Of the Rattle overhead, the greatest slowdown is caused by
canonicalizing paths. Using the default NTFS file system, Windows considers paths to be case
insensitive. As a result, we observe paths like C:\windows\system32\KERNELBASE.dll, which on
disk are called C:\Windows\System32\KernelBase.dll, but can also be accessed by names such
as C:\Windows\System32\KERNEL~1.DLL. Unfortunately, Windows also supports case sensitive
file systems, so using case-insensitive equality is insufficient.

OnWindows, enabling the default anti-virus (Windows Defender) has a significant impact on the
result, increasing the Make baseline by 11% and the final time by 29%. These results were collected
with the anti-virus disabled.

Linux. On Linux, the total overhead is only 7%, of which nearly all (5%) comes from tracing. The
initial Haskell process creation is faster than direct Make execution (by 1%) because the overheads
of the Haskell process library on Linux are less than those of Make doing dependency checking
and process execution.

These results show that tracing has a minor but not insignificant effect on Linux, whereas on
Windows can be a substantial performance reduction. Additionally, the Windows results had far
more variance, including large outliers. Thus, our remaining benchmarks were all run on Linux.

5.3 Fsatrace

To compareMake and Rattle building Fsatrace we took the commands we extracted for ğ5.2
and ran the build script for the 100 previous commits in turn, starting with a clean build then
performing incremental builds. To make the results more readable, we hid any commits where all
builds took < 0.02s, resulting in 12 interesting commits. We ran with 1 to 4 threads, but omit the 2
and 3 thread case as they typically fall either on or just above the 4 thread results.

0 2 4 6 8 10 12 14 16
0

0.5

1

Se
co
n
ds

Compile time at each successive commit Make 1 thread
Make 4 threads
Rattle 1 thread
Rattle 4 threads

As we can see, the first build is always > 1s for Rattle, but Make is able to optimise it as low as
0.33s with 4 threads. Otherwise, Rattle and Make are competitive ś users would struggle to see
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the difference. The one commit that does show some variation is commit 2, where both are similar
for 1 thread, but Rattle at 4 threads is slightly slower than 1 thread, whileMake is faster. The cause
is speculation leading to a write-write hazard. Concretely, the command for linking fsatrace.so
changed to include a new file proc.o. Rattle starts speculating on the old link command, then
gets the command for the new link. Both commands write to fsatrace.so, leading to a hazard,
and causing Rattle to restart without speculation.

5.4 Redis
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Redis is an in-memory NoSQL database written in C, developed over the last 10 years. Redis is
built using recursiveMake [Miller 1998], where the external dependencies of Redis (e.g. Lua and
Linenoise) have their ownMake scripts which are called by the main Redis Make script. Using
stamp files, on successive builds, the external dependencies are not checked ś meaning that users
must clean their build when external dependencies change.
When benchmarking Rattle vs Make we found that Rattle was about 10% slower due to

copying files to the file contents cloud cache (see ğ3.4), somethingMake does not do. Therefore, for
a fairer comparison, we disabled copying these files, but continue to store command and speculation
traces. For local builds, the consequence of disabling the cloud cache is that if a file changes, then
changes back to a previous state, we will have to rebuild rather than get a cache hit ś something
that never happens in this benchmark. With those changes Rattle is able to perform very similarly
toMake, despite properly checking external dependencies. Differences occur on the initial build,
where Rattle has no information to speculate with, and commit 1, where Rattle correctly detects
no work is required butMake rebuilds some files.

5.5 Vim
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Vim is a popular text editor, over 25 years old. The majority of the source code is Vim script
and C, and it is built withMake. To compare the originalMake based build to Rattle, we built
Vim over 35 commits, using both the original Make and a Rattle script created by recording the
commands Make executed on a clean build. The benchmarks show that Make and Rattle had
similar performance for almost every commit, apart from two.

