
Shake:

Past, Present, Future

Neil Mitchell

shakebuild.com

Shake: a build system

An alternative to Make, as a Haskell library

About 9 years old

Built my PhD thesis

Proprietary SCB build system

Open-source reimplementation

Use in GHC

Research applications

PhD thesis builder

(<==) :: FilePath -> [FilePath] -> (FilePath -> FilePath -> IO ()) -> IO ()

(<==) to froms@(from:_) action = do

 b <- doesFileExist to

 rebuild <- if not b then return True else do

 from2 <- liftM maximum $ mapM getModificationTime froms

 to2 <- getModificationTime to

 return $ to2 < from2

 when rebuild $ do

 putStrLn $ "Building: " ++ to

 action from to

Shake:

A Better Make

Neil Mitchell, Standard Chartered

Haskell Implementors Workshop 2010

OLD SLIDES: I’m no longer at Standard Chartered

An Example

import Development.Shake

main = shake $ do

 want ["Main.exe"]

 "Main.exe" *> \x -> do

 cs <- ls "*.c"

 let os = map (`replaceExtension` "obj") cs

 need os

 system $ ["gcc","-o",x] ++ os

 "*.obj" *> \x -> do

 let c = replaceExtension x "c"

 need [c]

 need =<< cIncludes c

 system ["gcc","-c",c,"-o",x]

Benefits of Shake

 A Haskell library for writing build systems

 Can use modules/functions for abstraction/separation

 Can use Haskell libraries (i.e. filepath)

 It’s got the useful bits from Make

 Automatic parallelism

 Minimal rebuilds

 But it’s better!

 More accurate dependencies (i.e. the results of ls are tracked)

 Can produce profiling reports (what took most time to build)

 Can deal with generated files properly

 Properly cross-platform

The Oracle

 The Oracle is used for non-file dependencies

 What is the version of GHC? 6.12.3

 What extra flags do we want? --Wall

 ls is a sugar function for the Oracle

type Question = (String,String)

type Answer = [String]

oracle :: (Question -> Answer) -> Shake a -> Shake a

query :: Question -> Act Answer

The Implementation

NO DEPENDENCY GRAPH!

Parallelisation

 need/want both take lists of files, which run in parallel

 Try and build N rules in parallel

 Done using a pool of N threads and a work queue

 need/want put their jobs in the queue

 Add a Building (MVar ()) in DataBase

 Shake uses a random queue

 Jobs are serviced at random, not in any fair order

 link = disk bound, compile = CPU bound

 Shake is highly parallel (in theory and practice)

Profiling

 Can record every system command run, and produce:

Practical Use

 Relied on by an international team of people every day

 Building more than a million lines of code in many

languages

 Before Shake

 Masses of really complex Makefiles, slow builds

 Answer to any build error was “make clean”

 After Shake

 Robust and fast builds (at least x2 faster)

 Maintainable and extendable (at least x10 shorter)

Limitations/Disadvantages

 Creates a _database file to save the database

 Oracle is currently “untyped” (String’s only)

 Although easy to add nicely typed wrappers over it

 Massive space leak (~ 12% productivity)

 In practice doesn’t really matter, and should be easy to fix

 More dependency analysis tools would be nice

 Changing which file will cause most rebuilding?

 What if the rules change?

 Can depend on Makefile.hs, but too imprecise

 Not currently open source

Shake Before Building
Replacing Make with Haskell

community.haskell.org/~ndm/shake

Neil Mitchell

Generated files

Foo.xml

Foo.c

MyGenerator

Foo.o

…headers…

• What headers does Foo.c import?

(Many bad answers, exactly one good answer)

Dependencies in Shake

• Fairly direct

– What about in make?

"Foo.o" *> _ -> do
 need ["Foo.c"]
 (stdout,_) <-
 systemOutput "gcc" ["-MM","Foo.c"]
 need $ drop 2 $ words stdout
 system' "gcc" ["-c","Foo.c"]

Make requires phases

Foo.mk : Foo.c
 gcc –MM Foo.c > Foo.mk
#include Foo.mk

Foo.o : $(shell sed … Foo.xml)

Foo.o : Foo.c
 gcc –c Foo.o

Disclaimer: make has hundreds of extensions,
none of which form a consistent whole, but some
can paper over a few cracks listed here

Dependency differences

• Make

– Specify all dependencies in advance

– Generate static dependency graph

• Shake

– Specify additional dependencies after using the
results of previous dependencies

 Dshake > Dmake

A build system with a
static dependency graph

is insufficient

Build system
Better dependencies
Modern engineering
+ Haskell

Shake

Syntax

Types

Abstraction

Libraries

Monads

Profiling

Lint

Analysis

Parallelism
Robustness

Efficient

Identical performance to make

 Profiling

0

1

2

3

4

Shake build system

Featureful, Robust,
Fast
Haskell EDSL

Monadic
Polymorphic
Unchanging

1000’s of tests
100’s of users
Heavily used

Faster than
Ninja to

Build Ninja

out : in
cp in out

Simple example

"out" %> \out -> do

 need ["in"]

 cmd "cp in out"

:: Rule ()
Monad Rule :: Action ()

Monad Action

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule ()

• Assume you change whitespace in
MyHeader.xml and MySource.c doesn’t
change

– What rebuilds?

