
Instances for Free*

Neil Mitchell
www.cs.york.ac.uk/~ndm

(* Postage and packaging charges may apply)

Haskell has type classes

f :: Eq a => a -> a -> Bool
f x y = x == y

Polymorphic (for all type a)
Provided they support Eq

Defining Type Classes

class Eq a where
(==) :: a -> a -> Bool

data MyType = …
instance Eq MyType where

a == b = …

Some Eq instances (1)

data List a = Nil | Cons a (List a)

instance Eq a => Eq (List a) where
Nil == Nil = True
Cons x1 x2 == Cons y1 y2 =

x1 == y1 && x2 == y2
_ == _ = False

Some Eq instances (2)

data Maybe a = Nothing | Just a

instance Eq a => Eq (Just a) where
Nothing == Nothing = True
Just x1 == Just y1 = x1 == y1
_ == _ = False

Some Eq instances (3)

data Unit = Unit

instance Eq Unit where
Unit == Unit = True
_ == _ = False

Some Eq instances (4)

data Either a b = Left a | Right b

instance (Eq a, Eq b)
=> Eq (Either a b) where
Left x1 == Left x2 = x1 == x2
Right x1 == Right x2 = x1 == x2
_ == _ = False

Please, no more Eq instances!

In the base library there are 433 types
with Eq instances
• A lot of tedious code

Fortunately, Haskell has a solution
data MyType = … deriving Eq

Limitations of “deriving”

Can only derive 6 classes
• Eq, Ord, Enum, Bounded, Show, Read

But there are lots more classes out there

class Serial a where
series :: Series a
coseries :: Series b -> Series (a->b)

Solution: A preprocessor

DrIFT was the original solution
• Run a preprocessor to generate the instances

Derive is a competitor to DrIFT
• Can directly integrate with GHC
• Preprocessor optional
• Can work better with version control
• Supports more Haskell features

How DrIFT works

Has a representation of Haskell types
• data HsType = HsType [Variable] [HsCtor]
• data HsCtor = HsCtor CtorName [HsField]

Author of the class must define
• deriveSerial :: HsType -> String

How Derive works

And a representation of Haskell code too
• data Stmt = …
• data Expr = …
• Lots of constructors, types etc.

Author of the class must define
• deriveSerial :: HsType -> [Stmt]

Derive difficulties

So the author of the Serial class must
• Learn and understand HsType
• Learn and understand Stmt, Expr etc.
• Write an instance generator
• Check it on several examples

Lots of work for Colin!

A simpler solution

Give Colin a single data type
• Ask for a sample instance

data DataName a = CtorZero
| CtorOne a
| CtorTwo a a
| CtorTwo' a a

Colin replies

instance Serial a =>
Serial (DataName a) where

series = cons0 CtorZero \/
cons1 CtorOne \/
cons2 CtorTwo \/
cons2 CtorTwo’

data DataName a
= CtorZero
| CtorOne a
| CtorTwo a a
| CtorTwo' a a

Derive replies

[instance’ [Serial] Serial
[series = foldr1’ (\/)

[(cons +$ arity c) (name c)
| c <- ctors]

]
]
a +$ b = a ++ show b

instance Serial a =>
Serial (DataName a) where

series = cons0 CtorZero \/
cons1 CtorOne \/
cons2 CtorTwo \/
cons2 CtorTwo’

Derivation by Example

We gave Derive one single example
• Over a particular data type

Derive has a domain specific language
for instances
Given an example, it infers a program

Instance for Eq
instance Eq a => Eq (DataName a) where

CtorZero == CtorZero = True
(CtorOne x1) == (CtorOne y1) =

x1 == y1 && True
(CtorTwo x1 x2) == (CtorTwo y1 y2) =

x1 == y1 && x2 == y2 && True
(CtorTwo’ x1 x2) == (CtorTwo’ y1 y2) =

x1 == y1 && x2 == y2 && True
_ == _ = False

Instance Example

[instance’ [Eq] Eq
[

[(name c) [x +$ i | i <- [1..arity c]] ==
[(name c) [y +$ i | i <- [1..arity c]] =
foldr’ (&&) True [x+$ i == y+$ i | i <- [1..arity c]]

| c <- ctors]
++ [_ == _ = False]