(1) For the 20th commit in the chart, Make did much more work than Rattle. This commit
changed the script which generates osdef.h, in such a way that it did not change the contents
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of osdef.h.Make rebuilt all of the object files which depend on this header file, while Rattle
skipped them as the file contents had not changed.

(2) For the 29th commit in the chart, Rattle did much more work than Make. This commit
changed a prototype file that is indirectly included by all object files. This prototype file is
not listed as a dependency of the object files, so Make did not rebuild them, but Rattle
noticed the changed dependency. This missing dependency could have resulted in an incorrect
build or a build error, but in this case (by luck) seems not to have been significant. A future
prototype change may result in incorrect builds.

5.6 tmux
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tmux is a terminal multiplexer in development for the last 12 years. It is built from source using
sh autogen.sh && ./configure && make sequence, making use of Autoconf, Automake,
pkg-config, andMake. To compare a Rattle based tmux build to theMake based one, we first ran
sh autogen.sh && ./configure, and then used the resultingMake scripts to generate Rattle
build scripts. tmux was built over a series of 39 commits with both Make and Rattle. For the 11th,
22nd and 23rd commits in the chart, Rattle and Make took noticeably different amounts of time.
In all cases the cause was a build script change, preventing Rattle from speculating, and thus
taking approximately as long as a full single-threaded build. Additionally, a write-write hazard
occurred at each of those commits caused by a conflict between a speculated command and its new
version in the changed script.

5.7 Node.js

Node.js is a JavaScript runtime built on Chrome’s V8 Javascript engine that has been in development
since 2009. The project is largely written in JavaScript, C++, Python and C, and is built usingMake

and a meta-build tool called Generate Your Projects (GYP) [Google 2009].

Node.js build system. To build Node.js from source, a user first runs ./configure, which config-
ures the build and runs GYP, generating Makefiles. From then on, a user can build withMake. GYP
generates the majority of the Makefiles used to build Node.js, starting from a series of source .gyp
files specifying metadata such as targets and dependencies. GYP generates a separate *.mkMakefile
for each target, all of which are included by a generated top-level Makefile. That top-level Makefile
can be run byMake, but through a number of tricks, GYP controls the dependency calculation:

(1) All tracked commands are run using the do_cmd function from the top-level Makefile. The
do_cmd function checks the command, and if anything has changed since the last run, reruns
it. To ensure this function is called on every run, targets whose rules use do_cmd have a fake
dependency on the phony target FORCE_DO_CMD, forcing Make to rerun them every time.
This mechanism operates much like Rattle command skipping from ğ2.4.

(2) Tracked commands create dependency files for each target, recording observed dependencies
from the last run. Usually this information is produced by the compiler, e.g. gcc -MMD.
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(3) Generated source files are produced and managed using .intermediate targets. By relying
on a combination of do_cmd, FORCE_DO_CMD and a special prerequisite .INTERMEDIATE that
depends on all .intermediate targets, the intention appears to be to regenerate the gener-
ated code whenever something relevant has changed. However, in our experiments, those
intermediate targets seem to run every time.

It appears the build of Node.js has tried to take an approach closer to that of Rattle, namely,
tracking dependencies each time a command runs and making sure commands re-run when they
have changed. The implementation is quite complicated and relies on deep knowledge of precisely
howMake operates, but appears to not quite match what was intended.
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To compare to Rattle, we built Node.js over a series of 38 commits with both Make and
Rattle, with 1, 4, and 32 threads. The Rattle build was created for each commit by recording
every command executed by the original build, excluding the commands exclusively dealing with
dependency files. Due to the large variations in time, the above plot uses a log scale.

For building from scratch, Make and Rattle took approximately the same amount of time with
a single thread (around 94 minutes). However, with 4 and 32 threads, Make was able to build Node
nearly four times faster (24 minutes), and approximately 20 times faster (4.8 minutes), respectively,
while Rattle had no speculation information and did not improve. When built from scratch with 4
and 32 threads, the Rattle build was not meaningfully faster (92-93 minutes). For many commits
Rattle and Make give similar results, but for those with the least amount of work, where only a
few files change, Rattle is able to beatMake. The fastest observedMake time across all thread
counts is approximately 25 seconds, while Rattle goes as low as 10 seconds. The major cause for
the slowdown in Make is that Make always rebuilds the generated files but Rattle (correctly)
does not.

