Chapter 2

A Static Checker for Safe
Pattern Matching in Haskell

Neil Mitchell and Colin Runcimag:!

Abstract: A Haskell program may fail at runtime with a pattern-match error if

the program has any incomplete (non-exhaustive) patterns in definitions or case

alternatives. This paper describes a static checker that allows non-exhaustive pat-
terns to exist, yet ensures that a pattern-match error does not occur. It describes a
constraint language that can be used to reason about pattern matches, along with
mechanisms to propagate these constraints between program components.

2.1 INTRODUCTION

Often it is useful to define pattern matches which are incomplete, for example
head fails on the empty list. Unfortunately programs with incomplete pattern
matches may fail at runtime.

Consider the following example:

risers :: Ord a => [a] -> [[a]]

risers [] =]

risers [X] = [[X]]

risers (xiy:etc) = if x <= y then (x:s):ss else [x]:(s:SS)
where (s:ss) = risers (y:etc)

A sample execution of this function would be:

> risers [1,2,3,1,2]
[[1,2,31,[1,2]]

In the last line of the definition(s:ss) is matched against the output of
risers . If risers (y:etc) returns an empty list this would cause a pattern

2yniversity of York, UK. http://www.cs.york.ac.ukindm and http://www.cs.york.ac.uktolin

15

match error. It takes a few moments to check this program manually — and a few
more to be sure one has not made a mistake!

GHC [The05] 6.4 has a warning flag to detect incomplete patterns, which is
named-fwarn-incomplete-patterns . Adding this flag at compile time
reports??

Warning: Pattern match(es) are non-exhaustive

But the GHC checks are only local. If the functibead is defined, then it
raises a warning. No effort is made to check tdadlers of head — this is an
obligation left to the programmer.

Turning therisers function over to the checker developed in this paper, the
output is:

> (risers (y:etc)) {:}
> True

The checker first decides that for the code to be safe the recursive call to
risers must always yield a non-empty list. It then notices that if the argument
inarisers application is non-empty, then so will the result be. This satisfies it,
and it returns True, guaranteeing that no pattern-match errors will occur.

2.1.1 Roadmap

This paper starts by introducing a reduced language similar to Haskg?.2n
Next a constraint language is introduced;th3 and algorithms are given to ma-
nipulate these constraints §2.4. A worked example is given 2.5, followed
by a range of small examples and a case studj2i6. This paper is compared
to related work in§2.7. Finally conclusions are given §j2.8, along with some
remaining tasks — this paper reports on work in progress.

2.2 REDUCED HASKELL

The full Haskell language is a bit unwieldy for analysis. In particular the syntactic
sugar complicates analysis by introducing more types of expression to consider.
The checker works instead on a simplified language, a core to which other Haskell
programs can be reduced. This core language is a functional language, making
use of case expressions, function applications and algebraic data types.

As shown in example 1, only one defining equation per function is permitted,
pattern-matching occurs only in case expressions and every element within a con-
structor must be uniquely named by a selector (ecgandtl). A convertor from
a reasonable subset of Haskell to this reduced language has been written.

22The additional flagfwarn-simple-patterns is needed, but this is due to GHC bug
number 1075259

16

Example 2.1
data [a = () {hd = a, tl =] a F |

head x = case x of (ai) -> a

map f xs = case xs of

1 >]

(a:as) -> f x : map f as
reverse xs = rev xs [

reverse2 X a = case x of
0 ->a
(y:ys) -> reverse2 ys (y:a) U

2.2.1 Higher Order Functions

The current checker is not higher order, and does not allow partial application.

The checker tries to eliminate higher-order functions by specialization. A mu-
tually recursive group of functions can be specialized in théirargument if in
all recursive calls this argument is invariant.

Examples of common functions whose applications can be specialized in this
way includemap, filter , foldr andfoldl

When a function can be specialized, the expression passed aththegu-
ment has all its free variables passed as extra arguments, and is expanded in the
specialized version. All recursive calls within the new function are then renamed.

Example 2.2

map f xs = case xs of

I >]

(a:as) > fa: map f as

adds x n map (add n) x

is transformed into:
map_adds n xs = case xs of
1 >
(a:as) -> add n a : map_adds n as

adds x n = map_adds n x J

Although this firstification approach is not complete by any means, it appears
to be sufficient for a large range of examples. Alternative methods are available
for full firstification, such as that detailed by Hughes [Hug96], or the defunction-
alisation approach by Reynolds [Rey72].

