
Static Analysis
of Haskell

Neil Mitchell

http://ndmitchell.com

Static Analysis is…

…getting insights at compile time

– Full branch coverage

– Terminates

– Doesn’t rely on a test suite

Types are static analysis. Let’s talk about more
fun ones.

Examples

• Practical

– GHC exhaustiveness checker

– HLint style checker

– Weeder dead export detector

– LiquidHaskell refinement type analysis

– AProVE termination checking

– Catch error free checker

• Academic

Static Analysis is not perfect

data GoodBad = Good | Bad

truthp :: Program -> GoodBad

analysisp :: Program -> Maybe GoodBad

Good Bad

Just Good False negative

Nothing

Just Bad False positive

Static Analysis thoughts

• Given a warning, what does it mean?

• Can you ignore false positives?

• Is heat-death of the universe a concern?

• Does the analysis check something useful?

– Property you actually want (don’t crash)

– Property the analysis aims for (complete patterns)

– Property the analysis reaches (some patterns)

GOAL:
Maintainable program

that does the right thing

Type System

Goal: No errors caused by values from the
wrong set. Provide documentation.

Method: Hindley-Milner type inference,
unification, System-F.

Caveats: unsafeCoerce, unsafePerformIO,
newtype deriving, imprecise sets

So good it is built into the language!

Types

GHC Pattern Match Checker

Is this function fully defined? Over-defined?

zip :: [a] -> [b] -> [(a,b)]

zip [] [] = []

zip (a:as) (b:bs) = (a,b) : zip as bs

“GADTs Meet Their Match”

GHC

Zip pattern results

zip :: [a] -> [b] -> [(a,b)]

zip [] [] = []

zip (a:as) (b:bs) = (a,b) : zip as bs

PMatch.hs:5:1: warning: [-Wincomplete-patterns]

 Pattern match(es) are non-exhaustive

 In an equation for `zip':

 Patterns not matched:

 [] (_:_)

 (_:_) []

GHC

Another pattern example

Is this function over defined? Any redundant
lines?

g :: Bool -> Bool -> Int

g _ False = 1

g True False = 2

g _ _ = 3

GHC

Pattern match checking

Goal: Detect any missing patterns. Aware of
laziness, GADTs, view patterns, guards etc.

Method: For each clause

• C: what is covered – {[] []} {_:_ _:_}

• D: what diverges – { _, [] }

• U: what is uncovered – {_:_ [], [] _:_}

GHC

Pattern match problems

Caveats:

• If you use ‘head’ you get no warning – says
about pattern matches, not runtime errors

• Problem is NP at worst, so has fuel limit

– f A = (); f B = (); f C = (); …

– Does (#ctors-1)! steps, e.g. 26 = 1.5e26

• Uses an imprecise oracle for guards etc

• Doesn’t understand pattern synonyms (v8.0)

GHC

Catch

risers :: Ord a => [a] -> [[a]]

risers [] = []

risers [x] = [[x]]

risers (x:y:etc)

 | x <= y = (x:s):ss

 | otherwise = [x]:(s:ss)

 where (s:ss) = risers (y:etc)

“Not all patterns but enough”

Catch

Catch explanation

• Not fully defined – GHC raises a warning

• Yet will not raise an error at runtime

• Catch infers relationships:

– risers x = {_:_} x = {_:_}

– otherwise = {True} True

Goal: Prove the program will not raise an error

Catch

Catch details

Method: For each call to error, prove it is
unreachable

Find error calls
Propagate to
precondition

Discharge

Input/Output

Catch

Catch relations

• precond :: FuncName -> Prop (Arg, Pat)

– What properties do the arguments need to satisfy

– To avoid an error

• postcond :: FuncName -> Pat -> Prop (Arg, Pat)

– To obtain the returning pattern

• Functions are recursive, so take fixed point

• Pat has to be limited (paper has two forms)

Catch

Catch overview

head x = case x of x:xs -> x; [] -> error

main = head (risers [1])

precond head = {_:_}

postcond risers {_:_} = {_:_}

precond risers = {*}

precond main = {*}

Catch

Catch Weaknesses

Caveats:

• Research tool that used to work with Yhc only

• Patterns are necessarily finite, so approximate

• Code must be first-order

– Used in conjunction with Firstify, whole program

On the plus side, found 4 real bugs with
HsColour and proved the rest correct

Catch

Liquid Haskell

• Tool for giving more expressive types

– But these types are a bit weird, so still fun

• Checking integer predicates using SMT

– SMT = huge hammer, but available pre-built

{-@ type NonEmpty a = {v:[a] | 0 < len v} @-}

{-@ head :: NonEmpty a -> a @-}

head (x:_) = x

“Refinement Types For Haskell”

Liquid

Int’s instead of structure

• Patterns are Int, not structural

– Very different to GHC warnings/Catch

– But can do termination and error detection

• Very suitable for Vector/ByteString indexing

– Found a bug in text mapAccumL

• Type checking plus SMT

risers :: l:_ -> {v:_ | NonEmp l => NonEmp v}

Liquid

Liquid Haskell summary

Goal: Catch errors with a bit of Int.

Method: Type system with SMT to solve Int bit.

Caveats: Weird! Very different to dependent
types – is this the direction we should go in?
LiquidHaskell has lots of things in it, a bit of a
mixed bag? I failed to install when I tried a
while back.