While building the third commit (labeled 2 in chart), a write-write hazard occurred, which caused
the build to re-run with no speculation. But, as we can see from the graph, when built with 4
threads even the failed speculation was still faster than the sequential version. However, the time
it took Rattle to build the third commit with 32 threads was almost as long as it took to build it
sequentially, probably due to thread overhead or unfortunate scheduling leading to the write-write
hazard sooner in the build. While building commits 4, 5, 8, 11, 14, read-write hazards occurred
which caused the build to re-run these commits with no speculation, however, these hazards do
not appear to have greatly impacted the build performance.

5.8 Summary Comparing with Make

Looking across the projects in this section, a few themes emerge.
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• For most commits, Rattle and Make give similar performance. The one case that is not true
is the initial build at higher levels of parallelism, where Make outperforms Rattle, because
Rattle has no speculation information. If Rattle used a shared speculation cache as per
ğ3.4, where another user had already built the initial commit, the first build would be no
different as it would also have good speculation information.

• The difference between 1 thread and 4 threads can be quite significant, and typicallyMake and
Rattle do equally well with parallelism. The implicit parallelism in Rattle is an important
feature which works as designed.

• Hazards are relatively rare, but when they do occur, they do impact the build time.
• EveryMake project investigated manages dependencies differently. Most use gcc to generate
dependency information. Some provide that information directly (e.g. Fsatrace), some use
stamp files (e.g. Redis) and some build their own mechanisms on top of Make (e.g. Node.js,
but also Mokhov et al. [2016, ğ2]).

• Many projects give up on dependencies in less common cases, requiring the user to manually
invoke a clean, e.g. Redis for external dependencies, Vim for prototype changes.

• Rattle correctly rebuilds if the build file itself updates, but most of theMake projects do not.
The one exception is Node.js, through its use of its dependency encoding in the Makefile.

5.9 Writing Rattle Scripts

In order to see how difficult it is to write build scripts for Rattle, we tried writing two examples ś
namely a build script Fsatrace, and a program to fetch Haskell dependencies and install them.

5.9.1 Building Fsatrace. We implemented a Rattle script to build Fsatrace. Unlike ğ5.3, where
we took the outputs from Make, this time we took the source Makefiles and tried to port their
logic to Rattle. We did not port the testing or clean phony target, but we did port both Windows
and Linux support. The script first defines 11 variables, following the same pattern as the Makefile
which defines the same variables ś some of which are conditional on the OS. Next we compile all
the C sources, and finally we do a few links. The total code is 19 non-comment lines, corresponding
to 46 non-comment lines in the original Makefiles.
Given the setup of the code, it was trivial to use explicit parallelism for compiling all C files,

but doing so for the linking steps, and arranging for the links to be performed as soon as possible,
would have been tedious. Taking some representative pieces from the build, we have:

let cppflags | isWindows = "-D_WIN32_WINNT=0x600 -isysteminclude/ddk"

| otherwise = "-D_GNU_SOURCE -D_DEFAULT_SOURCE=1"

let sosrcs = ["src/unix/fsatraceso.c","src/unix/shm.c","src/unix/proc.c"]

forP_ (srcs ++ if isWindows then dllsrcs else sosrcs) $ \x ->

cmd "gcc -c" ["-fPIC" | not isWindows] cppflags cflags x "-o" (x -<.> "o")

cmd "gcc" ldflags ldobjs (map (-<.> "o") srcs) ldlibs "-o" ("fsatrace" <.> exe)

The overall experience of porting the Makefile was pleasant. The explicit isWindows is much
nicer than the Makefile approach. The availability of lists and a rich set of operations on them made
certain cases more natural. The use of functions, e.g. objects, allowed simplifying transformations
and giving more semantically meaningful names. The powerful syntax of cmd, allowing multiple
arguments, makes the code look relatively simple. The only downside compared to Make was the
use of quotes in more places.