17

2.2.2 Internal Representation

While the concrete syntax allows the introduction of new variable names, the
internal representation does not. All variables are referred to usiepator path
from an argument to the function.

For example, the internal representatiomapis:

map f xs = case xs of
1 >
() > f (xs ‘hd) : map f (xs -tl)

(Note that the infix- operator here is used to compose paths; idsthe
Haskell function composition operator.)

2.3 A CONSTRAINT LANGUAGE

In order to implement a checker that can ensure unfailing patterns, it is useful to
have some way of expressing properties of data values. A constraint is written as
(e,r,c) , whereeis an expression, is a regular expression over selectors aisl
a set of constructors. Such a constraint asserts that any well-defined application
to e of a path of selectors described bynust reach a constructor in the set

These constraints are used as atoms in a predicate language with conjunction
and disjunction, so constraints can be about several expressions and relations be-
tween them. The checker does not require a negation operator. We also use the
term constraint to refer to logical formulae with constraints as atoms.

Example 2.3

Consider the functiominimum , defined as:

minimum xs = case Xxs of
[X] -> X
(a:b:xs) -> minimum (min a b : xs)

min a b = case a < b of
True -> a
False > b

Now consider the expressianinimum e. The constraint that must hold for
this expression to be safe(ig A, {: }). This says that the expressiemust reduce
to an application of , i.e. a non-empty list. In this example the path wasthe
empty path. U]

Example 2.4

Consider the expressiamap minimum e. In this case the constraint gener-
ated is(e,tl *-hd,{: }). If we apply any number (possibly zero) tf s to e,

18

then applyhd, we reach a construction. Values satisfying this constraint in-
clude[] and[[1],[2],[31] , but not[[1],1] . The value[] satisfies
this constraint because it is impossible to apply eitheor hd, and therefore the
constraint does not assert anything about the possible constructors.
O
Constraints divide up into three parts — gubject thepathand thecondition

The subjectin the above two examples was j@strepresenting any expression —
including a call, a construction or evercase .

The path is a regular expression over selectors.
A regular expression is defined as:

s+t union of regular expressiossandt

s-t concatenation of regular expressiathent

any number (possibly zero) occurrences of

a selector, such dd ortl

the language is the set containing the empty string
the language is the empty set

8 > X 0

The condition is a set of constructors which, due to static type checking, must all
be of the same result type.

The meaning of a constraint is defined by:
(er,c) < (VI € L(r) edefinede,l) = constructofe-1) € c)

HereL(r) is the language represented by the regular expressiefinedreturns
true if a path selection is well-defined; aodnstructorgives the constructor used
to create the data. Of course, sirlc@) is potentially infinite, this cannot be
checked by enumeration.

If no path selection is well-defined then the constraint is vacuously true.

2.3.1 Simplifying the Constraints

From the definition of the constraints it is possible to construct a number of iden-
tities which can be used for simplification.

Path does not existin the constrain{[] ,hd,{: }) the expressiofi does not
have ahd path, so this constraint simplifies to true.

Detecting failure: the constrain{[] ,A,{: }) simplifies to false because tffle
value is not the constructor.

Empty path: in the constrainte, @, c), the regular expression ¢ the empty lan-
guage, so the constraint is always true.

19

Exhaustive conditions:in the constrainte, A, {:,[] }) the condition lists all the
possible constructors, & reaches weak head normal form then because of
static typinge must be one of these constructors, therefore this constraint sim-
plifies to true.

Algebraic conditions: finally a couple of algebraic equivalences:

(er1,C) A{erz,C) (e (r1+r2),c)
(erc)Aferc) = (ercncy)

2.4 DETERMINING THE CONSTRAINTS

This section concerns the derivation of the constraints, and the operations involved
in this task.
2.4.1 The Initial Constraints

In general, &ase expression, wher& are the arguments to a constructor:
case eof Cy v >val 4; ., C L, V ->val ,

produces the initial constrairie,A,{C;,...,C ,}). If the case alternatives are
exhaustive, then this can be simplified to true. @édse expressions in the pro-
gram are found, their initial constraints are found, and these are joined together
with conjunction.

