
Shake:

Past, Present, Future

Neil Mitchell

shakebuild.com

Shake: a build system

An alternative to Make, as a Haskell library

About 9 years old

Built my PhD thesis

Proprietary SCB build system

Open-source reimplementation

Use in GHC

Research applications

PhD thesis builder

(<==) :: FilePath -> [FilePath] -> (FilePath -> FilePath -> IO ()) -> IO ()

(<==) to froms@(from:_) action = do

 b <- doesFileExist to

 rebuild <- if not b then return True else do

 from2 <- liftM maximum $ mapM getModificationTime froms

 to2 <- getModificationTime to

 return $ to2 < from2

 when rebuild $ do

 putStrLn $ "Building: " ++ to

 action from to

Shake:

A Better Make

Neil Mitchell, Standard Chartered

Haskell Implementors Workshop 2010

OLD SLIDES: I’m no longer at Standard Chartered

An Example

import Development.Shake

main = shake $ do

 want ["Main.exe"]

 "Main.exe" *> \x -> do

 cs <- ls "*.c"

 let os = map (`replaceExtension` "obj") cs

 need os

 system $ ["gcc","-o",x] ++ os

 "*.obj" *> \x -> do

 let c = replaceExtension x "c"

 need [c]

 need =<< cIncludes c

 system ["gcc","-c",c,"-o",x]

Benefits of Shake

 A Haskell library for writing build systems

 Can use modules/functions for abstraction/separation

 Can use Haskell libraries (i.e. filepath)

 It’s got the useful bits from Make

 Automatic parallelism

 Minimal rebuilds

 But it’s better!

 More accurate dependencies (i.e. the results of ls are tracked)

 Can produce profiling reports (what took most time to build)

 Can deal with generated files properly

 Properly cross-platform

The Oracle

 The Oracle is used for non-file dependencies

 What is the version of GHC? 6.12.3

 What extra flags do we want? --Wall

 ls is a sugar function for the Oracle

type Question = (String,String)

type Answer = [String]

oracle :: (Question -> Answer) -> Shake a -> Shake a

query :: Question -> Act Answer

The Implementation

NO DEPENDENCY GRAPH!

Parallelisation

 need/want both take lists of files, which run in parallel

 Try and build N rules in parallel

 Done using a pool of N threads and a work queue

 need/want put their jobs in the queue

 Add a Building (MVar ()) in DataBase

 Shake uses a random queue

 Jobs are serviced at random, not in any fair order

 link = disk bound, compile = CPU bound

 Shake is highly parallel (in theory and practice)

Profiling

 Can record every system command run, and produce:

Practical Use

 Relied on by an international team of people every day

 Building more than a million lines of code in many

languages

 Before Shake

 Masses of really complex Makefiles, slow builds

 Answer to any build error was “make clean”

 After Shake

 Robust and fast builds (at least x2 faster)

 Maintainable and extendable (at least x10 shorter)

Limitations/Disadvantages

 Creates a _database file to save the database

 Oracle is currently “untyped” (String’s only)

 Although easy to add nicely typed wrappers over it

 Massive space leak (~ 12% productivity)

 In practice doesn’t really matter, and should be easy to fix

 More dependency analysis tools would be nice

 Changing which file will cause most rebuilding?

 What if the rules change?

 Can depend on Makefile.hs, but too imprecise

 Not currently open source

Shake Before Building
Replacing Make with Haskell

community.haskell.org/~ndm/shake

Neil Mitchell

Generated files

Foo.xml

Foo.c

MyGenerator

Foo.o

…headers…

• What headers does Foo.c import?

(Many bad answers, exactly one good answer)

Dependencies in Shake

• Fairly direct

– What about in make?

"Foo.o" *> _ -> do
 need ["Foo.c"]
 (stdout,_) <-
 systemOutput "gcc" ["-MM","Foo.c"]
 need $ drop 2 $ words stdout
 system' "gcc" ["-c","Foo.c"]

Make requires phases

Foo.mk : Foo.c
 gcc –MM Foo.c > Foo.mk
#include Foo.mk

Foo.o : $(shell sed … Foo.xml)

Foo.o : Foo.c
 gcc –c Foo.o

Disclaimer: make has hundreds of extensions,
none of which form a consistent whole, but some
can paper over a few cracks listed here

Dependency differences

• Make

– Specify all dependencies in advance

– Generate static dependency graph

• Shake

– Specify additional dependencies after using the
results of previous dependencies

 Dshake > Dmake

A build system with a
static dependency graph

is insufficient

Build system
Better dependencies
Modern engineering
+ Haskell

Shake

Syntax

Types

Abstraction

Libraries

Monads

Profiling

Lint

Analysis

Parallelism
Robustness

Efficient

Identical performance to make

 Profiling

0

1

2

3

4

Shake build system

Featureful, Robust,
Fast
Haskell EDSL

Monadic
Polymorphic
Unchanging

1000’s of tests
100’s of users
Heavily used

Faster than
Ninja to

Build Ninja

out : in
cp in out

Simple example

"out" %> \out -> do

 need ["in"]

 cmd "cp in out"

:: Rule ()
Monad Rule :: Action ()

Monad Action

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule ()

• Assume you change whitespace in
MyHeader.xml and MySource.c doesn’t
change

– What rebuilds?