]

What is in the Derive Language?

map, foldr, foldl, foldr1, foldl1, reverse
+$, ++
ctors
arity, name, tag
• Properties over a constructor

numbers
instance’

Instance Derivation by Example

Given an example for the data type
Infer an instance

Key property:
If a derivation program is correct
It must be equivalent to all other correct
derivations

Uniqueness

If only minimal derivations are
considered, then the derivations are
unique
• Minimal = no redundant operations

Achieved by bounding the domain
language and selecting the data type

Example of Uniqueness

For Serial, constructors map to arity
For Enum, constructors map to tags

cons2 CtorTwo \/ cons2 CtorTwo’

fromEnum CtorTwo = 2
fromEnum CtorTwo’ = 3

Limitations

Can’t deal with:
• Records
• Type based derivations

Derive language cannot express these
If they were added, the data type would
have to become more complex (a lot!)

Summary so far…

Derive lets you write one example
Infers the pattern
Works a lot of the time (~ 60%)

Next
• Basic idea behind the inference
• Gets more technical…

Develop a “theory”

The inference is bottom up
Develops theories about syntactic bits
Combines these theories

CtorZero (\i -> name i) CtorZero
CtorOne (\i -> name i) CtorOne

More theories

cons0 (\i -> cons +$ i) 0
cons1 (\i -> cons +$ i) 1
/\ (_ -> /\) ()

Theories are parameterised by (),
number, or a constructor

Promoting theories

theory () theory <anything>
theory 0 (theory . arity) CtorZero
theory 0 (theory . tag) CtorZero

(\i -> cons +$ i) 0
(\i -> cons +$ arity i) CtorZero
(\i -> cons +$ tag i) CtorZero

Nondeterministic

Theory application

x x’ t
f f’ t

f x (\t -> (f’ t) (x’ t)) t
(f’ <*> x’) t

The S combinator

Theory lists

xi xi’ ti
forall i . xi’ ti == xj’ t’

tn expand t
forall i . (expand t !! i) == ti

[x1..xn] (map xj’ . expand) t

In practice, all xi are
usually identical

Theory expansions

n (enumFromTo 1) n
(enumFromTo 0) n

CtorTwo’ ctors ()

[1,2,3] (map id . enumFromTo 1) 3
[CtorZero..CtorTwo’] (map id . ctors) ()

Adding in folds

Just do a translation first

x1 `f` … `f` xn == foldr1 f [x1…xn]

Reverse is handled in the same way

Combined together

cons0 CtorZero

cons0 (\i -> cons +$ i) 0
(\i -> cons +$ arity i) CtorZero

CtorZero (\i -> name i) CtorZero
cons0 CtorZero

(\i -> (name i) (cons +$ arity i)) CtorZero

More combining

[cons0 CtorZero, cons1 CtorOne,
[(\i -> (name i) (cons +$ arity i)) CtorZero
,(\i -> (name i) (cons +$ arity i)) CtorOne

(map (\i -> (name i) (cons +$ arity i))
. ctors) ()

Conclusions

The inference method is not too hard
Usually just does the right thing

If you really want to derive Serial, see:
• http://www-users.cs.york.ac.uk/~ndm/derive/

	Instances for Free*
	Haskell has type classes
	Defining Type Classes
	Some Eq instances (1)
	Some Eq instances (2)
	Some Eq instances (3)
	Some Eq instances (4)
	Please, no more Eq instances!
	Limitations of “deriving”
	Solution: A preprocessor
	How DrIFT works
	How Derive works
	Derive difficulties
	A simpler solution
	Colin replies
	Derive replies
	Derivation by Example
	Instance for Eq
	Instance Example
	What is in the Derive Language?
	Instance Derivation by Example
	Uniqueness
	Example of Uniqueness
	Limitations
	Summary so far…
	Develop a “theory”
	More theories
	Promoting theories
	Theory application
	Theory lists
	Theory expansions
	Adding in folds
	Combined together
	More combining
	Conclusions