2.4.2 Transforming the constraints

For each constraint in turn, if the subjectxs (i.e. thex argument tdof), the
checker searches for every applicationf ofand gets the expression for the ar-
gumentx. On this expression, it sets the existing constraint. This constraint is
then transformed using a backward analysis {&4.3), until a constraint on ar-
guments is found.

Example 2.5

Consider the constrainiXs pinimm, A, {: }) — that isminimum’s argumentxs
must be a non-empty list. If the program contains the expression:

f X = minimum (g x)

then the derived constraint{ég x) ,A,{: }). O

2.4.3 Backward Analysis

Backward analysis takes a constraint in which the subject is a compound expres-
sion, and derives a combination of constraints over arguments only. This process

20

d(e-s;r,c) — d(es-r,c) (sel)

/\ft:_él) <Q7%7C>_>P

(C &,rc)—>(Ael(r)=Cec)AP (con)
o(f €,r,c) = ¢(D(f,®),r,0) (app)
(¢ (eo,\, C(C)) V d(81,1,C)) — P (cas

d(case e of {C V->e; ---;Cy V->en},1,c) =P

FIGURE 2.1. Specification of backward analysis$

is denoted by a functiofh, which takes a constraint and returns a predicate over
constraints. This function is detailed in Figure 2.1.

In this figure C denotes a constructarijs a set of constructord,is a function,
eis an expressiorr, is a regular expression over selectors aigla selector.

The (sel) rule moves the composition from the expression to the path.

The (con) rule deals with an application of a construc€rlf A is in the path lan-
guage theC must be permitted by the condition. This depends oretinpty
word property(ewp) [Con71], which can be calculated structurally on the reg-
ular expression.

For each of the arguments @ a new constraint is obtained from the deriva-
tive of the regular expression with respect to that argument’s selector. This is
denoted byor /05(C,i), whereS(C,i) gives the selector for thigh argument

of the constructo€. The differentiation method is based on that described by
Conway [Con71]. It can be used to test for membership in the following way:

Ael(r) = ewplr)
s-r'elL(r) = r'eL(or/os)

Two particular cases of note ad&/da = @ andog/da= .

The (app) rule uses the notatiorD(f, &) to express the result of substituting
each of the arguments i@ into the body of the functiori. The naive appli-
cation of this rule to any function with a recursive call will loop forever. To
combat this, if a function is already in the process of being evaluated with the
same constraint, its result is given as true, and the recursive arguments are put
into a special pile to be examined later on, §2&1.4 for detalils.

The (cas) rulegenerates a conjunct for each alternative. The funafi®) re-
turns the set of all other constructors with the same result typg, as.

21

C(l) ={:}. The generated condition says either the subject of the case
analysis has a different constructor (so this particular alternative is not exe-
cuted in this circumstance), or the right hand side of the alternative is safe
given the conditions for this expression.

2.4.4 Obtaining a Fixed Point

We have noted that if a function is in the process of being evaluated, and its
value is asked for again with the same constraints, then the call is deferred. After
backwards analysis has been performed on the result of a function, there will be
a constraint in terms of the arguments, along with a set of recursive calls. If these
recursive calls had been analyzed further, then the checking computation would
not have terminated.

Example 2.6

mapHead xs = case xs of

I >]

(x:xs) -> head x : mapHead xs

The functionmapHead is exactly equivalent tonap head. Running back-
ward analysis over this function, the constraint generatéxlsis.preaq, Nd, {: }),
and the only recursive call noted isapHead (xs -tl). The recursive call is
written asxs <« xs-tl , showing how the value ofs changes. Observe that
the path in the constraint only reaches the first element in the list, while the desired
constraint would reach them all. In effettapHead has been analyzed without
considering any recursive applications.

The fixed point for this function can be derived by repeatedly replaxing
with xs -t in the subject of the constraint, and joining these constraints with
conjunction.

(xs,hd,{:) A{xs-tl ,hd,{z })A{xs-tl tl hd,{: })A... (1)
= (xs,hd,{: HA(xs,tl -hd,{:) A{xs,tl tI -hd,{: })A... 2
= (xs,hd+tl -hd+tl -t -hd+... {:}) ©)
= (xs,(A+tl+t -t) -hd, {0 }) (4)
= (xs,tl *hd,{:}) (5)

The justification is as follows. First use the backwards analysis rule given in
Figure 2.1 to transform between (1) and (2) — selectors move from the subject to
the path. To obtain (3) the first algebraic condition give§23.1 is used. The
factorisation of thenhd element of the regular expression is applied. Finally this
can be rewritten using the regular expressioperator as the result. U]

More generally, given any constraint of the fopn,r,c) and a recursive call
of the formx < x. p, the fixed point is(x, p* - r,c). A special case is whene
is A, in which casep*-r =r.