Liquid

AProVE

• Termination checker – prove the program
terminates

– Take an amazing term-rewriting system (TRS)
termination checker

– Smash Haskell into a TRS

“Automated Termination Analysis for Haskell”

AProVE

Example

take Z xs = Nil

take n Nil = Nil

take (S n) (Cons x xs) =

 Cons x (take n xs)

new_take(S(u0), m) →

 new_take(u0, S(m))

AProVE

AProVE summary

Goal: Detect non-termination.

Method: Convert Haskell98 to TRS. Apply
cutting-edge TRS approach.

Caveats: Not in terms a Haskeller understands.
Haskell98 only. No community adoption.

AProVE

HLint

• A tool for suggesting stylistic improvements

HLint http://hackage.haskell.org/package/hlint

Example hints

• Redundant language extensions
{-# LANGUAGE GeneralizedNewtypeDeriving,

DeriveDataTypeable, ScopedTypeVariables,
ConstraintKinds #-}

{-# LANGUAGE UndecidableInstances,
TypeFamilies, ConstraintKinds #-}

• Use of mapM instead of mapM_

• Simple sugar functions (concatMap)

HLint

Overall workings

• Parse the source (using haskell-src-exts)

• Traverse the syntax tree (using uniplate)

• Some hints are hardcoded (e.g. extensions)

• Most hints are expression templates

– {lhs: map (uncurry f) (zip x y), rhs: zipWith f x y}

– {lhs: not (elem x y), rhs: notElem x y}

– {lhs: any id, rhs: or}

HLint

Detailed workings

findIdeas

 :: [HintRule] -> Scope ->

 -> Decl_ -> [Idea]
findIdeas matches s decl =

 [(idea (hintRuleSeverity m) (hintRuleName m) x y
[r]){ideaNote=notes}

 | (parent,x) <- universeParentExp decl, not $ isParen x

 , m <- matches, Just (y,notes, subst, rule) <- [matchIdea s
decl m parent x]

 , let r = R.Replace R.Expr (toSS x) subst (prettyPrint rule)]

HLint

Where does it go wrong?
HLint

• Monomorphism restriction

– foo x = bar x

• RankN polymorphism

– foo (g x y z)

• Operator precedence/overriding

– g x + g x ^^^ f y

• Seq strictness breaks lots of laws

– \x -> f x

HLint summary

Goal: Make the code prettier. Mopping up after
refactorings.

Method: File-at-a-time, some hardcoded
suggestions, some driven by a rule config.

Caveats: Can’t deal with CPP. Pretty is
subjective. No types. No scope info. Lots of
“close but not quite” rules. But see
comparable tools in other languages…

HLint

Weeder

• Finds the “weeds” in a program
– weeder .

= Package ghcid

== Section exe:ghcid test:ghcid_test

Module reused between components

* Ghcid

Weeds exported

* Wait

 - withWaiterPoll

Weed

Function exported but
not used elsewhere

Module used in two
cabal projects

http://hackage.haskell.org/package/weeder

Weeder best hints

• Code is exported and not used outside

– Delete the export

• GHC warnings detect definition is unused

– Delete the code entirely

• Package dependency is not used

– Remove a dependency (see also packdeps)

Weed

How Weeder works

• Stack compiles with dump .hi files

– Each module has a large blob of text

• Parse these .hi files, extract relevant data

– What packages you make use of

– What imported identifiers you use

• Analyse

– If ‘foo’ is exported, but not used, it’s a weed

Weed

Hi file data type

data Hi = Hi
 {hiModuleName :: ModuleName
 -- ^ Module name
 ,hiImportPackage :: Set.HashSet PackageName
 -- ^ Packages imported by this module
 ,hiExportIdent :: Set.HashSet Ident
 -- ^ Identifiers exported by this module
 ,hiImportIdent :: Set.HashSet Ident
 -- ^ Identifiers used by this module
 ,hiImportModule :: Set.HashSet ModuleName
 -- ^ Modules imported and used by this module

Weed

Caveats

• Data.Coerce If you use Data.Coerce.coerce the
constructors for the data type must be in scope,
but if they aren't used anywhere other than
automatically by coerce then Weeder will report
unused imports.

• Declaration QuasiQuotes If you use a
declaration-level quasi-quote then weeder won't
see the use of the quoting function, potentially
leading to an unused import warning, and
marking the quoting function as a weed.

Weed

Weeder summary

Goal: Find code/imports that are not required.

Method: Pull apart the .hi files and reuse that
information with some analysis predicates.

Caveats: Can’t deal with CPP. Sometimes limited
by the .hi files.

Weed

HLint and Weeder

• Both have binary releases on github

curl -sL https://.../hlint/travis.sh | sh -s .

• Both have ignore files

weeder . --yaml > .weeder.yaml

hlint . --default > .hlint.yaml

Call to arms!

• Static analysis is cool, we should do more of it

– Generally, whole program is easiest to prototype

– GHC doesn’t make that very easy…

– Someone want to make it easy?

• Static analysis can give lots of great insights

– In C/C++/Java there’s a cottage industry

– Are we spoilt by types?

How many do you use?

• Type safety

• GHC warnings

• HLint style checker

• Weeder dead export detector

• LiquidHaskell refinement type analysis

• AProVE termination checking

• Catch error free checker

… others …?

