

Playing with Haskell Data

Neil Mitchell

Overview

 The “boilerplate” problem
 Haskell’s weakness (really!)
 Traversals and queries
 Generic traversals and queries
 Competitors (SYB and Compos)
 Benchmarks

Data structures

 A tree of typed nodes
 Parent/child relationship is important

A concrete data structure

data Expr = Val Int

 | Neg Expr

 | Add Expr Expr

 | Sub Expr Expr

 Simple arithmetic expressions

Task: Add one to every Val

inc :: Expr -> Expr

inc (Val i) = Val (i+1)

inc (Neg x) = Neg (inc x)

inc (Add x y) = Add (inc x) (inc y)

inc (Sub x y) = Sub (inc x) (inc y)

 What is the worst thing about this code?

Many things!

1. If we add Mul, we need to change

2. The action is one line, obscured

3. Tedious, repetitive, dull

4. May contain subtle bugs, easy to
overlook

5. Way too long

The boilerplate problem

 A lot of tasks:
1. Navigate a data structure (boilerplate)

2. Do something (action)
 Typically boilerplate is:

 Repetitive
 Tied to the data structure
 Much bigger than the action

Compared to Pseudo-OO1

class Expr

class Val : Expr {int i}

class Neg : Expr {Expr a}

class Add : Expr {Expr a, b}

class Sub : Expr {Expr a, b}

1) Java/C++ are way to verbose to fit on slides!

Inc, in Pseudo-OO

void inc(x){

if (x is Val) x.i += 1;

if (x is Neg) inc(x.a)

if (x is Add) inc(x.a); inc(x.b)

if (x is Mul) inc(x.a); inc(x.b)

}

Casts, type evaluation etc omitted

Haskell’s weakness

 OO actually has a lower complexity
 Hidden very effectively by horrible syntax

 In OO objects are deconstructed
 In Haskell data is deconstructed and

reconstructed
 OO destroys original, Haskell keeps

original

Comparing inc for Add

 Haskell
inc (Add x y) = Add (inc x) (inc y)
 OO
if (x is Add) inc(x.a); inc(x.b)

 Both deconstruct Add (follow its fields)
 Only Haskell rebuilds a new Add

Traversals and Queries

 What are the common forms of
“boilerplate”?
 Traversals
 Queries

 Other forms do exist, but are far less
common

Traversals

 Move over the entire data structure
 Do “action” to each node
 Return a new data structure

 The previous example (inc) was a
traversal

Queries

 Extract some information out of the data
 Example, what values are in an

expression?

A query

vals :: Expr -> [Int]

vals (Val i) = [i]

vals (Neg x) = vals x

vals (Add x y) = vals x ++ vals y

vals (Mul x y) = vals x ++ vals y

 Same issues as traversals

Generic operations

 Identify primitives
 Support lots of operations
 Neatly
 Minimal number of primitives

 These goals are in opposition!

 Here follow my basic operations…

Generic Queries

allOver :: a -> [a]

 [, , , , ,]

The vals query

vals x = [i | Val i <- allOver x]

 Uses Haskell list comprehensions – very
handy for queries

 Can anyone see a way to improve on the
above?

 Short, sweet, beautiful 

More complex query

 Find all negative literals that the user
negates:

[i | Neg (Val i) <- allOver x

 , i < 0]

 Rarely gets more complex than that

Generic Traversals

 Have some “mutator”
 Apply to each item

traversal :: (a -> a) -> a -> a

5. Bottom up

6. Top down – automatic

7. Top down – manual

Bottom-up traversal

mapUnder :: (a -> a) -> a -> a

The inc traversal

inc x = mapUnder f x

 where

 f (Val x) = Val (x+1)

 f x = x

 Say the action (first line)
 Boilerplate is all do nothing

Top-down queries

 Bottom up is almost always best
 Sometimes information is pushed down
 Example: Remove negation of add
f (Neg (Add x y)) = Add (Neg x) (Neg y)

 Does not work, x may be Add
f (Neg (Add x y)) =

 Add (f (Neg x)) (f (Neg y))

Top-down traversal

mapOver :: (a -> a) -> a -> a

Produces one element per call

One element per call?

 Sometimes a traversal does not
produce one element

 If zero made, need to explicitly continue
 In two made, wasted work

 Can write an explicit traversal

Top-down manual

compos :: (a -> a) -> a -> a

Compos
noneg (Neg (Add x y)) =

 Add (noneg (Neg x)) (noneg (Neg y))

noneg x = compos noneg x

 Compos does no recursion, leaves this
to the user

 The user explicitly controls the flow

Other types of traversal

 Monadic variants of the above

 allOverContext :: a -> [(a, a -> a)]
 Useful for doing something once

 fold :: ([r] -> a) -> (x -> a -> r) -> x -> r

 mapUnder with a different return

The Challenge

Pick an operation

Will code it up “live”

Traversals for your data

 Haskell has type classes
 allOver :: Play a => a -> [a]

 Each data structure has its own
methods

 allOver Expr /= allOver Program

Minimal interface

 Writing 8+ traversals is annoying
 Can define all traversals in terms of

one:

replaceChildren :: x -> ([x], [x] -> x)

 Get all children
 Change all children

Properties
replaceChildren :: x -> ([x], [x] -> x)

(children, generate) = replaceChildren x

 generate children == x
 @pre generate y

 length y == length children

Some examples
mapOver f x = gen (map (mapOver f) child)

where (child,gen) = replaceChildren (f x)

mapUnder f x = f (gen child2)

where (child,gen) = replaceChildren x

 child2 = map (mapUnder f) child)

allOver x = x : concatMap allOver child

Where (child,gen) = replaceChildren x

Writing replaceChildren

 A little bit of thought
 Reasonably easy

 Using GHC, these instances can be
derived automatically

Competitors: SYB + Compos

 Not Haskell 98, GHC only
 Use scary types…

 Compos
 Provides compos operator and fold

 Scrap Your Boilerplate (SYB)
 Very generic traversals

Compos

 Based on GADT’s
 No support for bottom-up traversals

compos ::

(forall a. a -> m a) ->

(forall a b. m (a -> b) -> m a -> m b) ->

(forall a. t a -> m (t a)) ->

t c -> m (t c)

Scrap Your Boilerplate (SYB)

 Full generic traversals
 Based on similar idea of children

 But is actual children, of different types!
gfoldl ::

(forall a b. Term a => w (a -> b)

 -> a -> w b)

-> (forall g. g -> w g)

-> a -> w a

SYB vs Play, children

SYB
Play

SYB continued

 Traversals are based on types:

0 `mkQ` f

f :: Expr -> Int

 mkQ converts a function on Expr, to a
function on all types

 Then apply mkQ everywhere

Paradise benchmark

salaryBill :: Company -> Float
salaryBill = everything (+) (0 `mkQ` billS)

billS :: Salary -> Float
billS (S f) = f

salaryBill c = case c of
 S s -> s
 _ -> composOpFold 0 (+) salaryBill c

salaryBill x = sum [x | S x <- allOverEx x]

SYB

Compos

Play

Runtime cost - queries

Play SYB Over
Play SYB Fold
SYB
Play Over
Play Fold
Compos
Raw

Runtime cost - traversals

Play SYB Under
Play SYB Over
Play SYB Compos
SYB
Play Under
Play Over
Play Compos
Compos
Raw

In the real world?

 Used in Catch about 100 times
 Used in Yhc.Core library
 Used by other people

 Yhc Javascript converter
 Settings file converter

Conclusions

 Generic operations with simple types
 Only 1 simple primitive

 If you only remember two operations:
 allOver – queries
 mapUnder – traversals