– What do you want to rebuild?

– (Very common for generated code)

Unchanging

• Assume you change whitespace in MyHeader.xml

– Using file hashes: MyGen.hs runs and nothing

– Using modtimes: Stops if MyGen.hs checks for Eq first

• Always build children before their parents

• What if a child fails, but the parent changed to no
longer require that child?

– Must rebuild the parent and fail on demand

Unchanging consequences

Polymorphic dependencies

"_build/run" <.> exe %> \out -> do
 link <- fromMaybe "" <$> getEnv

"C_LINK_FLAGS"
 cs <- getDirectoryFiles "" ["//*.c"]
 let os = ["_build" </> c -<.> "o" | c <- cs]
 need os
 cmd "gcc -o" [out] link os

• Can dependency track more than just files

Polymorphic dependencies

type ShakeValue a = (Show a, Typeable a, Eq a,

 Hashable a, Binary a, NFData a)

class (ShakeValue k, ShakeValue v) => Rule k v where

 storedValue :: k -> IO (Maybe v)

• About 7 built in Rule instances

Progress prediction

• Guesses how long the build will take

– 3m12s more, is 82% complete

– Based on historical measurements plus guesses

– All scaled by a progress rate (guess at parallel
setting)

– An approximation…

Why is Shake fast?

• What does fast even mean?

– Everything changed? Rebuild from scratch.

– Nothing changed? Rebuild nothing.

• In practice, a blend, but optimise both
extremes and you win

Fast when everything changes

• If everything changes, rule dominate (you hope)

• One rule: Start things as soon as you can

– Dependencies should be fine grained

– Start spawning before checking everything

– Make use of multiple cores

– Randomise the order of dependencies (~15% faster)

• Expressive dependencies, Continuation monad,
cheap threads, immutable values (easy in Haskell)

Fast when nothing changes

• Don’t run users rules if you can avoid it

• Shake records a journal, [(k, v, …)]

• Avoid lots of locking/parallelism

– Take a lock, check storedValue a lot

• Binary serialisation is a bottleneck

unchanged journal = flip allM journal $ \(k,v) ->

 (== Just v) <$> storedValue k

Non-recursive Make

Considered Harmful:

Build Systems at Scale
Andrey Mokhov, Neil Mitchell,

Simon Peyton Jones, Simon

Marlow

Haskell Symposium 2016

The GHC and the build system

Glasgow Haskell
Compiler:

– 25 years old

– 100s of contributors

– 10K+ source files

– 1M+ lines of Haskell
code

– 3 GHC stages

– 18 build ways

– 27 build programs: alex,
ar, gcc, ghc, ghc-pkg,
happy, …

The current build system:

– Non-recursive Make

– Fourth major rewrite

– 200 makefiles

– 10K+ lines of code

– 3 build phases

– Highly user-

customisable

– And it works! But…

The result of 25 years of

development

$1/$2/build/%.$$($3_osuf) : $1/$4/%.hs $$(LAX_DEPS_FOLLOW) \
 $$$$($1_$2_HC_DEP) $$($1_$2_PKGDATA_DEP)
 $$(call cmd,$1_$2_HC) $$($1_$2_$3_ALL_HC_OPTS) -c $$< -o $$@ \
 $$(if $$(findstring YES,$$($1_$2_DYNAMIC_TOO)), \
 -dyno $$(addsuffix .$$(dyn_osuf),$$(basename $$@)))
 $$(call ohi-sanity-check,$1,$2,$3,$1/$2/build/$$*)

Make uses a global namespace of mutable string variables
– Numbers, arrays, associative maps are encoded in strings

– No encapsulation and implementation hiding

– Variable references are spliced into Makefiles: avoid
spaces/colons

– To expand a variable use $; to get $ use $$; to get $$ use $$$$…

There are other problems

1. A global namespace of mutable string variables

2. Dynamic dependencies

3. Build rules with multiple outputs

4. Concurrency reduction

5. Fine-grain dependencies

6. Computing command lines, essential complexity

Solution: use FP to design scalable abstractions

– To solve 1-5: we use Shake, a Haskell library for writing build systems

– To solve 6: we develop a small EDSL for building command lines

Accidental

complexity

Build rules with multiple outputs

"*.o" %> \obj -> do
 let src = obj -<.> "hs"
 need [src]
 run "ghc" [src]

How do we tell

our build system

that ghc

produces both

*.o and *.hi files?