5.9.2 Installing Haskell Dependencies. As a second test, we wrote a program to fetch and build a
Haskell library and its dependencies. For Haskell packages, Cabal is both a low-level library/interface
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for configuring, building and installing, and also a high-level tool for building sets of packages.
Stackage is a set of packages which are known to work together. Stack is a tool that consumes the
list of Stackage packages, and using low-level Cabal commands, tries to install them. We decided to
try and replicate Stack, with the original motivation that by building on top of Rattle we could
get cloud builds of Haskell libraries for free.
We were able to write a prototype of something Stack-like using Rattle in 71 non-comment

lines. Our prototype is capable of building some projects, showing the fundamental mechanisms
work, but due to the number of corner cases in Haskell packages, is unlikely to be practical without
further development. The main logic that drives the process is reproduced below.

stack :: String -> [PackageName] -> Run ()

stack resolver packages = do

let url = "https://www.stackage.org/" ++ resolver ++ "/cabal.config"

cmd Shell "curl -sSL" url "-o" resolver <.> "config"

versions <- liftIO $ readResolver $ resolver <.> "config"

flags <- liftIO extraConfigureFlags

needPkg <- memoRec $ \needPkg name -> do

let v = version Map.! name

whenJust v $ installPackage needPkg config flags name

return v

forP_ packages needPkg

Reading this code, given a Stackage resolver (e.g. nightly-2012-10-29), we download the
resolver to disk, read it, then recursively build projects in an order satisfying dependencies. The
download uses curl, which has no meaningful reads, so will always be skipped. Importantly, the
URL (and thus the command line) includes the full resolver which will never change once published.
The parsing of the resolver is Haskell code, not visible to Rattle, repeated on every run (the time
taken is negligible). We then build a recursive memoisation pattern using memoRec, where each
package is only built once, and while building a package you can recursively ask for other packages.
We then finally demand the packages that were requested.

Writing the program itself was complex, due to Haskell packaging corner cases ś but the Rattle
aspect was pleasant. Having Haskell available to parse the configuration and having efficient Map
data structures made it feasible. Not worrying about dependencies, focusing on it working, vastly
simplified development. There were lots of complications due to the nature of Haskell packages
(e.g. some tools/packages are special, parsing metadata is harder than it should be), but only a few
which interacted closely with Rattle:

(1) There are some lock files, e.g. package.cache.lock, which are both read and written by
many commands, but not in an interesting way. We explicitly ignored these files from being
considered for hazards.

(2) Haskell packages are installed in a database, which by default is appended to with each
package registration. That pattern relies on the order of packages and is problematic for
concurrency. Many build systems, e.g. Bazel [Google 2016], use multiple package databases
for Haskell, each containing one package. We follow the same pattern.

(3) By default, Cabal produces packages where some fields (but not all) include an absolute path.
To make the results generally applicable for cloud builds, we remove the absolute paths. To
ensure the absolute paths never make it to the cloud, we run the command that produces
and the command that cleans up as a single command from the point of view of Rattle.

(4) Since cachable things have to be commands, that required putting logic into commands, not
just shell calls. To make that pleasant, we wrote a small utility to take Template Haskell
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commands [Sheard and Peyton Jones 2002] and turn them into Haskell scripts that could
then be run from the command line.

6 RELATED WORK

The vast majority of existing build systems are backward build systems ś they start at the final
target, and recursively determine the dependencies required for that target. In contrast, Rattle is
a forward build systemÐthe script executes sequentially in the order given by the user.

