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out : in 
cp in out 

Simple example 

"out" %> \out -> do 

    need ["in"] 

    cmd "cp in out" 

:: Rule () 
Monad Rule :: Action () 

Monad Action 

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule () 



 

result.tar 
 

notes.txt 
talk.pdf 
pic.jpg 

import Development.Shake 

import Development.Shake.FilePath 

 

main = shakeArgs shakeOptions $ do 

    want ["result.tar"] 

    "*.tar" %> \out -> do 

        need [out -<.> "lst"] 

        contents <- readFileLines $ out -<.> "lst" 

        need contents 

        cmd "tar -cf" [out] contents 

 

Longer example 

 

result.lst 
 

notes.txt 
talk.pdf 
pic.jpg 



Generated files 

MyGen.hs MySource.xml 

MySource.c 

MySource.o 

What does MySource.o depend on? 



• Hardcode it? 

– Very fragile. 

• Hack an approximation of MyGen? 

– Slow, somewhat fragile, a lot of effort. 

• Run MyGen.hs and look at MySource.c 

– Easy, fast, precise. 

– Requires monadic dependencies 

Generated approaches 



Monadic dependencies 

Determine future dependencies 
based on the results 

of previous dependencies 



Monadic dependencies in code 

"MyHeader.h" %> \out -> do 

    need ["MyGen.hs","MyHeader.xml"] 

    cmd "runhaskell MyGen.hs" 

"MySource.o" %> \out -> do 

    need =<< readFile’ "MySource.c.deps" 

    cmd "gcc -c MySource.c" 

See user manual for .deps rule 



• Assume you change whitespace in MyHeader.xml 
and MySource.c doesn’t change 

– What rebuilds? 

– What do you want to rebuild? 

– (Very common for generated code) 

Unchanging 



• Assume you change whitespace in MyHeader.xml 

– Using file hashes: MyGen.hs runs and nothing 

– Using modtimes: Stops if MyGen.hs checks for Eq first 

 

• Always build children before their parents 

• What if a child fails, but the parent changed to no 
longer require that child? 

– Must rebuild the parent and fail on demand 

Unchanging consequences 



Polymorphic dependencies 

"_build/run" <.> exe %> \out -> do 

    link <- fromMaybe "" <$> getEnv "C_LINK_FLAGS" 

    cs <- getDirectoryFiles "" ["//*.c"] 

    let os = ["_build" </> c -<.> "o" | c <- cs] 

    need os 

    cmd "gcc -o" [out] link os  

• Can dependency track more than just files 



Polymorphic dependencies 

type ShakeValue a = (Show a, Typeable a, Eq a, 

                                      Hashable a, Binary a, NFData a) 

 

class (ShakeValue k, ShakeValue v) => Rule k v where 

    storedValue :: k -> IO (Maybe v) 

• 8 built in Rule instances 



Using Shake for our build system has been a 
very good decision so far, we've been able 

to minimise the time spent 
with platform-dependent build systems and 

IDEs and get to write Haskell 
code instead ;) 

Stefan Kersten, CTO Samplecount 
Cross-platform music stuff in C/Haskell 
Using Shake for > 2 years 



Ready for primetime! 

• Standard Chartered have been using Shake since 2009, 
1000’s of compiles per day. 

• factis research GmbH use Shake to compile their Checkpad 
MED application. 

• Samplecount have been using Shake since 2012, producing 
several open-source projects for working with Shake. 

• CovenantEyes use Shake to build their Windows client. 

• Keystone Tower Systems has a robotic welder with a Shake 
build system. 

• FP Complete use Shake to build Docker images. 

 
Don’t write a build system unless you have to! 



• Syntax, reasonable DSLs 

• Some use of the type system (not heavy) 

• Abstraction, functions/modules/packages 

• Profiling the Haskell functions 

Stealing from Haskell 



• HTML profile reports 

• Very multithreaded 

• Progress reporting 

• Reports of live files 

• Lint reports 

• … 

 

Extra features 



Why is Shake fast? 

• What does fast even mean? 

– Everything changed? Rebuild from scratch. 

– Nothing changed? Rebuild nothing. 

• In practice, a blend, but optimise both extremes 
and you win 



Fast when everything changes 

• If everything changes, rule dominate (you hope) 

• One rule: Start things as soon as you can 

– Dependencies should be fine grained 

– Start spawning before checking everything 

– Make use of multiple cores 

– Randomise the order of dependencies (~15% faster) 
 

• Expressive dependencies, Continuation monad, 
cheap threads, immutable values (easy in Haskell) 

 



Fast when nothing changes 

• Don’t run users rules if you can avoid it 

• Shake records a journal, [(k, v, …)] 

 

 

 

• Avoid lots of locking/parallelism 

– Take a lock, check storedValue a lot 

• Binary serialisation is a bottleneck 

 

unchanged journal = flip allM journal $ \(k,v) -> 

    (== Just v) <$> storedValue k 



Shake Questions? 
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Bake Continuous Integration 

• A lot less applicable and mature than Shake 

– Not suitable for everyone 

– And those who it is suitable for might find it sucks 

– But already used in production at 3 or 4 places 



• Continuous integration – Travis, Jenkins… 

• Designed for teams which are: 

– Large: ~5-50 people 

– Semi-trusted: Not always advance code review 

– Productive: Writing lots of code 

• Never break the build 

 

https://github.com/ndmitchell/bake 

Bake for Managers 



 

 

 
 

• Master branch always works perfectly 

• When code is ready, tell Bake 

• Bake compiles it, runs the tests, merges it 

• Bad code is rejected 

master neil 

Bake for Developers 



• 50 patches are promoted per day 

• Compile & test = 10 hours (multithreaded) 

• 20+ servers testing is infeasible 

– 2 might be reasonable, Windows & Linux 

 

• Bake’s solution 

– Assume if p1+p2 pass the tests, that’s fine 

– If a test fails, then identify whether p1 or p2 fails 

 

Not enough time in the day 





data Action = Compile | Test 

 

main = bake $ 

    ovenGit repo "master" Nothing $ 

    ovenTest (return [Compile,Test]) exec 

    defaultOven 

 

exec Compile = run $ cmd "shake" 

exec Test = after [Compile] $ run $ cmd "test" 

Configure in Haskell 



Users 

Client(s) 

Server * 

Prepare Run 

Query 

Merge 

HTTP 
Command line 

*      Clever stuff 

90% string passing 



data Stringy s = Stringy 

    {stringyTo :: s -> String 

    ,stringyFrom :: String -> s 

    ,stringyPretty :: s -> String 

    } 

 

stringyTo . stringyFrom == id 

stringyFrom . stringyTo == id 

 

check :: Stringy s -> Stringy s 

String passing the Haskell way 



• Parameterisable and configurable 

– Parameterised over version control 

– Parameterised over tests 

• Use types to safely pass different strings 

• A bit of pure “clever” stuff in the middle 

Stealing from Haskell 



• First version was way too slow 

– Directory copy on Windows is very slow 

– Git checkout from scratch is very slow 

• Use a single directory for all building 

• Tarballs of each compiled state (distribution only) 

• Extract tarballs to do a bisection on test failure 

• Use exhaustive search near the leaves 

Optimisation 



• Are you in a large tech firm? Google/Facebook? 

– Probably have lots of CPU years dedicated to testing 

• Are you an individual or a small organisation? 

– Probably can use Travis just fine and fix your mistakes 

• Are you in the middle? With hours of tests? 

– Bake might be suitable here. 

Should you use Bake? 



Questions? 

Or beer? 


