
Shake:
A Better Make

Neil Mitchell, Standard Chartered
Haskell Implementors Workshop 2010



Question

� Make system builds multi-language stuff

� Not ghc --make, cabal install, Visual Studio

Do you like your Make system?



An Example

import Development.Shake

main = shake $ do

want ["Main.exe"]

"Main.exe" *> \x -> do

cs <- ls "*.c"

let os = map (`replaceExtension` "obj") cs

need os

system $ ["gcc","-o",x] ++ os

"*.obj" *> \x -> do

let c = replaceExtension x "c"

need [c]

need =<< cIncludes c

system ["gcc","-c",c,"-o",x]



Benefits of Shake

� A Haskell library for writing build systems

� Can use modules/functions for abstraction/separation

� Can use Haskell libraries (i.e. filepath)

� It’s got the useful bits from Make

� Automatic parallelism

� Minimal rebuilds

� But it’s better!

� More accurate dependencies (i.e. the results of ls are tracked)

� Can produce profiling reports (what took most time to build)

� Can deal with generated files properly

� Properly cross-platform



Quick Tour

shake :: Shake () -> IO ()

want :: [FilePath] -> Shake ()

(*>) :: String -> (FilePath -> Act ()) -> Shake ()

need :: [FilePath] -> Act ()

system :: [String] -> Act ()

ls :: String -> Act [FilePath]



Sugar Functions

readFileLines :: FilePath -> Act [String]

readFileLines x = do

need [x]

liftIO $ fmap lines $ readFile x

copy :: FilePath -> FilePath -> Act()

copy from to = do

mkdir $ takeDirectory to

need [from]

system' ["cp",quote from,quote to]



The Oracle

� The Oracle is used for non-file dependencies

� What is the version of GHC? 6.12.3

� What extra flags do we want? --Wall

� ls is a sugar function for the Oracle

type Question = (String,String)

type Answer = [String]

oracle :: (Question -> Answer) -> Shake a -> Shake a

query :: Question -> Act Answer



The Generated File Problem

� Make has a problem with generated files (i.e. .hsc files)

$ cat Foo.c

#include <MyGeneratedFile.h>

� What are the dependencies of Foo.c?

� Use the Make system to generate MyGeneratedFile.h

� Read the contents of MyGeneratedFile.h for #include’s

� Faking it in Make

� Run make twice (or more), first to generate files

� Guess at the dependencies in advance



The Implementation

NO DEPENDENCY GRAPH!



History Traces

� A history trace is a list of question/answer pairs

� What is the timestamp of Foo.c? 10am

� What is the result of ls “*.c”? ["Foo.c"]

� When building a file, record the history

� Save that history to disk

� File is dirty if any answer has changed

� Alternatively: history is an abstract interpretation of a rule

type History = [QA]

data QA = Oracle Question Answer

| Need [(FilePath,ModTime)]



Implementation of need

type Database = Map FilePath Status

data Status = Dirty History

| Clean History ModTime

� Every Act accumulates a history

� In need:

� Make sure the file is Clean

� Add file/time to Act’s history

� If Dirty, rerun history, and if matching

� Get file’s ModTime and switch to Clean

� If absent, or Dirty and history differs

� If there is a matching rule, run it

� If no rule but a real file, get it’s ModTime



Parallelisation

� need/want both take lists of files, which run in parallel

� Try and build N rules in parallel

� Done using a pool of N threads and a work queue

� need/want put their jobs in the queue

� Add a Building (MVar ()) in DataBase

� Shake uses a random queue

� Jobs are serviced at random, not in any fair order

� link = disk bound, compile = CPU bound

� Shake is highly parallel (in theory and practice)



Profiling

� Can record every system command run, and produce:



Future work: Shake --lint

� Parallel building often shows up build rule errors

� In practice using a random queue makes these show up fast

� I want shake --lint, run once, in serial, guarantee parallel 

consistency

� Can check the access times on all files

� Check no files not in the history were accessed

� Check all files in the history were accessed



Future work: also files

� Also files are annoying!

� GHC builds .o files and .hi files in one command

� Some things depend on the .o, some on the .hi

� One rule modifies 2 database entries!

type Rule = FilePath

-> Maybe ([FilePath], Act ())

� Works, but impacts on lots of the core code

� Not really a good model for also files

� Potential for inconsistency



Practical Use

� Relied on by an international team of people every day

� Building more than a million lines of code in many 

languages

� Before Shake

� Masses of really complex Makefiles, slow builds

� Answer to any build error was “make clean”

� After Shake

� Robust and fast builds (at least x2 faster)

� Maintainable and extendable (at least x10 shorter)



Limitations/Disadvantages

� Creates a _database file to save the database

� Oracle is currently “untyped” (String’s only)

� Although easy to add nicely typed wrappers over it

� Massive space leak (~ 12% productivity)

� In practice doesn’t really matter, and should be easy to fix

� More dependency analysis tools would be nice

� Changing which file will cause most rebuilding?

� What if the rules change?

� Can depend on Makefile.hs, but too imprecise

� Not currently open source



Transitive Dependencies (theory)

foo.c
.dep: [a.h, b.h]

.deps: [a.h,b.h,c.h,d.h]

b.h
.dep: [c.h]

.deps: [c.h,d.h]

c.h
.dep: [d.h]

.deps: [d.h]

d.h
.dep: []

.deps: []

a.h
.dep: []

.deps: []



Transitive Dependencies (Shake)

"*.c.dep" & "*.h.dep" *> \x -> do

src <- readFileLines $ dropExtension x

writeFileLines x

[drop 8 s | s <- lines src, "#include"
`isPrefixOf` s]

"*.deps" *> \x -> do

incs <- readFileLines $ replaceExtension x 
"dep"

let incs2 = map (<.> "deps") incs

need incs2 -- parallel optimisation

writeFileLines x =<< concatMapM readFileLines
incs2



Conclusions

� Haskell is a great language for a DSL

� A Make system is a DSL

� Any Make system based on a static dependency graph 

will fail to work with generated files

� Accurate dependency tracking is essential (i.e. Oracle)

� Shake is a Make system people actually like!