6.1 Comparison to Forward Build Systems

The idea of treating a script as a build system, omitting commands that have not changed, was
pioneered by Memoize [McCloskey 2008] and popularised by Fabricate [Hoyt et al. 2009]. In
both cases the build script was written in Python, where cheap logic was specified in Python and
commands were run in a traced environment. If a traced command hadn’t changed inputs since
it was last run, then it was skipped. We focus on Fabricate, which came later and offered more
features. Fabricate uses strace on Linux, and on Windows uses either file access times (which
are either disabled or very low resolution on modern Windows installations) or a proprietary and
unavailable tracker program. Parallelism can be annotated explicitly, but often is omitted.
These systems did not seem to have much adoption ś in both cases the original sources are

no longer available, and knowledge of them survives only as GitHub copies. Rattle differs from
an engineering perspective by the tracing mechanisms available (see ğ3.5) and the availability of
cloud build (see ğ2.5) ś both of which are likely just a consequence of being developed a decade
later. Rattle extends these systems in a more fundamental way with the notion of hazards, which
both allows the detection of bad build scripts, and allows for speculation ś overcoming the main
disadvantage of earlier forward build systems. Stated alternatively, Rattle takes the delightfully
simple approach of these build systems, and tries a more sophisticated execution strategy.

Recently there have been three other implementations of forward build systems we are aware of.

(1) Shake [Mitchell 2012] provides a forward mode implemented in terms of a backwards build
system. The approach is similar to the Fabricate design, offering skipping of repeated
commands and explicit parallelism. In addition, Shake allows caching custom functions as
though they were commands, relying on the explicit dependency tracking functions such
as need already built into Shake. The forward mode has been adopted by a few projects,
notably a library for generating static websites/blogs. The tracing features are provided by a
combination of Shake and Fsatrace, and are the ones we reuse in Rattle.

(2) Fac [Roundy 2019b] is based on the BigBro tracing library. Commands are given in a custom
file format as a static list of commands (i.e. no monadic expressive power as per ğ2.2), but
may optionally include a subset of their inputs or outputs. The commands are not given
in any order, but the specified inputs/outputs are used to form a dependency order which
Fac uses. If the specified inputs/outputs are insufficient to give a working order, then Fac

will fail but record the actual dependencies which will be used next time ś a build with no
dependencies can usually be made to work by running Fac multiple times.

(3) Stroll [Mokhov 2019] takes a static set of commands, without either a valid sequence or any
input/output information, and keeps running commands until they have all succeeded. As a
consequence, Stroll may run the same command multiple times, using tracing to figure out
what might have changed to turn a previous failure into a future success. Stroll also reuses
the tracing features of Shake and Fsatrace.

There are significantly fewer forward build systems than backwards build systems, but the inter-
esting dimension starting to emerge is how an ordering is specified. The three current alternatives

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 169. Publication date: November 2020.



Build Scripts with Perfect Dependencies 169:25

are the user specifies a valid order (Fabricate and Rattle), the user specifies partial dependencies
which are used to calculate an order (Fac) or the user specifies no ordering and search is used
(Stroll and some aspects of Fac).

Other build systems, such as Pluto [Erdweg et al. 2015] (and PIE [Konat et al. 2018a,b], a front-
end to Pluto), simulate some of the convenience of a forward build system by constructing the
dependency graph during the execution of a host-language program that contains dependency
information. However, these systems, similar to Shake, then rely on that dependency graph for
rebuilding. When Pluto performs an incremental build it must traverse the entire dependency
graph to discover which tasks must be re-run. Building on Pluto, PIE [Konat et al. 2018a,b] sought
to increase the scalability of Pluto’s rebuilding algorithm by only traversing tasks transitively
affected by changed files rather than traversing the entire dependency graph. In contrast, Rattle
and other forward build systems do not construct or use such a dependency graph. When Rattle

runs a build there is no dependency graph to traverse, and each command in the build is considered.
Therefore, a rebuild scales with the size of the build, and the approach used in [Konat et al. 2018a]
cannot be applied to Rattle. Additionally, we have not found computing internal datastructures to
be a bottleneck and have not attempted to avoid it.