22

Example 2.7

Consider the functioreverse written using an accumulator:

reverse x = reverse2 Xx []

reverse2 X a = case X of
1 -> a
(y:ys) -> reverse2 ys (y:a)

Argumentxs follows the patterrx < x.tl , but we also have the recursive
calla «— (x -hd:a) . If the program being analyzed contained an instance of
map head (reverse x) , the part of the condition that applies @&before
the fixed pointing ot is (a,tl *-hd,{: }).

In this case a second rule for obtaining a fixed point can be used. For recursive
calls of the forma «— C x; --- X, a, wheresis the selector corresponding
to the position of, the rule is:

A (()\ eL(r)=Cec) /\<a,r’,c)/\/\(xi,a;zgi),c>>

r'er# i=1
Where:

E

#_ 0 .1 o 0 (n+1) _
r*={rr r r’=r r =
{ Y } as

It can be shown that” is always a finite set [Law04]. This expression is
derived from the (con) rul§2.4.3, applied until it reaches a fixed point.

In thereverse example,r” is {tl *-hd}, sincedtl *-hd/otl =t *-hd.
AlsoA ¢ L(tl *-hd), so the resultis:

. _ atl *hd
(.t “hd, {: hAxhd, = =.{:})

= (atl “hd,{: DAhd A { D

= (a,tl *hd,{:) A(x,hd,{: })

Next applying the fixed pointing due iq gives a final condition, as expected:
(a,tl *hd,{: }) A (x,tl *-hd,{: }) d

While the two rules given do cover a wide range of examples, they are not
complete. Additional rules exist for other forms of recursion but not all recursive
functions can be handled using the current scheme.

Example 2.8

interleave x y = case x of

I >y
(ab) -> a : interleave y b

23

Here the recursive call ig < x-tl , which does not have a rule defined
for it. In such cases the checker conservatively outpatse , and also gives a
warning message to the user. The checker always terminates.

The fixed point rules classify exactly which forms of recursion can be accepted
by the checker. Defining more fixed point rules which can capture an increasingly
large number of patterns is a matter for future work.

2.5 AWORKED EXAMPLE

Recall therisers example in52.1. The first step of the checker is to transform
this into reduced Haskell.

risers xs =
case xs of
1 >]
[x] -> [[]]

(x:y:etc) -> risers2 (x <= y) x (risers (y:etc))

risers2 b x y = case y of
(s:ss) -> case b of
True -> (xiS) : sS
False -> [x] : (s:sS)

The auxiliaryrisers2 is necessary because reduced Haskell haghsse
clause. The checker proceeds as follows:

Step 1, Find all incomplete case statementsThe checker finds one, in the
body ofrisers2 , the argumeny must be a non-empty list. The constraint
iS <yriser52>)\a{: }>

Step 2, Propagate. The auxiliaryrisers2 is applied byrisers with risers

(y:etc) asthe argumerst. This gives((risers (y:etc)) A {0 1. When
rewritten in terms of arguments and paths of selectors, this gives the constraint
((risers (xs risers'tl ‘Nd 0 XS pigersctl <t)) A {i }).

Step 3, Backward analysis. The constraint is transformed using the backward
analysis rules. The first rule invoked is (app), which says that the bailyen$
must evaluate to a non-empty list, in effect an inline version of the constraint.
Backward analysis is then performed over the case statement, the constructors,
and finallyrisers2 . The conclusion is that provided ;s IS a: , the result
will be. The constraint i$(XS risers'tl -hd : XS rigers-tl -t) A, {:}), which
is true.

In this example, there is no need to perform any fixed pointing.