["*.o", "*.hi"] &%> \[obj, hi] -> do
 let src = obj -<.> "c"
 need [src]
 run "ghc" [src]

Concurrency reduction

"//*.conf" %> \conf -> do
 let src = confSrcFile conf
 need [src]
 run "ghc-pkg" ["update",
src]

But we can have

at most one ghc-

pkg running at a

time as it mutates

package db!

db <- newResource "package-db" 1

"//*.conf" %> \conf -> do
 let src = confSrcFile conf
 need [src]
 withResource db 1 $ run "ghc-pkg" ["update",
src]

Dynamic dependencies

Build target t:
– Lookup t‘s dependencies

{d1, …, dn} in the database

– If the lookup fails
or t doesn’t exist
or t has changed
or some dk is not up to
date
then

• Find the build rule
matching t

• Run the action, recording
need’s

• Update the database with
newly recorded
dependencies

More quick wins with Shake

Post-use dependencies

Order-only dependencies

Polymorphic/fine-grain dependencies

Tracking file contents

Avoiding external tools

…

Read the paper!

Target

data Target = Target
 { context :: Context
 , builder :: Builder
 , inputs :: [FilePath]
 , outputs :: [FilePath] }

preludeTarget = Target
 { context = Context Stage1 base profiling
 , builder = Ghc Stage1
 , inputs = ["libraries/base/Prelude.hs"]
 , outputs =
["build/stage1/libraries/base/Prelude.p_o"] }

Each invocation of a builder is fully described by a target

Computing command line for a

target

preludeTarget = Target
 { context = Context Stage1 base profiling
 , builder = Ghc Stage1
 , inputs = ["libraries/base/Prelude.hs"]
 , outputs =
["build/stage1/libraries/base/Prelude.p_o"] }

Given preludeTarget how to compute the build command for it?

inplace/bin/ghc-stage1 -O2 -prof -c
libraries/base/Prelude.hs

 -o build/stage1/libraries/base/Prelude.p_o

commandLine :: Target -> Action [String]

Expression

type Expr a = ReaderT Target Action a

ghcArgs :: Expr [String]
ghcArgs = do
 target <- ask
 return $ ["-O2"]
 ++ ["-prof" | way (context target)
== profiling]
 ++ ["-c", head (inputs target)]
 ++ ["-o", head (outputs target)]

An expression Expr a is a computation that produces a value

of type Action a and can read the current build Target:

Current limitations

We can build stage 2 GHC, but still lack many

features:

– We only build vanilla and profiling way

– Validation is not implemented

– Only HTML Haddock documentation is supported

– Not all build flavours are not supported

– Cross-compilation is not implemented

– No support for installation or binary/source

distribution

– 46 open issues:

https://github.com/snowleopard/hadrian/issues

https://github.com/snowleopard/hadrian/issues
https://github.com/snowleopard/hadrian/issues

Experiments

Qualitative analysis:

– We studied 11 common use-cases of GHC build system, such as

“edit a source file and rebuild”, “add a new build command line

argument and rebuild”, “git branch and rebuild”, etc.

– The old build system performs a lot of unnecessary rebuilds in

many cases, whereas Hadrian correctly handles most cases.

Quantitative benchmarks: Hadrian is faster

– Zero build: 2.2s vs 2.0s (Linux), 12.3s vs 2.1s (Windows)

– Full build: 649s vs 578s (Linux), 1266s vs 737s (Windows)

Build
GHC

Future directions – better API

After 9 years, I’m still improving the API

Currently working on a rewrite for defining rule types

Makes rules faster and more powerful

Use type families to assert rule relationships

Future directions – tracing

What if we could track every file accessed?

 Lint checks

Automatic dependencies

Requires cross-OS tracing primitives

Future directions – forward

import Development.Shake

import Development.Shake.Forward

import Development.Shake.FilePath

main = shakeArgsForward shakeOptions $ do

 contents <- readFileLines "result.txt"

 cache $ cmd "tar -cf result.tar" contents

Future directions – cloud

“Towards Cloud Build Systems with

Dynamic Dependency Graphs”

Aka, Google scale, better dependencies

Compete with Bazel/Buck