– What do you want to rebuild?

– (Very common for generated code)

Unchanging

• Assume you change whitespace in MyHeader.xml

– Using file hashes: MyGen.hs runs and nothing

– Using modtimes: Stops if MyGen.hs checks for Eq first

• Always build children before their parents

• What if a child fails, but the parent changed to no
longer require that child?

– Must rebuild the parent and fail on demand

Unchanging consequences

Polymorphic dependencies

"_build/run" <.> exe %> \out -> do
 link <- fromMaybe "" <$> getEnv

"C_LINK_FLAGS"
 cs <- getDirectoryFiles "" ["//*.c"]
 let os = ["_build" </> c -<.> "o" | c <- cs]
 need os
 cmd "gcc -o" [out] link os

• Can dependency track more than just files

Polymorphic dependencies

type ShakeValue a = (Show a, Typeable a, Eq a,

 Hashable a, Binary a, NFData a)

class (ShakeValue k, ShakeValue v) => Rule k v where

 storedValue :: k -> IO (Maybe v)

• About 7 built in Rule instances

Progress prediction

• Guesses how long the build will take

– 3m12s more, is 82% complete

– Based on historical measurements plus guesses

– All scaled by a progress rate (guess at parallel
setting)

– An approximation…

Why is Shake fast?

• What does fast even mean?

– Everything changed? Rebuild from scratch.

– Nothing changed? Rebuild nothing.

• In practice, a blend, but optimise both
extremes and you win

Fast when everything changes

• If everything changes, rule dominate (you hope)

• One rule: Start things as soon as you can

– Dependencies should be fine grained

– Start spawning before checking everything

– Make use of multiple cores

– Randomise the order of dependencies (~15% faster)

• Expressive dependencies, Continuation monad,
cheap threads, immutable values (easy in Haskell)

Fast when nothing changes

• Don’t run users rules if you can avoid it

• Shake records a journal, [(k, v, …)]

• Avoid lots of locking/parallelism

– Take a lock, check storedValue a lot

• Binary serialisation is a bottleneck

unchanged journal = flip allM journal $ \(k,v) ->

 (== Just v) <$> storedValue k

Non-recursive Make

Considered Harmful:

Build Systems at Scale
Andrey Mokhov, Neil Mitchell,

Simon Peyton Jones, Simon

Marlow

Haskell Symposium 2016

The GHC and the build system

Glasgow Haskell
Compiler:

– 25 years old

– 100s of contributors

– 10K+ source files

– 1M+ lines of Haskell
code

– 3 GHC stages

– 18 build ways

– 27 build programs: alex,
ar, gcc, ghc, ghc-pkg,
happy, …

The current build system:

– Non-recursive Make

– Fourth major rewrite

– 200 makefiles

– 10K+ lines of code

– 3 build phases

– Highly user-

customisable

– And it works! But…

The result of 25 years of

development

$1/$2/build/%.$$($3_osuf) : $1/$4/%.hs $$(LAX_DEPS_FOLLOW) \
 $$$$($1_$2_HC_DEP) $$($1_$2_PKGDATA_DEP)
 $$(call cmd,$1_$2_HC) $$($1_$2_$3_ALL_HC_OPTS) -c $$< -o $$@ \
 $$(if $$(findstring YES,$$($1_$2_DYNAMIC_TOO)), \
 -dyno $$(addsuffix .$$(dyn_osuf),$$(basename $$@)))
 $$(call ohi-sanity-check,$1,$2,$3,$1/$2/build/$$*)

Make uses a global namespace of mutable string variables
– Numbers, arrays, associative maps are encoded in strings

– No encapsulation and implementation hiding

– Variable references are spliced into Makefiles: avoid
spaces/colons

– To expand a variable use $; to get $ use $$; to get $$ use $$$$…

There are other problems

1. A global namespace of mutable string variables

2. Dynamic dependencies

3. Build rules with multiple outputs

4. Concurrency reduction

5. Fine-grain dependencies

6. Computing command lines, essential complexity

Solution: use FP to design scalable abstractions

– To solve 1-5: we use Shake, a Haskell library for writing build systems

– To solve 6: we develop a small EDSL for building command lines

Accidental

complexity

Build rules with multiple outputs

"*.o" %> \obj -> do
 let src = obj -<.> "hs"
 need [src]
 run "ghc" [src]

How do we tell

our build system

that ghc

produces both

*.o and *.hi files?

