
Unfailing Haskell:
Stopping Pattern Match Errors

Neil Mitchell and Colin Runciman
University of York, UK

http://www.cs.york.ac.uk/~ndm/



Is this safe?
risers :: Ord a => [a] -> [[a]]

risers [] = []

risers [x] = [[x]]

risers (x:y:etc) = if x <= y

then (x:s):ss

else [x]:(s:ss)

where (s:ss) = risers (y:etc)

> risers [1,2,3,1,2]

[[1,2,3],[1,2]]



Answer: Yes

Reasoning:
(s:ss) = risers (y:etc)

∴ risers (_:_) = (_:_)

By case analysis:
risers [x] = [[x]]

risers (x:y:etc) =

(x:s):ss  or [x](s:ss)



Is this safe?
transpose :: [[a]] -> [[a]]

transpose x@((_:_):_) =

map head x :

transpose (map tail x)

transpose x = []

> transpose [“123”,”456”,”789”]

[“147”,”258”,”369”]



Answer: No

Try:
transpose [“123”,”45”]

Program error:

pattern match failure:

head []



The checker

Takes reduced Haskell
Generates a proof that a program will 
not crash with a case error
Uses static analysis
It is conservative



Reduced Haskell
data List = Cons Cons1 Cons2 | Nil

head @1 = case @1 of Cons -> @1.Cons1

map @1 @2 = case @2 of

Nil -> Nil

Cons -> Cons (@1 @2.Cons1) (map @1 @2.Cons2)

reverse @1 = rev @1 Nil

rev @1 @2 = case @1 of

Nil -> @2

Cons -> rev @1.Cons2 (Cons @1.Cons1 @2)



An overview

Find non-exhaustive patterns

Find callers

Perform backward analysis

Perform fixed pointing

Report result

Reduced Haskell

Haskell Program



Constraints, intro by example
head (x:xs) = x
head@1{:}

fromJust (Just x) = x
fromJust@1{Just}

foldr1 f [x]    = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1@2{:}



Constraints with paths
mapHead [] = []

mapHead (x:xs) = 

head x : mapHead xs

mapHead@1.*tail.head{:}

mapHead@1.head{:} ^

mapHead@1.tail.head{:} ^

mapHead@1.tail.tail.head{:} ^ …



Finding a fixed point

In mapHead
@1 ≠ @1.tail

Condition, ignoring recursive call
mapHead@1.head{:}

Rule
@n ≠ @n.path  fl @n¶ = @n.*path

mapHead@1.*tail.head{:}



Infinite constraints
revHead x = mapHead (reverse x)

revHead@1.*tail{:} ∨
revHead@1.*tail.head{:}

revHead@1{:} ^

revHead@1.tail{:} ^

revHead@1.tail.tail{:} ^ …

revHead@1 is infinite



Backward Analysis
head@1{:}, applies to head
f @1 = head (init @1)

(init f@1){:}, applies to…?

Backward analysis
Constraint Expr -> Constraint Arg

f@1.tail{:}



Higher Order Functions
They complicate analysis
Can be removed in some cases

map, foldr, foldl, filter ...

test n x = map (f n) x

mapf n []     = []

mapf n (x:xs) = f n x : mapf n xs



Laziness

A function may be safe lazily, but not 
strictly

safeTail X = cond (null x) [] (tail x)

cond c t f = if c then t else f

Can inline
safeTail x = if null x then [] else tail x



Real Programs

Has been tested on real programs
Clausify – propositional simplifier
Adjoxo – adjudicate XOX games
Soda – word search solver

Minor modifications were needed for 
success
Apart from Clausify



Conclusions
Manages to prove a function safe wrt
pattern match errors, even if 
incomplete patterns
Algorithm identified and implemented
Good initial results
Future Work

Improve results
Better support for full Haskell



The Rules


	Unfailing Haskell:�Stopping Pattern Match Errors
	Is this safe?
	Answer: Yes
	Is this safe?
	Answer: No
	The checker
	Reduced Haskell
	An overview
	Constraints, intro by example
	Constraints with paths
	Finding a fixed point
	Infinite constraints
	Backward Analysis
	Higher Order Functions
	Laziness
	Real Programs
	Conclusions
	The Rules