24

2.6 SOME SMALL EXAMPLES AND A CASE STUDY

In the following examples, each line represents one propagation step in the checker.
The final constraint is given on the last line.

head x = case x of
(yiys) >y
main X = head x
> <Xhead7}\7{: }>
> (Xmain, A, {: })

This example requires only initial constraint generation, and a simple propagation.
O

Example 2.9

main x = map head x
> <Xhead7)\7{: }>

> <XmapJ1ead7t| *hdv{ }>
> (Xpain,tl *-hd,{: })

This example shows specialization generating a new functiap_head, fixed
pointing being applied tonap, and the constraints being propagated through the
system. U]

Example 2.10

main X = map head (reverse x)

> <Xheada)\a{: }>

> <XmapJ1ead7t| *hd,{ }>

> <Xmain7t| *7{: }> \ <Xmain7t| *hd,{ }>

This result may at first seem surprising. The first disjunct of the constraint says
that applyingtl any number of times t&,.i, the result must always be:g in

other wordsx must be infinite. This guarantees case safety becavsgse is

tail strict, so if its argument is an infinite list, no result will ever be produced, and
a case error will not occur. The second disjunct says, less surprisingly, that every
item inx must be a non-empty list. U

Example 2.11

main xs ys = case null xs || null ys of
True -> 0
False -> head xs + head ys

\

<Xhead7)\7{: }>

((ull XS pain || NUI YS pain) A, {True }) v

(<Xsmaim)\v{: }> A <ysmaim)\7{: }>)

<Xsmain7)\7{[| }> \ <ysmain7)\7{[| }> \ ((Xsmainv)\v{: }> A <ysmain7)\7{: }>)
True

\%

vV Vv

25

This example shows the use of a more complex condition to guard a potentially
unsafe application dfead . The backward analysis appliedrtall and|| gives
precise requirements, which when expanded results in a tautology, showing that
no pattern match error can occur.

Example 2.12

main x = tails x

tails x = foldr tails2 [[J] x

tails2 x y = (xhead y) : vy

<Xhead~,}\7{: }>

<ytai1525}\a{: }>

(N1forar taitzs2, A {: }) V (N2fo1dr taits2, tl *tl ,{: })
True

v

vV V V

This final example uses a fold to calculate thiss ~ function. As the auxiliary
tails2 makes use ohead the program is not obviously free from pattern-
match errors. The first two lines of the output are simply moving the constraint
around. The third line is the interesting one. In this line the checker gives two
alternative conditions for the case safetyfoldr tails2 — either its first
argument is a, or its second argument is empty or infinite. The way the require-
ment for empty or infinite length is encoded is by the pthi-tl . If the list is

[l ,thenthere are no tails to match the path. If however, there is one tail, then that
tail, and all successive tails must beSo eitheffoldr does not call its function
argument because it immediately takes[lhecase, ofoldr recurses infinitely,

and therefore the function is never called. Either way, bectalde ’'s second
argument is a , and becaustails2 always returns a, the first part of the
condition can be satisfied. O

2.6.1 The Clausify Program

Our goal is to check standard Haskell programs, and to provide useful feedback
to the user. To test the checker against these objectives we have used several
Haskell programs, all written some time ago for other purposes. The analysis of
one program is discussed below.

The Clausify program has been around for a very long time, since at least
1990. It has made its way into tlefib benchmark suite [Par92], and was the
focus of several papers on heap profiling [RW93]. It parses logical propositions
and puts them in clausal form. We ignore the parser and jump straight to the
transformation of propositions. The data structure for a formula is:

data F = Sym {char :: Char } | Not {n = F }

| Dis {di, d2 :: F } | Con {cl, c2 ::

F 3}
| Imp {i1, 2 = F } | Eqv {el, e2 = F }

and the main pipeline is:

unicl . split . disin . negin . elim

26

Each of these stages takes a proposition and returns an equivalent version —
for example theelim stage replaces implications with disjunctions and negation.
Each stage eliminates certain forms of proposition, so that future stages do not
have to consider them. Despite most of the stages being designed to deal with a
restricted class of propositions, the only function which contains a non-exhaustive
pattern match is in the definition ofause (a helper function founicl).

clause p = clause’ p ([] ,)

where
clause’ (Dis p Q) X = clause’ p (clause’ q Xx)
clause’ (Sym s) (c,a) = (insert s ¢ , a)

clause’ (Not (Sym s)) (c,a) = (c , insert s a)

After encountering the non-exhaustive pattern match, the checker generates
the following constraints:

