
Supercompilation for Haskell

Neil Mitchell,
Colin Runciman

www.cs.york.ac.uk/~ndm/supero

The Goal

z Make Haskell ‘faster’
– Reduce the runtime
– But keep high-level declarative style

z Without user annotations
– Different from foldr/build, steam/unstream

Word Counting

z In Haskell

main = print . length . words =<< getContents

z Very high level
z A nice ‘specification’ of the problem

And in C

int main() {
int i = 0, c, last_space = 1;
while ((c = getchar()) != EOF) {

int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

}
printf("%i\n", i);
return 0;

}

About 3 times faster
than Haskell
(gcc vs ghc)

Why is Haskell slower?

z Intermediate lists! (and other things)
– GHC allocates and garbage collects memory
– C requires a fixed ~13Kb

z length . words =<< getContents
– getContents produces a list
– words consumes a list, produces a list of lists
– length consumes the outer list

Removing the lists

z GHC already has foldr/build fusion
– e.g. map f (map g x) == map (f . g) x

z But getContents is trapped under IO
– Much harder to fuse automatically
– Don’t want to rewrite everything as foldr
– Easy to go wrong (take function in GHC 6.6)

Supercompilation

z An old idea (Turchin 1982)
z Whole program
z Evaluate the program at compile time

– Start at main, and execute
z If you can’t evaluate (primitives) leave a

residual expression
– The primitive is in the optimised program

Optimising an expression

expression simplify inline

generalise residual

named*

When should
we terminate? What should

we inline?

How should
we generalise?

An example (specialisation)

map (\b → b+1) as -- named as map’
z inline map
case as of {[] → []; x:xs -> (\b → b+1) x : map (\b → b+1) xs}
z simplify
case as of {[] -> []; x:xs → x+1 : map (\b → b+1) xs}
z no generalisation and residuate
case as of {[] -> []; x:xs → x+1 : ? xs}
? xs = map (\b → b+1) xs
z use existing name
? xs = map’ xs
map’ xs = case as of {[] → []; x:xs → x+1 : map’ xs}

An example (deforestation)

map f (map g as) -- named as map’
z inline outer map
case map g as of {[] → []; x:xs → f x : map f xs}
z inline remaining map
case (case … of …) of {[] → []; x:xs → f x : map f xs}
z simplify
case as of {[] → []; x:xs → f (g x) : map f (map g xs)}
z generalise, residuate and use existing name
map’ f g as = case as of {[] → []; x:xs → f (g x) : map’ f g xs}

An example (with generalisation)

sum x = case x of
[] → 0
x:xs → x + sum xs

range i n = case i > n of
True → []
False→ i : range (i+1) n

main n = sum (range 0 n)

Evaluation proceeds

sum (range 0 n)
case range 0 n of {[] → 0; x:xs → x + sum xs}
case (case 0 > n of {True → []; False → …}) of …
case 0 > n of {True → 0;False → i + sum (range (0+1) n)}
sum (range (0+1) n)
z Now we terminate and generalise!
sum (range i n)
case range i n of {[] → 0; x:xs → x + sum xs}
…

The Residual Program

main n = if 0 > n then 0 else 0 + main2 (0+1) n
main2 i n = if i > n then 0 else i + main2 (i+1) n

z Lists have gone entirely
z Everything is now strict
z Using sum as foldl or foldl’ would have given

accumulator version

When do we terminate?

z When the expression we are currently at is
an extension of a previous one

sum (range (0+1) n) > sum (range 0 n)
a > b iff a →emb* b, where emb = {f(x1,…,xn) → xi}

z This relation is a homeomorphic embedding
– Guarantees termination as a whole

How do we generalise?

z When we terminated which bit had emb
applied?

sum (range (0+1) n)

z Generalise those bits
let i = 0+1
in sum (range i n)

What should we inline?

z Obvious answer: whatever would be
evaluated next. But…

let x = (==) $ 1
in x 1 : map x ys

z We want to evaluate $, as map will terminate
z Inline by evaluation order, unless will

terminate, in which case try others

‘Supero’ Compilation

Haskell

Core

Core

Haskell

Executable

Yhc

GHC

Supero

Yhc.Core

GHC’s Contributions

z GHC is great ☺
– Primitives (Integer etc)
– Strictness analysis and unboxing
– STG code generation
– Machine code generation

z How do we do on word counting now?

Problem 1: isSpace

z On GHC, isSpace is too slow (bug 1473)
– C's isspace: 0.375
– C's iswspace: 0.400
– Char.isSpace: 0.672

z For this test, I use the FFI

SOLVED!

Problem 2: words (spot 2 bugs!)

words :: String → [String]
words s = case dropWhile isSpace s of

[] → []
s2 → w : words s3

where (w, s3) = break isSpace s2

z Better version in Yhc
SOLVED!

Other Problems

z Wrong strictness information (bug 1592)
– IO functions do not always play nice

z Badly positioned heap checks (bug 1498)
– Tight recursive loop, where all time is spent
– Allocates only on base case (once)
– Checks for heap space every time

z Unnecessary stack checks
z Probably ~15% slowdown Pending

Performance

z Now Supero+GHC is 10% faster than C!
– Somewhat unexpected…
– Can anyone guess why?

while ((c = getchar()) != EOF)
int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

The Inner Loop

z Haskell encodes space/not in the program
counter!

z Hard to express in C

space/not

not/space

C Haskell

Comparative Runtime (40Mb file)

0

5

10

15

20

25

sec.

charcount linecount wordcount

C (gcc)
Supero+GHC
GHC

Runtime as % of GHC time

0
20
40
60
80

100
120
140
160

%

be
rn

ou
ill

i
di

gi
ts

-o
f-e

1
di

gi
ts

-o
f-e

2
ex

p3
_8

in
te

gr
at

e
pr

im
es

qu
ee

ns rfi
b

ta
k

w
he

el
-s

ie
ve

1
w

he
el

-s
ie

ve
2

x2
n1

Conclusions

z Still more work to be done
– More benchmarks, whole nofib suite
– Compilation time is currently too long

z Haskell can perform as fast as C
z Haskell programs can go faster

	Supercompilation for Haskell
	The Goal
	Word Counting
	And in C
	Why is Haskell slower?
	Removing the lists
	Supercompilation
	Optimising an expression
	An example (specialisation)
	An example (deforestation)
	An example (with generalisation)
	Evaluation proceeds
	The Residual Program
	When do we terminate?
	How do we generalise?
	What should we inline?
	‘Supero’ Compilation
	GHC’s Contributions
	Problem 1: isSpace
	Problem 2: words (spot 2 bugs!)
	Other Problems
	Performance
	The Inner Loop
	Comparative Runtime (40Mb file)
	Runtime as % of GHC time
	Conclusions