6.2 Comparison to Backward Build Systems

The design space of backward build systems is discussed in [Mokhov et al. 2018]. In that paper it is
notable that forward build systems do not naturally fit into the design space, lacking the features
that a build system requires. We feel that omission points to an interesting gap in the landscape of
build systems. We think that it is likely forward build systems could be characterised similarly, but
that we have yet to develop the necessary variety of forward build systems to do so. There are two
dimensions used to classify backward build systems:
Ordering Looking at the features of Rattle, the ordering is a sequential list, representing an

excessively strict ordering given by the user. The use of speculation is an attempt to weaken that
ordering into one that is less linear and more precise.
Rebuild For rebuilding, Rattle looks a lot like the constructive trace model ś traces are made,

stored in a cloud, and available for future use. The one wrinkle is that a trace may be later invalidated
if it turns out a hazard occurred (see ğ3.3).

There are three features present in some backward build systems that are particularly relevant to
Rattle:
Sandboxing Some backward build systems (e.g. Bazel [Google 2016]) run processes in a sandbox,

where access to files which weren’t declared as dependencies are blocked ś ensuring dependencies
are always sufficient. A consequence is that it can be harder to write a Bazel build script, requiring
users to declare dependencies like gcc and system headers that are often overlooked. The sandbox
doesn’t prevent the reverse problem of too many dependencies.

The Nix build system [Dolstra et al. 2004] solves the problem of sandboxing in a slightly different
way. Nix is a build tool aimed at package management, replacing tools such as apt and RPM. Before
running any binary Nix rewrites the $PATH to remove everything apart from declared dependencies,
ensuring no undeclared dependencies can be accessed. Nix also installs each package into a location
which includes a cryptographic hash of its contents, ensuring that even packages with the same
name end up at different locations unless they are identical.
Remote Execution Some build systems (e.g. Bazel and BuildXL [Microsoft 2020]) allow run-

ning commands on a remote machine, usually with a much higher degree of parallelism than is
available on the users machine. If Rattle was able to leverage remote execution then speculative
commands could be used to fill up the cloud cache, and not cause local writes to disk, eliminating
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all speculative hazards ś a very attractive property. Remote execution in Bazel sends all required
files along with the command, but since Rattle doesn’t know the files accessed in advance, that
model is infeasible. Remote execution in BuildXL sends the files it thinks the command will need,
augments the file system to block if other files are accessed, and sends requests for additional files
back to the originating machine ś which would fit nicely with Rattle.

Hazards Some build systems detect when certain types of hazard occur. For example, Pluto
[Erdweg et al. 2015] builds are constructed from builders and it is a requirement that no two builders
generate the same file, and if they do the build is aborted. Similarly, if two commands in a Rattle
build write to the same file a write-write hazard occurs and the build is terminated. If a command
in a Rattle build writes to a file after another command has already read it a read-write hazard
occurs. Analogously in Pluto, if a builder requires a file generated by another builder, then the
builder which generated the file must be required first and if it is not the build is aborted.

6.3 Build Correctness

We aren’t the first to observe that existing build systems often have incorrect dependencies. Bezemer
et al. [2017] performed an analysis of the missing dependencies in Make build scripts, finding over
1.2 million unspecified dependencies among four projects. To detect missing dependencies, Licker
and Rice [2019] introduced a concept called build fuzzing, finding race-conditions and errors in
30 projects. It has also been shown that build maintenance requires as much as a 27% overhead
on software development [McIntosh et al. 2011], a substantial proportion of which is devoted to
dependency management. Our anecdotes from ğ5 all reinforce these messages.

