
Shake ‘n’ Bake
Neil Mitchell

https://github.com/ndmitchell/{shake,bake}

Build ‘n’ Integrate

shake bake

In Haskell

CMake

Shake build system

Expressive, Robust, Fast

Haskell EDSL
Monadic

Polymorphic
Unchanging

1000’s of tests
100’s of users
Heavily used

Faster than
Ninja to

build Ninja

out : in
cp in out

Simple example

"out" %> \out -> do

 need ["in"]

 cmd "cp in out"

:: Rule ()
Monad Rule :: Action ()

Monad Action

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule ()

result.tar

notes.txt
talk.pdf
pic.jpg

import Development.Shake

import Development.Shake.FilePath

main = shakeArgs shakeOptions $ do

 want ["result.tar"]

 "*.tar" %> \out -> do

 need [out -<.> "lst"]

 contents <- readFileLines $ out -<.> "lst"

 need contents

 cmd "tar -cf" [out] contents

Longer example

result.lst

notes.txt
talk.pdf
pic.jpg

Generated files

MyGen.hs MySource.xml

MySource.c

MySource.o

What does MySource.o depend on?

• Hardcode it?

– Very fragile.

• Hack an approximation of MyGen?

– Slow, somewhat fragile, a lot of effort.

• Run MyGen.hs and look at MySource.c

– Easy, fast, precise.

– Requires monadic dependencies

Generated approaches

Monadic dependencies

Determine future dependencies
based on the results

of previous dependencies

Monadic dependencies in code

"MyHeader.h" %> \out -> do

 need ["MyGen.hs","MyHeader.xml"]

 cmd "runhaskell MyGen.hs"

"MySource.o" %> \out -> do

 need =<< readFile’ "MySource.c.deps"

 cmd "gcc -c MySource.c"

See user manual for .deps rule

• Assume you change whitespace in MyHeader.xml
and MySource.c doesn’t change

– What rebuilds?

– What do you want to rebuild?

– (Very common for generated code)

Unchanging

• Assume you change whitespace in MyHeader.xml

– Using file hashes: MyGen.hs runs and nothing

– Using modtimes: Stops if MyGen.hs checks for Eq first

• Always build children before their parents

• What if a child fails, but the parent changed to no
longer require that child?

– Must rebuild the parent and fail on demand

Unchanging consequences

Polymorphic dependencies

"_build/run" <.> exe %> \out -> do

 link <- fromMaybe "" <$> getEnv "C_LINK_FLAGS"

 cs <- getDirectoryFiles "" ["//*.c"]

 let os = ["_build" </> c -<.> "o" | c <- cs]

 need os

 cmd "gcc -o" [out] link os

• Can dependency track more than just files

Polymorphic dependencies

type ShakeValue a = (Show a, Typeable a, Eq a,

 Hashable a, Binary a, NFData a)

class (ShakeValue k, ShakeValue v) => Rule k v where

 storedValue :: k -> IO (Maybe v)

• 8 built in Rule instances

Using Shake for our build system has been a
very good decision so far, we've been able

to minimise the time spent
with platform-dependent build systems and

IDEs and get to write Haskell
code instead ;)

Stefan Kersten, CTO Samplecount
Cross-platform music stuff in C/Haskell
Using Shake for > 2 years

Ready for primetime!

• Standard Chartered have been using Shake since 2009,
1000’s of compiles per day.

• factis research GmbH use Shake to compile their Checkpad
MED application.

• Samplecount have been using Shake since 2012, producing
several open-source projects for working with Shake.

• CovenantEyes use Shake to build their Windows client.

• Keystone Tower Systems has a robotic welder with a Shake
build system.

• FP Complete use Shake to build Docker images.

Don’t write a build system unless you have to!

• Syntax, reasonable DSLs

• Some use of the type system (not heavy)

• Abstraction, functions/modules/packages

• Profiling the Haskell functions

Stealing from Haskell

• HTML profile reports

• Very multithreaded

• Progress reporting

• Reports of live files

• Lint reports

• …

Extra features

Why is Shake fast?

• What does fast even mean?

– Everything changed? Rebuild from scratch.

– Nothing changed? Rebuild nothing.

• In practice, a blend, but optimise both extremes
and you win

Fast when everything changes

• If everything changes, rule dominate (you hope)

• One rule: Start things as soon as you can

– Dependencies should be fine grained

– Start spawning before checking everything

– Make use of multiple cores

– Randomise the order of dependencies (~15% faster)

• Expressive dependencies, Continuation monad,
cheap threads, immutable values (easy in Haskell)

Fast when nothing changes

• Don’t run users rules if you can avoid it

• Shake records a journal, [(k, v, …)]

• Avoid lots of locking/parallelism

– Take a lock, check storedValue a lot

• Binary serialisation is a bottleneck

unchanged journal = flip allM journal $ \(k,v) ->

 (== Just v) <$> storedValue k

Shake Questions?

Expressive, Robust, Fast

Haskell EDSL
Monadic

Polymorphic
Unchanging

1000’s of tests
100’s of users
Heavily used

Faster than
Ninja to

build Ninja

Bake Continuous Integration

• A lot less applicable and mature than Shake

– Not suitable for everyone

– And those who it is suitable for might find it sucks

– But already used in production at 3 or 4 places

• Continuous integration – Travis, Jenkins…

• Designed for teams which are:

– Large: ~5-50 people

– Semi-trusted: Not always advance code review

– Productive: Writing lots of code

• Never break the build

https://github.com/ndmitchell/bake

Bake for Managers

• Master branch always works perfectly

• When code is ready, tell Bake

• Bake compiles it, runs the tests, merges it

• Bad code is rejected

master neil

Bake for Developers

• 50 patches are promoted per day

• Compile & test = 10 hours (multithreaded)

• 20+ servers testing is infeasible

– 2 might be reasonable, Windows & Linux

• Bake’s solution

– Assume if p1+p2 pass the tests, that’s fine

– If a test fails, then identify whether p1 or p2 fails

Not enough time in the day

data Action = Compile | Test

main = bake $

 ovenGit repo "master" Nothing $

 ovenTest (return [Compile,Test]) exec

 defaultOven

exec Compile = run $ cmd "shake"

exec Test = after [Compile] $ run $ cmd "test"

Configure in Haskell

Users

Client(s)

Server *

Prepare Run

Query

Merge

HTTP
Command line

* Clever stuff

90% string passing

data Stringy s = Stringy

 {stringyTo :: s -> String

 ,stringyFrom :: String -> s

 ,stringyPretty :: s -> String

 }

stringyTo . stringyFrom == id

stringyFrom . stringyTo == id

check :: Stringy s -> Stringy s

String passing the Haskell way

• Parameterisable and configurable

– Parameterised over version control

– Parameterised over tests

• Use types to safely pass different strings

• A bit of pure “clever” stuff in the middle

Stealing from Haskell

• First version was way too slow

– Directory copy on Windows is very slow

– Git checkout from scratch is very slow

• Use a single directory for all building

• Tarballs of each compiled state (distribution only)

• Extract tarballs to do a bisection on test failure

• Use exhaustive search near the leaves

Optimisation

• Are you in a large tech firm? Google/Facebook?

– Probably have lots of CPU years dedicated to testing

• Are you an individual or a small organisation?

– Probably can use Travis just fine and fix your mistakes

• Are you in the middle? With hours of tests?

– Bake might be suitable here.

Should you use Bake?

Questions?

Or beer?

