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The Goal

z Make Haskell ‘faster’
– Reduce the runtime
– But keep high-level declarative style

z Without user annotations
– Different from foldr/build, steam/unstream



Word Counting

z In Haskell

main = print . length . words =<< getContents

z Very high level
z A nice ‘specification’ of the problem



And in C

int main() {
int i = 0, c, last_space = 1;
while ((c = getchar()) != EOF) {

int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;

}
printf("%i\n", i);
return 0;

}

About 3 times faster 
than Haskell
(gcc vs ghc)



Why is Haskell slower?

z Intermediate lists! (and other things)
– GHC allocates and garbage collects memory
– C requires a fixed ~13Kb

z length . words =<< getContents
– getContents produces a list
– words consumes a list, produces a list of lists
– length consumes the outer list



Removing the lists

z GHC already has foldr/build fusion
– e.g. map f (map g x) == map (f . g) x

z But getContents is trapped under IO
– Much harder to fuse automatically
– Don’t want to rewrite everything as foldr
– Easy to go wrong (take function in GHC 6.6)



Supercompilation

z An old idea (Turchin 1982)
z Whole program
z Evaluate the program at compile time

– Start at main, and execute
z If you can’t evaluate (primitives) leave a 

residual expression
– The primitive is in the optimised program



Optimising an expression

expression simplify inline

generalise residual

named*

When should 
we terminate? What should 

we inline?

How should
we generalise?



An example (specialisation)

map (\b → b+1) as -- named as map’
z inline map
case as of {[] → []; x:xs -> (\b → b+1) x : map (\b → b+1) xs}
z simplify
case as of {[] -> []; x:xs → x+1 : map (\b → b+1) xs}
z no generalisation and residuate
case as of {[] -> []; x:xs → x+1 : ? xs}
? xs = map (\b → b+1) xs
z use existing name
? xs = map’ xs
map’ xs = case as of {[] → []; x:xs → x+1 : map’ xs}



An example (deforestation)

map f (map g as) -- named as map’
z inline outer map
case map g as of {[] → []; x:xs → f x : map f xs}
z inline remaining map
case (case … of …) of {[] → []; x:xs → f x : map f xs}
z simplify
case as of {[] → []; x:xs → f (g x) : map f (map g xs)}
z generalise, residuate and use existing name
map’ f g as = case as of {[] → []; x:xs → f (g x) : map’ f g xs}



An example (with generalisation)

sum x = case x of
[] → 0
x:xs → x + sum xs

range i n = case i > n of
True → []
False→ i : range (i+1) n

main n = sum (range 0 n)



Evaluation proceeds

sum (range 0 n)
case range 0 n of {[] → 0; x:xs → x + sum xs}
case (case 0 > n of {True → []; False → …}) of …
case 0 > n of {True → 0;False → i + sum (range (0+1) n)}
sum (range (0+1) n)
z Now we terminate and generalise!
sum (range i n)
case range i n of {[] → 0; x:xs → x + sum xs}
…



The Residual Program

main n = if 0 > n then 0 else 0 + main2 (0+1) n
main2 i n = if i > n then 0 else i + main2 (i+1) n

z Lists have gone entirely
z Everything is now strict
z Using sum as foldl or foldl’ would have given 

accumulator version



When do we terminate?

z When the expression we are currently at is 
an extension of a previous one

sum (range (0+1) n) > sum (range 0 n)
a > b iff a  →emb*  b,  where emb = {f(x1,…,xn) → xi}

z This relation is a homeomorphic embedding
– Guarantees termination as a whole



How do we generalise?

z When we terminated which bit had emb
applied?

sum (range (0+1) n)

z Generalise those bits
let i = 0+1
in sum (range i n)



What should we inline?

z Obvious answer: whatever would be 
evaluated next. But…

let x = (==) $ 1
in x 1 : map x ys

z We want to evaluate $, as map will terminate
z Inline by evaluation order, unless will 

terminate, in which case try others



‘Supero’ Compilation
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GHC’s Contributions

z GHC is great ☺
– Primitives (Integer etc)
– Strictness analysis and unboxing
– STG code generation
– Machine code generation

z How do we do on word counting now?



Problem 1: isSpace

z On GHC, isSpace is too slow (bug 1473)
– C's isspace: 0.375
– C's iswspace: 0.400
– Char.isSpace: 0.672

z For this test, I use the FFI

SOLVED!



Problem 2: words (spot 2 bugs!)

words :: String → [String]
words s = case dropWhile isSpace s of

[] → []
s2 → w : words s3

where (w, s3) = break isSpace s2

z Better version in Yhc
SOLVED!



Other Problems

z Wrong strictness information (bug 1592)
– IO functions do not always play nice

z Badly positioned heap checks (bug 1498)
– Tight recursive loop, where all time is spent
– Allocates only on base case (once)
– Checks for heap space every time

z Unnecessary stack checks
z Probably ~15% slowdown Pending



Performance

z Now Supero+GHC is 10% faster than C!
– Somewhat unexpected…
– Can anyone guess why?

while ((c = getchar()) != EOF)
int this_space = isspace(c);
if (last_space && !this_space) i++;
last_space = this_space;



The Inner Loop

z Haskell encodes space/not in the program 
counter!

z Hard to express in C

space/not

not/space

C       Haskell



Comparative Runtime (40Mb file)
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Runtime as % of GHC time
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Conclusions

z Still more work to be done
– More benchmarks, whole nofib suite
– Compilation time is currently too long

z Haskell can perform as fast as C
z Haskell programs can go faster
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