["*.o", "*.hi"] &%> \[obj, hi] -> do
 let src = obj -<.> "c"
 need [src]
 run "ghc" [src]

Concurrency reduction

"//*.conf" %> \conf -> do
 let src = confSrcFile conf
 need [src]
 run "ghc-pkg" ["update",
src]

But we can have

at most one ghc-

pkg running at a

time as it mutates

package db!

db <- newResource "package-db" 1

"//*.conf" %> \conf -> do
 let src = confSrcFile conf
 need [src]
 withResource db 1 $ run "ghc-pkg" ["update",
src]

Dynamic dependencies

Build target t:
– Lookup t‘s dependencies

{d1, …, dn} in the database

– If the lookup fails
or t doesn’t exist
or t has changed
or some dk is not up to
date
then

• Find the build rule
matching t

• Run the action, recording
need’s

• Update the database with
newly recorded
dependencies

More quick wins with Shake

Post-use dependencies

Order-only dependencies

Polymorphic/fine-grain dependencies

Tracking file contents

Avoiding external tools

…

Read the paper!

Target

data Target = Target
 { context :: Context
 , builder :: Builder
 , inputs :: [FilePath]
 , outputs :: [FilePath] }

preludeTarget = Target
 { context = Context Stage1 base profiling
 , builder = Ghc Stage1
 , inputs = ["libraries/base/Prelude.hs"]
 , outputs =
["build/stage1/libraries/base/Prelude.p_o"] }

Each invocation of a builder is fully described by a target

Computing command line for a

target

preludeTarget = Target
 { context = Context Stage1 base profiling
 , builder = Ghc Stage1
 , inputs = ["libraries/base/Prelude.hs"]
 , outputs =
["build/stage1/libraries/base/Prelude.p_o"] }

Given preludeTarget how to compute the build command for it?

inplace/bin/ghc-stage1 -O2 -prof -c
libraries/base/Prelude.hs

 -o build/stage1/libraries/base/Prelude.p_o

commandLine :: Target -> Action [String]

Expression

type Expr a = ReaderT Target Action a

ghcArgs :: Expr [String]
ghcArgs = do
 target <- ask
 return $ ["-O2"]
 ++ ["-prof" | way (context target)
== profiling]
 ++ ["-c", head (inputs target)]
 ++ ["-o", head (outputs target)]

An expression Expr a is a computation that produces a value

of type Action a and can read the current build Target:

Current limitations

We can build stage 2 GHC, but still lack many

features:

– We only build vanilla and profiling way

– Validation is not implemented

– Only HTML Haddock documentation is supported

– Not all build flavours are not supported

– Cross-compilation is not implemented

– No support for installation or binary/source

distribution

– 46 open issues:

https://github.com/snowleopard/hadrian/issues

https://github.com/snowleopard/hadrian/issues
https://github.com/snowleopard/hadrian/issues

Experiments

Qualitative analysis:

– We studied 11 common use-cases of GHC build system, such as

“edit a source file and rebuild”, “add a new build command line

argument and rebuild”, “git branch and rebuild”, etc.

– The old build system performs a lot of unnecessary rebuilds in

many cases, whereas Hadrian correctly handles most cases.

Quantitative benchmarks: Hadrian is faster

– Zero build: 2.2s vs 2.0s (Linux), 12.3s vs 2.1s (Windows)

– Full build: 649s vs 578s (Linux), 1266s vs 737s (Windows)

Build
GHC

Future directions – better API

After 9 years, I’m still improving the API

Currently working on a rewrite for defining rule types

Makes rules faster and more powerful

Use type families to assert rule relationships

Future directions – tracing

What if we could track every file accessed?

 Lint checks

Automatic dependencies

Requires cross-OS tracing primitives

Future directions – forward

import Development.Shake

import Development.Shake.Forward

import Development.Shake.FilePath

main = shakeArgsForward shakeOptions $ do

 contents <- readFileLines "result.txt"

 cache $ cmd "tar -cf result.tar" contents

Future directions – cloud

“Towards Cloud Build Systems with

Dynamic Dependency Graphs”

Aka, Google scale, better dependencies

Compete with Bazel/Buck

