
Rethinking Supercompilation

Neil Mitchell

ICFP 2010

community.haskell.org/~ndm/supero

Supercompilation

� Whole program optimisation technique

– From Turchin 1982

Run the program at compile time

Source Program Residual Program

map/map deforestation

map :: (a → b) → [a] → [b]

map f x = case x of

[] → []

x:xs → f x : map f xs

root f g y = map f (map g y)

map f (map g y)

map f (map g y)

case map g y of

[] → []

x:xs → f x : map f xs

map f (map g y)

case map g y of

[] → []

x:xs → f x : map f xs

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

map f (map g y)

case map g y of

[] → []

x:xs → f x : map f xs

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

� Stuck, but y must be either [] or (:)

case y of

[] → next slide

z:zs → next slide + 1

let y = [] in

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

let y = [] in

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

case [] of

[] → []

x:xs → f x : map f xs

[]

let y = z:zs in

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

case g z : map g zs of

[] → []

x:xs → f x : map f xs

f (g z) : map f (map g zs)

let y = z:zs in

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

case g z : map g zs of

[] → []

x:xs → f x : map f xs

f (g z) : map f (map g zs)

� Stuck, result must be _ : _

let y = z:zs in

case (case y of [] → []; x:xs → g x : map g xs) of

[] → []

x:xs → f x : map f xs

case g z : map g zs of

[] → []

x:xs → f x : map f xs

f (g z) : map f (map g zs)

� Stuck, result must be _ : _

…

f (g z) : root f g zs

Deforestation

root f g y = case y of

[] → []

z:zs → f (g z) : root f g zs

� Simple evaluation, no case/case

transformation

� Works even if the user defines their own map

– Semantic, not syntactic

Overview of Supercompilation

1 evaluation

Use previous
result

Split residual and
evaluate pieces

Split residual and
evaluate pieces

otherwise

seen before?

stuck?
terminate?

This talkThe paper

What is new?

� New Core language

– Totally different treatment of let

– let is often poorly handled by supercompilers

� New termination criteria

– No more slow homeomorphic embedding

� These changes lead to many other changes

NEW

Core Language

� The root of an expression is a list of let

bindings

� Most places allow variables, not expressions

root f g y = let v1 = map g y

v2 = map f v1

in v2

Root let bindings

Evaluate 1: Case of constructor

let v1 = []

v2 = []

in v2

let v1 = []

v2 = case v1 of

[] → []

x:xs → xs
in v2

Evaluate 2: β reduce

let v1 = map f z

in v1

let v1 = case z of

[] → []

x:xs → let w1 = f x; w2 = map f xs
in w3 = w1 : w2; w3

in v1

Evaluate 3: Root let

let v1 = v2

v2 = []

v3 = case v1 of …

in v3

let v1 = let v2 = []

in v2

v3 = case v1 of …

in v3

Evaluate 4: α rename

let v1 = v2

v2 = []

v3 = case v2 of …

in v3
+ more

let v1 = v2

v2 = []

v3 = case v1 of …

in v3

Termination

� We never construct new subexpressions!

– No case/case, no let substitution

– We just move around and alpha rename source

program subexpressions

� Finite number of source subexpressions

� A root let binding corresponds to a

bag/multiset over a finite alphabet

Termination Strategy

Empty
history

Add to
history

Perform a step
(inline + simplify)

Can this expression
be added to the history?

No

Yes

History = list of previously seen expressions

Termination Function

� History is a list of previously seen values

� Values are a multiset over a finite alphabet

� Can only add x to the history ys if:

– ∀y ∈ ys • x y

– x y = set(x) ≠ set(y) ∨ #x < #y

Performance Results

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Supero
+ GHC

Disclaimer: For comparison purposes we compiled all the benchmarks with GHC 6.12.1, using the -O2 optimisation setting. For

the supercompiled results we first ran our supercompiler, then compiled the result using GHC. To run the benchmarks we used a 32bit

Windows machine with a 2.5GHz processor and 4Gb of RAM. Benchmarks may go up as well as down. Contents may settle during

shipping. Benchmarks are very hard to get right.

GHC

Performance Summary

� Compared to GHC alone

– Can sometimes be much faster

� Compared to previous supercompilers

– No worse, perhaps even a bit better

� Compile time is much faster

– In particular, termination testing < 5%, with most
simple method possible

Why Supercompilation?

� Subsumes most other optimisations

– Deforestation

– Specialisation

– Constructor specialisation

– Inlining

� Requires no user annotations/special names

� Reasonably simple

� Great at removing abstraction overhead

Why Not Supercompilation?

� Some programs can get much bigger/take

very long at compile time

– See Bolingbroke and Peyton Jones 2010 (HS)

� Not yet ready for real use

� Some optimisations still aren’t integrated

– Strictness

– Unboxing

– Changing data type representations

Conclusions

� Supercompilation is a simple and powerful
program optimisation technique

� We can now handle let expressions properly

� Termination checks are now fast enough

� Even with all the excellent GHC work,
supercompilation still gives big wins

Current Optimising Compilers

“Good compilers have a

lot of bullets in their gun”
Simon Peyton Jones

Supercompilation

One powerful
transformation