6.4 Speculation

Speculation is used extensively in many other areas of computer science, from processors to
distributed systems. If an action is taken before it is known to be required, that can increase
performance, but undesired side-effects can occur. Most speculating systems attempt to block the
side-effects from happening, or roll them back if they do.
The most common use of speculation in computer science is the CPU ś Swanson et al. [2003]

found that 93% of useful CPU instructions were evaluated speculatively. CPUs use hazards to
detect incorrect speculation, with similar types of read/write, write/write and write/read hazards
[Patterson and Hennessy 2013] ś our terminology is inspired by their approaches. For CPUs many
solutions to hazards are available, e.g. stalling the pipeline if a hazard is detected in advance or the
Tomasulo algorithm [Tomasulo 1967]. Rattle also stalls the pipeline (stops speculating) if it detects
potential hazards, although does so with incomplete information, unlike a CPU. The Tomasulo
algorithm involves writing results into temporary locations and the moving them over afterwards ś
use of remote execution (ğ6.2) might be a way to apply similar ideas to build systems.
Looking towards software systems, Welc et al. [2005] showed how to add speculation to Java

programs, by marking certain parts of the program as worth speculating with a future. Similar to
our work, they wanted Java with speculation to respect the semantics of the sequential version
of the program, which required two main techniques. First, all data accesses to shared state are
tracked and recorded, and if a dependency violation occurs, the offending code is restarted. Second,
shared state is versioned using a copy-on-write invariant to ensure threads write to their own
copies, preventing a future from seeing its continuation’s writes.

Thread level speculation [Steffan and Mowry 1998] is used by compilers to automatically paral-
lelise programs, often by executing multiple iterations of a loop body simultaneously. As before,
the goal is to maintain the semantics of single-threaded execution. Techniques commonly involve
buffering speculative writes [Steffan et al. 2000] and ensuring that a read reflects the speculative
writes of threads that logically precede it.
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Speculation has also been investigated for distributed systems. Nightingale et al. [2005] showed
that adding speculation to distributed file systems such as NFS can make some benchmarks over 10
times faster, by allowing multiple file system operations to occur concurrently. A model allowing
more distributed speculation, even in the presence of message passing between speculated dis-
tributed processes, is presented by Tapus [2006]. Both these pieces of work involve modifying the
Linux kernel with a custom file system to implement roll backs transparently.

All these approaches rely on the ability to trap writes, either placing them in a buffer and applying
them later or rolling them back. Unfortunately, such facilities, while desirable, are currently difficult
to achieve in portable cross-platform abstractions (ğ3.5). We have used the ideas underlying
speculative execution, but if the necessary trapping/rollback facilities became available in future,
it’s possible we could follow the approaches more directly.

7 CONCLUSION AND FUTURE WORK

In this paper we present Rattle, a build system that takes a sequence of actions and treats them
as a build script. From the user perspective, they get the benefits of a conventional build system
(incrementality, parallelism) but at lower cost (less time thinking about dependencies, only needing
to supply a valid ordering). Compared to conventional build systems like Make, Rattle presents a
simpler user interface (no dependencies), but a more complex implementation model.
Our evaluation in ğ5 shows that for some popular real-world projects, switching to Rattle

would bring about simplicity and correctness benefits, with negligible performance cost. The two
places where builds aren’t roughly equivalent toMake are the initial build (which can be solved
with a global shared cache) and when speculation leads to a hazard. There are several approaches to
improving speculation, including giving Rattle a list of commands that should not be speculated
(which can be a perfect list for non-monadic builds), or giving Rattle a subset of commands’
inputs/outputs (like Fac does), or implementing better recovery strategies from speculation errors.

Our evaluation focuses on projects whose build times are measured in seconds or minutes, with
only one project in the hours range. It is as yet unclear whether similar benefits could be achieved
on larger code bases, and whether the Rattle approach of łany valid orderingž is easy to describe
compositionally for large projects. But, it does seem clear that existing projects built withMake

seek some form of automatic dependency detection, with most projects using some form of gcc
dependency generation manually wired into the build system.
Our next steps are scaling Rattle and incorporating feedback from actual users.
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