> (Pclause’, (d1+d2) * {Dis,Sym,Not }) A (Pciause,(d1+d2) *-n {Sym})
> <pc1ause’7(dl+d2) *,{Dis,Sym,Not }> A <pclause:(dl+d2) *~n,{Sym}>
> <punic1’a(d1+d2) *,{Dis,Sym,Not }> A <punic1’7(d1+d2) *nv{sym}>
> <Xfoldr,unicl7t| *hd(d1+d2) *,{DiS,Sym,Not }) A\

<Xfoldr,unic17t| *hd(dl+d2) *na{sym}>
> (Xunic1,tl *-hd-(d1+d2) * {Dis,Sym,Not }) A

(

Xuniclvtl *-hd (dl+d2) *'nv {Sym}>

These constraints give accurate and precise requirements for a case error not
to occur at each stage. However, when the condition is propagated back over the
split function, the result becomes less pleasing. None of our fixed pointing
schemes handle the original recursive definitiosft

split p = split’ p []
where
split’ (Con p g) a = split' p (split q a)
split pa=p:a

can be transformed manually by the removal of the accumulator:

split (Con p q) = split p ++ split g
split p = [p]

This second version is accepted by the checker, which generates the constraint:

> (Psp1it,(c1+c2) *,{Con,Dis,Sym,Not }) A
(Psp1it,(c1+c2) *-(d1+d2) -(d1+d2) *,{Dis,Sym,Not }) A
(Psp1it,(cl+c2) *.(d1+d2) *.n,{Sym})

This constraint can be read as follows: the outer structure of a propositional
argument tosplit is any number of neste@on constructors; the next level
is any number of nesteldis constructors; at the innermost level there must be
either aSym or aNot containing &Sym That is, propositions are iconjunctive
normal form

27

The one surprising part of this constraint is fftd+d2) -(d1+d2) * part
of the path in the 2nd conjunct. We might rather expect something similar to
(c1+c2) *.(d1+d2) *{Dis,Sym,Not }, but consider what this means. Take
as an example the valy€on (Sym 'x’) (Sym 'y")) . This value meets
all 3 conjunctions generated by the tool, but does not meet this new constraint:
the path has the empty word property, so the root of the value can no longer be a
Con constructor.

The next function encountereddssin ~ which shifts disjunction inside con-
junction. The version in the nofib benchmark has the following equation in its
definition:

disin (Dis p q) = if conjunct dp || conjunct dq
then disin (Dis dp dq)
else (Dis dp dq)

where
dp = disin p
dg = disin g

Unfortunately, when expanded out this gives the call
disin (Dis (disin p) (disin Qq))

which does not have a fixed point under the present scheme. Refactoring is re-
quired to enable this stage to succeed. Fortunately, in [RW93] a new version of
disin is given, which is vastly more efficient than this one, and (as a happy side
effect) is also accepted by the checker.

At this point the story comes to an end. Although a constraint is calculated
for the newdisin , this constraint is approximately 15 printed pages long! Ini-
tial exploration suggests at least one reason for such a large constraint: there are
missed opportunities to simplify paths. We are confident that with further work
the Clausify example can be completed.

2.7 RELATED WORK

Viewed as groof tool this work can be seen as following Turner’s goal to define a
Haskell-like language which is total [TurO4]. Turner disallows incomplete pattern
matches, saying this will “force you to pay attention to exactly those corner cases
which are likely to cause trouble”. Our checker may allow this restriction to be
lifted, yet still retain a total programming language.

Viewed as a basipattern match checker, the work on compiling warnings
about incomplete and overlapping patterns is quite relevant {83HMar05]. As
noted in the introduction, these checks are only local.

Viewed as amistake detectorthis tool has a similar purpose to the classic C
Lint tool [Joh78], or Dialyzer [LS04] — a static checker for Erlang. The aim is to
have a static checker that works on unmodified code, with no additional annota-
tions. However, a key difference is that in Dialyzer all warnings indicate a genuine
problem that needs to be fixed. Because Erlang is a dynamically typed language,

28

a large proportion of Dialyzer's warnings relate to mistakes a type checker would
have detected.

Viewed as aoft type systenthe checker can be compared to the tree automata
work done on XML and XSL [Toz01], which can be seen as an algebraic data
type and a functional language. Another soft typing system with similarities is by
Aiken [AM91], on the functional language FL. This system tries to assign a type
to each function using a set of constructors, for exarhpbd is given justCons
and notNil .

2.8 CONCLUSIONS AND FURTHER WORK

A static checker for potential pattern-match errors in Haskell has been specified
and implemented. This checker is capable of determining preconditions under
which a program with non-exhaustive patterns executes without failing due to a
pattern-match error. A range of small examples has been investigated success-
fully. Where programs cannot be checked initially, refactoring can increase the
checker’s success rate. Work in progress includes:

e The checker currently relies on specialization to remove higher order func-
tions.

e The checker is fully polymorphic but it does not currently handle Haskell's
type classes; we hope these can be transformed away without vast complica-
tion [Jon94].

e Another challenge is to translate from full Haskell into the reduced language.
This work has been started: we have a converter for a useful subset.

e The checker should offer fuller traces that can be manually verified. Currently
the predicate at each stage is given, without any record of how it was obtained,
or what effect fixed pointing had. Although a more detailed trace would not
help an end user, it would help strengthen the understanding of the algorithms.

e The central algorithms of the checker can be refined. In particular a better fixed
pointing scheme is being developed. A complete analysis of which programs
can be verified would be useful.

e A correctness proof is needed to prove that the checker is sound. This will
require a semantics for the reduced Haskell-like language.

With these improvements we hope to check larger Haskell programs, and to
give useful feedback to the programmer.

ACKNOWLEDGEMENT

The first author is a PhD student supported by a studentship from the Engineering
and Physical Sciences Research Council of the UK.

29

REFERENCES

[AMO1]

[Con71]

[Hug96]

[JHH93]

[Joh78]

[Jon94]

[Law04]

[LS04]

[Mar05]

[Par92]

[Rey72]

[RW93]

[The05]

[Toz01]

[Turo4]

Alex Aiken and Brian Murphy. Static Type Inference in a Dynamically Typed
Language. InPPOPL '91: Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languagessges 279-290. ACM
Press, 1991.

John Horton ConwayRegular Algebra and Finite Machinet.ondon Chap-
man and Hall, 1971.

John Hughes. Type Specialisation for the Lambda-calculus; or, A New Par-
adigm for Partial Evaluation based on Type Inference. In Olivier Danvy,
Robert Glick, and Peter Thiemann, editoRartial Evaluation pages 183—
215. Springer LNCS 1110, February 1996.

Simon Peyton Jones, C V Hall, K Hammond, W Partain, and P Wadler.
The Glasgow Haskell Compiler: A Technical Overview. Rroc. UK Joint
Framework for Information Technology (JFIT) Technical Confereri®93.
http://www.haskell.org/ghc/

S. C. Johnson. Lint, a C program checker. Technical Report 65, Bell Labora-
tories, 1978.

Mark P. Jones. Dictionary-free Overloading by Partial EvaluationAQi
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation ACM Press, June 1994.

Mark V. Lawson.Finite Automata CRC Press, first edition, 2004.

Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in tele-
com applications through lightweight static analysis: A war story. In Chin
Wei-Ngan, editorProgramming Languages and Systems: Proceedings of the
Second Asian Symposium (APLAS;@lume 3302 of NCS pages 91-106.
Springer, November 2004.

Luc Maranget. Warnings for Pattern Matching. Under consideration for pub-
lication in Journal Functional ProgrammingVarch 2005.

Will Partain. Theofib Benchmark Suite of Haskell Programs. In J Launch-
bury and PM Sansom, editosynctional Programming, Glasgow 1992ages
195-202. Springer-Verlag Workshops in Computing, 1992.

John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. IPACM '72: Proceedings of the ACM annual conferengages 717—
740, New York, NY, USA, 1972. ACM Press.

Colin Runciman and David Wakeling. Heap Profiling of Lazy Functional Pro-
grams.Journal of Functional Programming(2):217—-245, 1993.

The GHC Team. The Glorious Glasgow Haskell Compilation System
User's Guide, Version 6.4.http://www.haskell/org/ghc/docs/
latest/html/users _guide , March 2005.

Akihiko Tozawa. Towards Static Type Checking for XSLT. DncEng '01:
Proceedings of the 2001 ACM Symposium on Document engineeaggs
18-27, New York, NY, USA, 2001. ACM Press.

David Turner. Total Functional Programminpurnal of Universal Computer
Sciencel0(7):751-768, July 2004.

30

